Научная статья на тему 'Formation and study of nanostructured M-monolayers and LS-films of triphenylcorrole'

Formation and study of nanostructured M-monolayers and LS-films of triphenylcorrole Текст научной статьи по специальности «Химические науки»

CC BY
52
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
ПЛАВАЮЩИЕ МОНОСЛОИ / FLOATING MONOLAYERS / 2D НАНОСТРУКТУРЫ / 2D NANOSTRUCTURES / М-НАНОАГРЕГАТЫ / M-NANOAGGREGATES / МОДЕЛЬ М-МОНОСЛОЯ / MODEL OF M-MONOLAYER / LS-FILMS / CORROLE / ЛШ-ПЛЕНКИ / КОРРОЛ

Аннотация научной статьи по химическим наукам, автор научной работы — Vu Thao T., Maiorova Larissa A., Berezin Dmitrii B., Koifman Oskar I.

An experimental and theoretical study of 5,10,15-triphenylcorrole (H 3 [(ms-Ph) 3 Cor]) nano-structured floating layers (M-layers) was performed. The existence areas and characteristics of the structure and properties of stable monomolecular layers were determined. Main dependencies of the M-monolayer on the initial surface coverage degree were identified the sizes of the nanoaggregate, aggregation number, surface area per molecule in a nanoaggregate, etc. A quantitative model of a monolayer with water and dry M-nanoaggregates was constructed. H 3 [(ms-Ph) 3 Cor] thin films on solid substrates were obtained using the Langmuir-Schaefer (LS) technique, and their spectral characteristics were explored.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Формирование и исследование наноструктурированных М-монослоев и ЛШ-пленок трифенилкоррола

Выполнено экспериментальное и теоретическое исследование наноструктурированных плавающих слоев (М-слоев) тетрапиррольного макроциклического соединения 5,10,15-трифенилкоррола (H 3 [(ms-Ph) 3 Cor]). Определены области существования и характеристики структуры и свойств стабильных мономолекуляр-ных слоев. Установлены зависимости основных характеристик М-монослоя размера наноагрегата, агре-гационного числа, площади, приходящейся на молекулу в наноагрегате, и др. от исходной степени покрытия поверхности. Построена количественная модель монослоя с водными и сухими М-наноагрегатами. Методом Ленгмюра-Шефера (ЛШ) получены тонкие пленки H 3 [(ms-Ph) 3 Cor] на твердых подложках и изучены их спек-тральные характеристики.

Текст научной работы на тему «Formation and study of nanostructured M-monolayers and LS-films of triphenylcorrole»

Corrole Корролы

Макрогэтероцмклы

http://macroheterocycles.isuct.ru

Paper Статья

DOI: 10.6060/mhc151205m

Formation and Study of Nanostructured M-Monolayers and LS-Films of Triphenylcorrole

Thao T. Vu,a Larissa A. Maiorova,a@ Dmitrii B. Berezin,3 and Oskar I. Koifmana,b

Dedicated to Academician of Russian Academy of Sciences Oleg Sinyashin

on the occasion of his birthday

aResearch Institute ofMacroheterocycles, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russian Federation

bG.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russian Federation @Corresponding author E-mail: valkovala@mail.ru

An experimental and theoretical study of 5,10,15-triphenylcorrole (H3[(ms-Ph)3CorJ) nano-structured floating layers (M-layers) was performed. The existence areas and characteristics of the structure and properties of stable monomolecular layers were determined. Main dependencies of the M-monolayer on the initial surface coverage degree were identified - the sizes of the nanoaggregate, aggregation number, surface area per molecule in a nanoaggregate, etc. A quantitative model of a monolayer with water and dry M-nanoaggregates was constructed. H3[(ms-Ph)3Cor] thin films on solid substrates were obtained using the Langmuir-Schaefer (LS) technique, and their spectral characteristics were explored.

Keywords: Floating monolayers, 2D nanostructures, M-nanoaggregates, model of M-monolayer, LS-films, corrole.

Формирование и исследование наноструктурированных М-монослоев и ЛШ-пленок трифенилкоррола

Тхао Т. Ву,а Л. А. Майорова,а@ Д. Б. Березин,а О. И. КойфманаЬ

Посвящается академику РАН Олегу Герольдовичу Синяшину по случаю его юбилея

НИИ макрогетероциклических соединений, Ивановский государственный химико-технологический университет, 153000 Иваново, Россия

ьИнститут химии растворов им. Г.А. Крестова РАН, 153045 Иваново, Россия @E-mail: valkovala@mail.ru

Выполнено экспериментальное и теоретическое исследование наноструктурированных плавающих слоев (М-слоев) тетрапиррольного макроциклического соединения - 5,10,15-трифенилкоррола (H3[(ms-Ph)3Cor]). Определены области существования и характеристики структуры и свойств стабильных мономолекулярных слоев. Установлены зависимости основных характеристик М-монослоя - размера наноагрегата, агре-гационного числа, площади, приходящейся на молекулу в наноагрегате, и др. от исходной степени покрытия поверхности. Построена количественная модель монослоя с водными и сухими М-наноагрегатами. Методом Ленгмюра-Шефера (ЛШ) получены тонкие пленки H3[(ms-Ph)3Cor] на твердых подложках и изучены их спектральные характеристики.

Ключевые слова: Плавающие монослои, 2D наноструктуры, М-наноагрегаты, модель М-монослоя, ЛШ-пленки, коррол.

Introduction

Corroles are tetrapyrrolic macrocyclic porphyrin-like compounds which contain a pyrrole-pyrrole direct coupling and have a carbon skeleton, resembling the B12 vitamin. The peculiarities of the electronic structure of corroles (H3Ph3Cor) (Figurel) and their metal complexes (MCor), morphological variety and unique photophysical and chemical properties have raised interest to them as potential catalyzers for redox processes, chemical sensors for small molecules, and active centers when producing nanomaterials for the area of medicine.[1,2] When complexes are formed, the corroles, being non-innocent ligands, stabilize metal ions in unusual oxidation degrees, which cause the complexes to suffer slight reversible intramolecular redox transformations. [3-9] This property accounts for the compounds' high catalytic activity.[10] One of today's emerging trends is focused on creation of thin-film organic materials, including based on corroles,[11-20] especially those, where structural and functional units are represented by 2D and 3D nanoparticles. [21,22] First supermolecules of macroheterocyclic compounds were obtained.[16-18] Thin films of corroles can be obtained in different ways, including vacuum sublimation, solution casting, and Langmuir-Blodgett techniques (LB). The last one creates ultrathin (as fine as monomolecular) films, which have a desired shape and adjustable structure, with a large specific surface. Such corrole films can be used as potential components for electrode nanomaterials as well.

Properties of thin-film organic nanomaterials are determined by their structure, which depends on the structure of the floating layers when using the LB technique. Studies of Langmuir layers of organic compounds with complex molecular structure have shown, among other things that the compounds' behaviour within the layer depends on the volumetric concentration of the applied solution and the initial surface concentration of the compound under study.[23-25] A technique to determine quantitative characteristics of a floating layer, the structural and functional units of which are represented by 2D nanoaggregates sized 5-20 nm (M-nanoaggregates) was developed and successfully used for describing floating layers of calamite mesogens,[26] porphyrins,[27] and phthalocyanines.[28-30]

The objectives of this study are to: explore features of 5,10,15-triphenylcorrole (H3[(ms-Ph)3Cor]) floating layer formation under various initial surface coverage degrees; obtain stable M-monolayers with various structures of 2D nanoaggregates; determine characteristics of floating monolayers; construct a model of monolayers with water and dry M-nanoaggregates; obtain, by using the Langmuir Schaefer (LS) technique as well, H3[(ms-Ph)3Cor] thin films on solid substrates and study them with UV-Vis spectroscopy.

Experimental

5,10,15-Triphenylcorrole was obtained using a technique, described earlier.[31,32] Its structure was confirmed by 1N NMR, IR and UV-Vis spectra. The floating layers were obtained by applying the H3[(ms-Ph)3Cor] solution in methylene chloride (C = 6.910-5 mol l-1) to the surface of bi-distilled water with

microliter syringes (1, 10, 20, and 100 ^l, "Hamilton", Sweden) at the temperature of 20 ± 1 °C. The layers were compressed at the speed of 2.3 cm2min-1 15 minutes after the solution had been applied to the water surface. Initial degrees of water surface coverage with corrole (Cface) changed from 4 % to 29 %. An"NT (MDT" unit (Zelenograd, Russia) was used for the experiment. The surface pressure was measured by using a Wilhelmy plate with an accuracy of 0.02 mNm-1. Error of measurement with respect to a surface area per molecule in the layer (A) was 2 %. Amol values (surface area per molecule in an M-aggregate) and n (aggregation number) were determined by approximation of pA-p curve's portion with a linear function, by using the least squares technique (error pA < 3 %). The Langmuir-Schaeffer (LS) films were obtained by transferring the floating layer to the quartz plate under conditions, shown on Figure 3 (point A). Electronic absorption spectra were registered on a UV/VIS Lambda 20 scanning spectrophotometer with ±0.1 nm wavelength setting accuracy. The reproducibility of the wavelength setting was ±0.05 nm, the photometric accuracy being ±0.003. The structure of the layers was analyzed by using quantitative analysis of compression isotherms of a nanostructured M-monolayer.[33-35] The main characteristics of the floating layer were determined in the following manner: p=kT/n, where p is the ordinate of the intersection point between the line, describing the isotherm's nA-n region corresponding to the stable state of the layer, and the nA axis; Amol is the line's tilt. According to the model being used, M-aggregate has a shape of a circle with the surface area

of Saggr= Amoi n (nm2) and the diameter of Daggr = Saggrl„ (nm).

The layer's compressibility in a stable state can be defined as A—A

B = r -/— (m/N), where n and n, are the respective pressures

at the start and at the end of the monolayer's stable state, with A. and A, being the abscissas of the start and the end of the linear portion of the p-A-isotherm. The distance between the boundaries of the aggregates is the same on the average, and can be calculated from the relation:

(nm). The average distance between

n V n

the molecules along the surface of the water (face-on) in an Mfac-

AA ■

—— (nm). Water coverage n V 71

degrees at the initial point of the stable state can be defined as

/A. 100%, where

aggregate will be r =

c., = A .. /A. 100%- and c . = A .

'-face proj-Jace ' '-edge proj-euge i

are surface areas of face-on and edge-on

A and A

proj-Jace proj-edge

projections of molecule models. Within the linear portion on curve nA-n, the tilt of the molecules (which have an anisotropic shape) in the stack of a compact nonaqueous aggregate can be defined as w = arcsin (A , , /A ,), where A , , is the closest packed

' v pack-edge molyy pack-edge ^

surface area. The content of water in M-aggregates (calculated per molecule) and between them at the initial point of the stable state can be calculated with w. = A , -A . and w. „. = A. - A ,

m-M mol proj 'nter-M-' ' mol

expressions respectively.

Geometric characteristics of the molecules and their closest packings were determined by constructing the corresponding molecular models (HyperChem 8.0.8, MM+ calculations). The surface areas of projections in case of face-on and edge-on positions of the molecules were found to be: A = 1.6 nm2,

^ proj(Jace) 3

A , = 0.8 nm2,A , =1.0 nm2; with the surface areas of the

proj-l(edge) 3 proj-2(edge) 7

described rectangles being A = 3.2 nm2 andA ,,,, , = 1.1 nm2,

° ° mod(Jace) mod-l(edge)

Amod-2(edge) = 14 ^ respectively (Figure 1).

Surface areas, occupied by a molecule in a closest packed monolayer will be A = 1.9 nm2, A ,,, = 1.0 nm2 and

J pack(Jace) ' pack(edge-l)

Apac(edge-2)= 1.2 nm2 (Figure 2). The maximum error when defining characteristics of a layer is: A , and Dp - 3 %, c, and y - 5 %,

mol face

D and w., ... - 7 %, B, c., , c„ . c. . , c, . , n, w. .. and d. - 10 %.

'nter-M-' ' ' -face7 J-jace '-edge f-edge ' 'n-M '

Figure 1. Structure (a) and model of H,Ph,Cor molecule (b). A - the surface areas of circumscribed rectangles.

Figure 2. The scheme offace-on (I) and edge-on (II, III) closest packed molecules of H3[(ms-Ph)3Cor]. = 1.9 nm2(a = 1.5 nm; b = 1.5 nm; a = 60°, I),

ppkffoce)

p<pk(kdge_l_

4

pock(ed_e__2)

= 1.0 nm2 (a = 1.6 nm; b=0.6 nm; a= 86°, II); = 1.2 nm2 (a = 0.6 nm; b=2.0 nm; a = 108°, III).

Results and Discussion

The quantitative analysis of compression isotherms plotted along p-A and pA-p axes (Figure 3) has shown that both stable monolayers and bilayers H3[(ms-Ph)3Cor] are formed on the water surface within the studied in 4-29 % range of initial coverage degrees (cface). The main results of compression isotherm analysis and characteristics of H3[(ms-Ph)3Cor] floating layers are shown in Table 1. It is demonstrated that a corrole given the C=6.9T0-5 moll1 concentration of the solution and the v=2.3 cm2/min layer compression speed forms stable monolayers in a narrow range of initial surface coverage degrees - cface from 4 % to 22.5 % (Figure 3). If the values are cface>22a.5 %, bilayers

are registered already at the lowest surface pressures. Corroles produce stable monolayers of different types: if Cface - 13 5 %, they have the face-on position of molecules in nanoaggregates (M ce), if 19.5 % > cface> 13.9 %, they have the edge-on position (Medge), and if cface = 20 %, then dry nanoaggregates (Mc) are formed.

Monolayers with face-on position are characterized by a large aggregation number (13 < n < 81) (Table 1) and a high content of water in aquaaggregates (up to 70 % of ^mol) and between them (up to 1.6 nm2 per H3Ph3Cor molecule). A monolayer has high compressibility (up to 750 mN-1). If values of initial surface coverage degrees (19.5 % > cface > 13.9 %) are average, the low pressure regions form stable edge-on-monolayers, where the molecule's plane is positioned at an angle to the water surface. The minimum tilt (ym,n) of H3Ph3Cor molecules in stacks varies from 38° to 60°, with the number of molecules in Medge-aggregates varying from 29 to 67, the content of water between aggregates varying from 0.4 to 0.9 nm2 per molecule, and the layer compressibility being low (down to 430 mN-1). A monolayer of dry edge-on Mc-aggregates is characterized by low layer compressibility, B = 380 m-N-1, the minimum number of molecules in aggregates (n = 17^ and the maximum content of water between aggregates at the initial point of the stable monolayer state (wjnterMj = 2.5 nm2). If the initial surface coverage degrees are high (cfcee=23.2 %), the surface pressure of up to 0.4 mN/m forms a stable bilayer structure (3D-nanoaggregates with 79-151 molecules in them).

The obtained results can be used to construct a model of H PhCor M. - and M , -floating monolayers formed

3 j face edge J

from the solution in methylene chloride. For monolayers with Mface- and Medge-aggregates the analysis of dependencies of the surface area per nanoaggregate molecule on the initial surface coverage degree (Table 1, Figure 4a) results in the following correlations:

Amo= 26/(1+cfac) (for f -aquaaggregates)

Amol = 4.067 - 0.162- cface (for Medge -aquaaggregates)

(1) (2)

Figure 3. n-A (a) isotherms of H3[(ms-Ph)3Cor], obtained at C=6.910"5 mol/l, v=2.3 cm2/min and various initial surface coverage degrees: cface= 4(1), 7(2), 15(3), 18(4), 29(5) % and nA-n (b) isotherm of H3[(ms-Ph)3Cor] (cface= 15 %). The floating M-monolayer was transferred onto a solid support by dips at ^=0.35 mN/m (point A on Figure 3a).

Table 1. Characteristics of H3[(ms-Ph)3Cor] floating layers, obtained at different initial surface coverage degrees.

c Nanoagregate- ci-face cc (An) (mNi /mf ) Amol n D a))r (S ) w . r v aggr' Tmin w JA . in-M mol w., ... d. inter-M-i i B

(%) type (face) (%) (%) (nm2) (nm) -vmax(°) (nm; (nm2) (%) (nm)2 (nm) (m/N)

H3Ph3Cor = 6.9 10-5 moll-1 (layer compression speed v= 2.3 cm2/min.)

4 M face 24-28 (4) 76 0.1-0.3 5.2 13 9 (70) 0 1.1 69 1.6 1.3 750

7 Mface face 34-45 (11) 69 0.1-0.6 3.3 31 11 (100) 0 0.6 52 1.5 2.3 540

8 Mface face 43-58 (15) 70 0.1-0.6 2.6 45 12 (120) 0 0.4 38 1.1 2.3 500

10 M face 55-67 (12) 77 0.1-0.5 2.3 58 13 (130) 0 0.3 29 0.7 1.7 500

13 M face 62-81 (19) 74 0.1-0.6 1.9 81 14 (150) 0 0.1 16 0.6 2.3 450

15 Med)e 32-45 (13) 66 0.1-0.8 1.6 29 8 (50) 38*-90 - 51 0.9 1.8 430

17 Med)e 41-50 (9) 67 0.1-0.5 1.3 49 9 (60) 50*-90 - 38 0.6 2.0 430

18 Med)e 52-58 (6) 75 0.1-0.4 1.2 67 10 (80) 60*-90 - 31 0.4 1.5 410

20 Mc 40-79 (7) 83 0.1-1.4 1.1 17 5 (20) 90 - 0 0.4 2.5 380

25 29 bilayer - - 0.2-0.4 0.2-0.4 0.8 0.8 79 151 - - - - - 1.8 1.8 670 550

cface initial surface coverage degree; c._face and cfface current surface coverage degrees at the initial and final points of the stable state, respectively; AcJface state existence region with respect to the current surface coverage degree; ci-a))r the degree of surface coverage with M-aggregates at the initial point of the stable state; p - pf (Arc) pressure region, in which the stable state exists; Amol surface area per molecule in a nanoag-gregate; n aggregation number; Daggr and Saggr the diameter and surface area of a nanoaggregate; ymin the minimum tilt of molecules in stacks ("dry" aggregates); w.nM and w.nterM[_. the content of water in M-aggregates and between them (per molecule) at the initial point of the stable state; r the average distance between molecule in an aggregate; d, df the distance between nanoaggregates at the initial and final points of the stable state; B compressibility of the layer.

*The values of A .... = 0.8 nm2, A ,,,, =1.0 nm2 were used in calculations.

proj-l(edge) ' pak-l(edge)

They can help to determine constants, characterizing the H3Ph3Cor floating layer: the maximum surface area per molecule in an edge-on-monolayer (1.8 nm2), and the maximum initial surface coverage values causing such face-on- and edge-on monolayers to be formed: c = 13.5 % and cface = 19.5 %, respectively. Analysis of dependence on the initial surface coverage degree with respect to other characteristics of a monolayer (Table 1, Figure 4b-d) resulted in the following correlations.

For M monolayers:

face J

n=-24.8 + 8.1c

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

face

D = 7.7 + 0.5c

aggr face

w. JA , = 93.7 - 6.2 c

m-M mol f

c.f = 4.7 + 4.6c

i-face face

c„ = 4.8 + 6.0c

f-face face

face

(3)

(4)

(5)

(6) (7)

and edge-on aquaaggregates (cfcce = 15 %), and with dry nanoaggregates (cface = 20 %) are shown in Figure 5.

LS-films of H3Ph3Cor were formed from the floating monolayer produced on the water surface by using the horizontal lift method. Figure 6 shows UV-Vis spectra of H3Ph3Cor solution in methylene chloride (C = 6.910 5 mol-l1) and those of LS-films on a quartz substrate. The number of the substrate's immersions (k) into the layer is from 1 to 77. The comparison of the spectra shows a different degree of H3Ph3Cor aggregation in the solution and the films. The Soret band of the spectrum of Langmuir-Schaefer films (X=421 nm) has a 6 nm red shift relative to the band in the spectrum of the solution (X=415 nm). Such behaviour corresponds to formation of ./-aggregates of corroles in the films.

and for M , monolayers:

edge J

n=-164.3 + 12.9 c

face

D = -3,2 + 0.7c

aggr face

w._,/A , = 150.5 - 6.6 c

in-M mol

c.r = -66.4+6.5c

i-face face

c„ =-19.7 + 4.3c

f-face face

face

(8) (9) (10) (11) (12)

The results obtained make it possible to compile a passport[35] of the floating layers of H3Ph3Cor (Table 2). The schemes illustrating the fragment and main structural characteristics of monolayers with face-on (cface = 4 %)

Conclusions

Thus, the study shows the possibility of differently structured H3Ph3Cor floating layers to be formed on a water surface: monolayers with M^-aquaaggregates (cface < 135 %), Medge-aquaaggregates (13.9 % < cface < 19.5 %) and Medge-dry aggregates (20.0 % < cface< 22.5 %) and polylayers with 3D nanoaggregates (cface > 23.2 %). Main characteristics of the structure and the properties of M-monolayers were determined (the size of M-nanoaggregates, formed within a layer, the number of molecules in them, the distance between the

Figure 4. Dependencies of the surface area per molecule in M-aggregate (Amol, a), the aggregation number (n, b), the diameter of M-nanoaggregates (Daggr, c) and the content of water in nanoaggregates (w.-JAmoii,, d) on the initial surface coverage degree. I - monolayers face-on); II - monolayers (edge-on); III - monolayers (edge- dry); IV - bilayers.

Table 2. Passport of the floating layers of H^hjCor.

Nanoaggregate type

Molecular orientation in M-aggregate

Formation conditions (from the model)

Dependences of characteristics of a monolayer on c,

J face

(model)

Constants

C = 6.910-5 mol l-1; v=2.3 cm2 min-1; t = 20±1 °C

2D, M,

face-aqua

face-on (in-plane)

cr < 13.5 %

face

n = -24.8+8.1 c,

face

D = 1.1+0.5-c,

Jgr face

1 = 93.1-6.2 c

mol face

c.f = 4.1+4.6c,

i-face face

crr = 4.8+6.0c

f-face face

nmœc = 85 (D )max = 14.5 nm

' aggr

w. J A min = 10 %

in-M mol

c = const=73 %

i-aggr

(c.f )'m^=61 %

v i-face

(crr )max = 86 %

> f-face

2D,M

edge-aqua

2D, dry, Mc 3D

edge-on

edge-on

13.9 < cr < 19.5 %

face

20.0 < c, < 22.5 %

face

cf > 23.2 %

face

-164.3+12.9c

face

D = -3.2+0.1-c

aggr face

w. M/A = 162.4-8.2c

in-M mol face

c., = 66.4+6.5-c,

i-face face

f-face

-19.7+4.3 c

face

nmin=15; nm^ = 81

(D )min = 6.5 nm;

' aggr

(D )max = 10.5 nm

' aggr

(w. M/A )mn = 22 %;

in-M mol

(w. J A )max = 48 %

.n-M mol

c = const = 69 %

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

i-aggr

(ci.focJmIn = 24 %;

(Cf )max = 60 % (cff>in=40 %; (Cf-fJmax = 64 %

aggregates, the content of water in the aggregates and between them, compressibility, the existence region with respect to the pressure and the running surface concentration). Dependencies of the main parameters of monolayers with Mface and Med)e-aggregates on the initial surface coverage degree were determined. A quantitative model of H3Ph,Cor monolayers, formed from a solution in methylene chloride, was constructed. A distinctive feature of triphenylcorrole floating face-on monolayers is the formation of the dry M-nanoaggregates. Conditions for 3D nanoaggregate formation in H3Ph3Cor floating layers and the number of molecules in

them were determined. The results obtained make it possible to compile a passport of the floating layers of H3Ph3Cor. Langmuir-Shaeffer films were formed from a stable floating monolayer, produced on a water surface. Comparison of the spectra of the solution and the films indicates the formation of ./-aggregates of H3Ph3Cor in films.

Acknowledgements. This work was partially supported by the Russian Foundation for Basic Research (Project N 15-42-03211a) and Ministry of Education and Science of Russian Federation (State task for ISUCT).

a) b) c)

Figure 5. Schemes, illustrating fragments of the structure and main structural characteristics of triphenylcorrole monolayers with face-on (a, c=4 %) and edge-on (b, c, =15 %) aquaaggregates, and also dry edge-on (c, c, =20 %) nanoaggregates.

o,o-|-.-1-.-1-.-

200 400 . 600 800

X, nm

Figure 6. Absorption spectra of the H3Pl^Cor (C = 3.610-5 mol/l) solution in CH2Cl2 (1) and its Langmuir-Schaefer films (77 edge-on monolayers, 2). Inset: absorption spectra of LS-films (7, 28, 35, 42, 49, 63, 70 and 77 edge-on monolayers).

References

1. Aviv I., Gross Z. Chem. Commun. 2007, 1987-1999.

2. Hwang J.Y., Lubow J., Chu D., Ma J., Agadjanian H., Sims J., Gray H.B., Gross Z., Farkas D.L., Medina-Kauwe L.K. Mol. Pharm. 2011, 8, 2233-2243.

3. Berezina N.M., Vu T.T., Karimov D.R., Kumeev R.S., Kustov A.V., Bazanov M.I., Berezin D.B. Russ. J. Gen. Chem. 2014, 84, 737-744.

4. Liua H.-Y., Mahmooda M.H., Qiuc S.-X., Chang C.K. Coord. Chem. Rev. 2013, 257, 1306-1333.

5. Thomas K., Alemayehu A.B., Conradie J., Beavers C.M., Ghosh A. Acc. Chem. Res. 2012, 45, 1203-1214.

6. Aviv-Harel I., Gross Z. Coord. Chem. Rev. 2011, 255, 717736.

7. Paolo S., Anna A., Mariachiara P., Giuseppe V., Kolanu S.L.G., Yarasi S., Filippo D.A. Computat. Theoret. Chem. 2014, 1030, 59-66.

8. Koifman O.I., Nikitina G.E., Berezin B.D. Zh. Fiz. Khim. 1982, 56, 737 (in Russ.).

9. Ivanova Y.B., Savva V.A., Mamardashvili N.Z., Starukhin A.S., Ngo T.H., Dehaen W., Maes W., Kruk M.M. J. Phys. Chem. A 2012, 116, 10683.

10. Zou H., Wang H., Mei G., Liu H., Chang C-K. Prog. Chem. 2015, 27, 666-674.

11. Valkova L.A., Betrencourt C., Hochapfel A., Myagkov I.V., Feigin L.A. Mol. Cryst. Liq. Cryst. 1996, 287, 269.

12. Valkova L., Borovkov N., Koifman O., Kutepov A., Berzina T., Fontana M., Rella R., Valli L. Biosensors Bioelectronics 2004, 20, 1177.

13. Valkova L., Borovkov N., Maccioni E. et al. Colloids Surf., A 2002, 198-200, 891.

14. Paolesse R., Di Natale C., Macagnano A., Sagone F., Scarselli M.A., Chiaradia P., Troitsky V.I., Berzina T.S., D'Amico A. Langmuir 1999, 15, 1268-1274.

15. Bursa B., Wrôbel D., Lewandowska K., Graja A., Grzybowski M., Gryko D.T. Synthetic Metals 2013, 176, 18-25.

16. Valkova L., Borovkov N., Kopranenkov V., Pisani M., Bossi M., Rustichelli F. Mater. Sci. Eng., C 2002, 22, 167.

17. Valkova L., Borovkov N., Pisani M., Rustichelli F. Thin Solid Films 2001, 401, 267.

18. Valkova L.A., Valli L., Casilli S., et al. Langmuir 2008, 24, 4857-4864.

19. Tebi S., Aldahhak H., Serrano G., Schöfberger W., Rauls E., Schmidt W.G., Koch R., Müllegger S. Nanotechnology 2016, 27, 025704.

20. Sinha W., Kumar M., Garai A., Purohit C.S., Som T., Kar S. Dalton Trans. 2014, 43, 12564.

21. Maiorova L.A. Synopsis of D.Sc. (Phys-Math.) Thesis, Ivanovo, 2012. 32 p. (in Russ.).

22. Valkova L., Menelle A., Borovkov N., et al. J. Appl. Crystallogr. 2003, 36, 758.

23. Valkova L., Borovkov N., Pisani M., Rustichelli F. Langmuir 2001, 17, 3639.

24. Valkova L.A., Shabyshev L.S., Borovkov N.Y., Feigin L.A., Rustichelli F. J. Inclusion Phenom. Macrocyclic Chem. 1999, 35, 243.

25. Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Molecular Materials 1996, 6, 291.

26. Maiorova-Valkova L.A., Koifman O.I., Burmistrov V.A. et. al. Protec. Metals Phys. Chem. Surf. 2015, 51, 85.

27. Karlyuk M.V., KryginYY., Maiorova-ValkovaL.A.,Ageeva T.A., Koifman O.I. Russ. Chem. Bull. 2013, 62, 471.

28. Valkova L.A., Glibin A.S., Koifman O.I. Macroheterocycles 2011, 4, 3, 222-226.

29. Valkova L.A., Glibin A.S., Koifman O.I., Erokhin V.V. J. PorphyrinsPhthalocyanines 2011, 15, 1044.

30. Petrova M.V., Maiorova L.A., Gromova O.A., Bulkina T.A., Ageeva T.A., Koifman O.I. Macroheterocycles 2014, 7, 267.

31. Semeikin A.S., Koifman O.I., Berezin B.D. Chem. Heterocycl. Compd. 1986, 22, 629.

32. Zelentsov V.V., Stroesku A.K., Koroleva T.A., Koifman O.I. Koord. Khim. 1983, 9, 168 (in Russ.).

33. Valkova L.A., Glibin A.S., Valli L. Colloid J. 2008, 70, 6.

34. Valkova L., Zyablov S., Erokhin V., Koifman O. J. Porphyrins Phthalocyanines 2010, 14, 513.

35. Maiorova L.A. D.Sc. (Phys-Math.) Thesis, Ivanovo, 2012. 382 p. (in Russ.).

Received 05.12.2015 Accepted 14.02.2016

i Надоели баннеры? Вы всегда можете отключить рекламу.