Научная статья на тему 'FLAVOR FORMATION OF STABLE DOUBLE EMULSION SYSTEMS WITH ENCAPSULATED BIOLOGICALLY ACTIVE SUBSTANCES'

FLAVOR FORMATION OF STABLE DOUBLE EMULSION SYSTEMS WITH ENCAPSULATED BIOLOGICALLY ACTIVE SUBSTANCES Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
22
62
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
DOUBLE EMULSION FOOD SYSTEM / ENCAPSULATION / ULTRASONIC HOMOGENIZATION / FISH OIL / THIAMINE / FLAVOR / ORGANOLEPTIC ANALYSIS / STORABILITY

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Feofilaktova Olga V., Zavorokhina Natalia V.

Ensuring the functional food ingredients stability and the flavor formation of foods fortified with them meets the healthy nutrition principles, which contributes to the human and future generations health, as well as reduces the disease risk. The research aim was to study the biologically impact of the active substances encapsulation into double emulsion food systems (DEFS) on the organoleptic profile formation and the biologically active substances resistance to oxidation. The study demonstrated the comparative organoleptic analysis results of the inverse emulsion with fish oil and DEFS o/w/o with fish oil encapsulated in the internal phase of the emulsion matrix; direct emulsion with vitamin B1 (thiamine) and DEFS w/o/w with vitamin B1 encapsulated in the internal phase of the emulsion matrix; as well as the oxidation stability study results of fish oil in the composition of the inverse emulsion and dual emulsion system during storage. A man compiled organoleptic profiles of control samples and DEFS with encapsulated BAS. The results showed that the fish oil and vitamin B1 encapsulation in DEFS contributed to the color and flavor correction - deodorization and elimination of fish oil and vitamin B1 aftertaste and off-flavours. Study confirmed the effectiveness of fish oil encapsulation in DEFS, expressed in increasing its resistance to oxidation. During storage, the fat oxidation intensity in the control sample was higher than in the double emulsion system. The peroxide value in the control sample increased 6 times during storage and amounted to 7.9 mmol of active oxygen per 1 kg of fat, while in the double emulsion food system the increase was only 4 times, from 1.3 on the first day of storage to 5.1 on the 35th day. On average, for every 7 days of storage the peroxide value grew by 1.32 for the control sample and by 0.76 for the double emulsion system.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «FLAVOR FORMATION OF STABLE DOUBLE EMULSION SYSTEMS WITH ENCAPSULATED BIOLOGICALLY ACTIVE SUBSTANCES»

УДК 664.346

DOI 10.29141/2500-1922-2022-7-4-9 EDN RBQJWV

Flavor Formation of Stable Double Emulsion Systems with Encapsulated Biologically Active Substances

Olga V. Feofilaktova1M, Natalia V. Zavorokhina1

1Ural State University of Economics, Ekaterinburg, Russian Federation H feofiov@usue.ru

Abstract

Ensuring the functional food ingredients stability and the flavor formation of foods fortified with them meets the healthy nutrition principles, which contributes to the human and future generations health, as well as reduces the disease risk. The research aim was to study the biologically impact of the active substances encapsulation into double emulsion food systems (DEFS) on the organoleptic profile formation and the biologically active substances resistance to oxidation. The study demonstrated the comparative organoleptic analysis results of the inverse emulsion with fish oil and DEFS o/w/o with fish oil encapsulated in the internal phase of the emulsion matrix; direct emulsion with vitamin Вт (thiamine) and DEFS w/o/w with vitamin Вт encapsulated in the internal phase of the emulsion matrix; as well as the oxidation stability study results of fish oil in the composition of the inverse emulsion and dual emulsion system during storage. A man compiled organoleptic profiles of control samples and DEFS with encapsulated BAS. The results showed that the fish oil and vitamin Вт encapsulation in DEFS contributed to the color and flavor correction - deodorization and elimination of fish oil and vitamin Вт aftertaste and off-flavours. Study confirmed the effectiveness of fish oil encapsulation in DEFS, expressed in increasing its resistance to oxidation. During storage, the fat oxidation intensity in the control sample was higher than in the double emulsion system. The peroxide value in the control sample increased 6 times during storage and amounted to 7.9 mmol of active oxygen per 1 kg of fat, while in the double emulsion food system the increase was only 4 times, from 1.3 on the first day of storage to 5.1 on the 35th day. On average, for every 7 days of storage the peroxide value grew by 1.32 for the control sample and by 0.76 for the double emulsion system.

For citation: Olga V. Feofilaktova, Natalia V. Zavorokhina. Flavor Formation of Stable Double Emulsion Systems with Encapsulated Biologically Active Substances. Индустрия питания|Food Industry 2022. Vol. 7, No. 4. Pp. 74-82. DOI: 10.29141/2500-1922-2022-7-4-9. EDN: RBQJWV.

Paper submitted: October 25, 2022

Keywords:

double emulsion food system; encapsulation; ultrasonic homogenization; fish oil, storability; thiamine; flavor;

organoleptic analysis

Формирование флейвора стабильных двойных эмульсионных систем с инкапсулированными биологически активными веществами

О. В. Феофилактова1*, Н. В. Заворохина1 н

1Уральский государственный экономический университете, г. Екатеринбург, Российская Федерация H feofiov@usue.ru

Реферат

Обеспечение стабильности функциональных пищевых ингредиентов и формирование флейвора пищевых продуктов, обогащенных ими, соответствует принципам здорового питания, способствующим укреплению здоровья человека и будущих поколений, а также снижению риска развития заболеваний. Целью исследования являлось изучение влияния инкапсулирования БАВ в двойные эмульсионные пищевые системы (ДЭПС) на формирование органолептического профиля и устойчивость БАВ к окислению. Представлены результаты сравнительного органолептического анализа обратной эмульсии с рыбьим жиром и ДЭПС м/в/м с рыбьим жиром, инкапсулированным во внутреннюю фазу матрицы эмульсии; прямой эмульсии с витамином Вт (тиамином) и ДЭПС в/м/в с витамином Вт, инкапсулированным во внутреннюю фазу матрицы эмульсии, а также результаты исследования устойчивости к окислению рыбьего жира в составе обратной эмульсии и двойной эмульсионной системы в процессе хранения. Составлены органолептические профили контрольных образцов и ДЭПС с инкапсулированными БАВ. Результаты показали, что инкапсулирование рыбьего жира и витамина Вт в ДЭПС способствует коррекции цвета и флейвора -устранению неприятного запаха и послевкусия рыбьего жира и витамина Вт и посторонних привкусов. Исследования подтвердили эффективность инкапсулирования рыбьего жира в ДЭПС, выражающуюся в повышении его устойчивости к окислению. В процессе хранения интенсивность окисления жира в контрольном образце была выше, чем у двойной эмульсионной системы. Значение перекисного числа у контрольного образца увеличилось в 6 раз в процессе хранения и составило 7,9 ммоль активного кислорода на 1 кг жира, тогда как у двойной эмульсионной пищевая системы увеличение произошло только в 4 раза, с 1,3 на первые сутки хранения до 5,1 на 35-е сутки. За каждые 7 сут хранения перекисное число в среднем росло на 1,32 у контрольного образца и на 0,76 у двойной эмульсионной системы.

Для цитирования: Olga V. Feofilaktova, Natalia V. Zavorokhina. Flavor Formation of Stable Double Emulsion Systems with Encapsulated Biologically Active Substances //Индустрия питания|Food Industry. 2022. Т. 7, №4. С. 74-82. DO:: 10.29141/2500-1922-2022-7-4-9. EDN: RBQJWV.

Дата поступления статьи: 25 октября 2022 г.

Introduction

The main problem in the production of food enriched with functional ingredients is to ensure their stability and the organoleptic profile formation corresponding to consumer preferences.

A number of biologically active ingredients display not only low shelf life, but also obtain organoleptic characteristics degrading enriched product quality. For example, such ingredients are fish, sesame, linseed oil, which are the main sources of omega-3 polyunsaturated fatty acids (PUFAs). These ingredi-

Ключевые слова:

двойная эмульсионная

пищевая система;

инкапсулирование;

ультразвуковая

гомогенизация;

рыбий жир;

сохраняемость;

тиамин;

флейвор;

органолептический анализ

ents keep specific taste and smell, as well as high sensitivity to light, temperature and atmospheric oxygen resulting in their rapid oxidation with free radical formation and unpleasant taste and smell appearance.

Some vitamins playing an important role in metabolism have an unpleasant odor. At the same time, modern technologies and food culture require additional vitamin consumption and food products enrichment with them. Thus, thiamine (vitamin B-i),

which is of great importance in the human body enzyme system, exposes easily to the destruction and has a distinctive unpleasant odor, causing difficulties in the food production technology.

The intense unpleasant odor of biologically active substances (thiamine and fish oil) limits their use in food fortification and necessitates their encapsulation before inclusion in food products, in particular double emulsion systems [1; 2].

A number of studies confirm the encapsulation effectiveness of unstable ingredients with low organoleptic characteristics when fortifying foods with them.

Thus, the results of studies on the fish oil encapsulation in an emulsion and its inclusion in processed cheese demonstrated a decrease in the oxidation degree of long-chain w-3 PUFAs during processing and an improvement in organoleptic parameters (no fishy taste, improved appearance) [3-5].

Obtained data showed that microencapsulated fish oil added to dry fermented sausage was less vulnerable to oxidation and did not affect such or-ganoleptic product characteristics as taste, smell, color, significantly, while improving the product consistency [6; 7].

Encapsulated linseed oil inclusion in an optimized soup recipe reduced its ability to oxidize and enabled to obtain a product with high consumer characteristics [8; 9].

The microencapsulated fish oil used in baby food products contributes to the barrier formation that prevents the oxygen impact and temperature fluctuations, as well as a flavor profile barrier that masks the fish oil taste and smell [10-13].

Microencapsulation of fish oil and its introduction into spaghetti proved effectiveness in protecting long-chain PUFAs from oxidation at high values of organoleptic parameters [14].

Bread enriched with linseed oil microcapsules had organoleptic parameters similar to the control sample made according to the traditional recipe [15].

There are data on the fruit juice enrichment with fish oil and stable protein-polysaccharide complexes microencapsulated together [16].

The researchers run studies on the use of vitamin B-i, encapsulated in a water - oil - water double emulsion, in bakery products and carrot juice [17].

They developed a method for vitamin B1 microencapsulation with various biopolymers by spray drying for the pharmaceuticals and food products use [18].

Double emulsions promise due to the use possibility with unstable functional ingredients impairing the finished products flavor. The main advantages of this encapsulation form are the following: the process runs at relatively low temperatures, as a result the ingredients do not undergo significant ox-

idation prior to encapsulation; additionally, encapsulation enables to hide the specific organoleptic characteristics of the applied ingredients. The numerous studies in the field of the medicinal and enzyme preparations and cosmetics development provided support for the encapsulation effectiveness using double emulsions [19-21]. However, this encapsulation form is relatively new to the food industry. Most studies on double emulsions are limited by the water - oil - water (w/o/w) type. A man can also use oil - water - oil (o/w/o) double emulsions for encapsulation and controlled release of unstable ingredients, but their use is limited due to the practical difficulty of preparing a stable external water - oil emulsion [22]. Despite a large number of studies, there are lack of those studied the BAS encapsulation effectiveness using double emulsions in food technology, sufficiently. In particular, there are no data on the o/w/o double emulsions use in order to produce an organoleptic and oxidative barrier for biologically active substances; the impact of biologically active substances with specific organo-leptic characteristics on the emulsion food products flavor of has not been disclosed. All this determined the purpose of this study.

The work aims at studying the influence of BAS encapsulated in double emulsions on the flavor of double emulsion food systems (DEFS) and their resistance to oxidation. Although the developed DEFS with encapsulated biologically active substances are to be used as a base for emulsion food products, the authors used bases themselves without flavoring and other additives to more reliably degree determination of the encapsulation impact on organo-leptic characteristics and oxidation resistance.

Research Materials and Methods

To prepare emulsions a man used refined deodorized sunflower oil (manufactured by LLC "Divo Altaya", Russia), distilled water, a mixture of fatty acid glycerides (manufactured by LLC "Berezh", Russia), powdered soy lecithin according to the GOST 32052-2013 (manufactured by LLC "Stoing", Russia), fish oil (manufactured by LLC "Ekko Plus", Russia), surfactant Tween 80 (Polysorbate 80) (manufactured by LLC "Sibtekhnofarm", Russia), vitamin B1 -thiamine chloride (manufactured by PLC "Yerevan Chemical Pharmaceutical Company", Armenia).

On the basis of organoleptic characteristics and functional properties, a man chose thiamine and fish oil as biologically active substances that enabled to worse the emulsion product flavor.

The researchers introduced water-soluble vitamin thiamine into the internal w/o/w emulsions phase in the amount of 0.05 wt. %. The fish oil as the internal phase of the o/w/o emulsion matrix amounted to 10 wt. %.

They calculated the biologically active substances amount introduced into the formulation on the GOST R 52349-2005 and the MR 2.3.1.0253-21re-quirements.

To determine the encapsulating biologically active substances efficiency using DEFS, the authors applied simple emulsions as control samples, similar in organoleptic parameters such as consistency and appearance to the corresponding DEFS: a direct emulsion with vitamin Bi added as a control for DEFS w/o/w and inverse emulsion with fish oil introduced as a control for DEFS o/w/o. The BAS amount in the control samples was equal to those in DEFS.

The researchers obtained emulsions at the following ratio of initial components, wt. %:

• DEFS o/w/o: refined deodorized vegetable oil -55; water - 25; fish oil - 10; fatty acid glycerides - 8; lecithin - 2;

• inverse emulsion: refined deodorized vegetable oil - 57; water - 25; fish oil - 10; fatty acid glyce-rides - 8;

• DEFS w/o/w: refined deodorized vegetable oil - 30, water - 62.95; Tween 80 - 2; lecithin - 5; thiamine - 0.05;

• direct emulsion: refined deodorized vegetable oil - 30; water - 64.95; lecithin - 5; thiamine - 0.05.

A man received DEFS w/o/w and the internal phase DEFS o/w/o using an ultrasonic homogenizer Sonics VCX 750 (Sonics & Materials, Inc., USA) with a power of 750 W, equipped with a 13 mm diameter probe, at an operating frequency of 20 kHz and amplitude 40-70 %. The researchers cooked control samples using a stick blender.

They placed obtained samples in sterile polymer jars with screw caps.

The authors utilized freshly cooked control and DEFS samples for organoleptic evaluation. They run the organoleptic analysis using a paired comparison test according to the GOST R 53161-2008. A man constructed the sensory profiles in accordance with the GOST ISO 13299-2015 and the meth-

od for constructing flavor profiles [23]. The sensory laboratory for organoleptic analysis complied with the GOST ISO 8589-2014. The concepts interpretation corresponded to the GOST ISO 5492-2014.

A man determined organoleptic indicators in the following sequence: color, appearance, texture, smell, taste.

To analyze the resulting emulsions stability to oxidation, a man stored some of the samples in a refrigerator at a temperature of 0-4 °C for 7 days; and subjected the other part of the samples to accelerated aging in a thermostat until the storage duration corresponded to 14; 21; 28 and 35 days in a refrigerator. A man practiced accelerated aging according to the developed method based on determining the storage duration at elevated temperatures, considering the Arrhenius equation. According to the equation, with an increase in temperature for every 10 °C, the rate of chemical reactions leading to the product spoilage (oxidation, decomposition, etc.) increases 2-4 times.

The authors used peroxide the iodometric method according to the GOST 31762-2012 to determine the value in the inverse emulsion and DEFS o/w/o with a frequency of 7 days.

Results and Its Discussion

The Table demonstrated the following results obtained in the course of a comparative organoleptic analysis of control samples and DEFS with encapsulated BAS by the scoring method.

A man determined that the control samples (inverse emulsion with fish oil and direct emulsion with thiamine) received a lower number of points compared to DEFS with encapsulated fish oil and thiamine. The main indicators that had a significant impact on the average score were the odor and the taste. Moreover, DEFS with encapsulated fish oil differed from the control in scores quite significantly.

Organoleptic Assessment Results of DEFS with Encapsulated Biologically Active Substances in Comparison with the Control, Score Результаты органолептической оценки ДЭПС с инкапсулированными БАВ в сравнении с контролем, балл

Indicator Control -Inverse Emulsion DEFS o/w/o Control -Direct Emulsion DEFS w/o/w

Color 4.4 ± 0.3 4.2 ± 0.4 4.1 ± 0.3 5.0 ± 0.0

Appearance 4.8 ± 0.4 4.3 ± 0.5 4.1 ± 0.3 4.9 ± 0.5

Consistency 4.7 ± 0.4 4.5 ± 0.5 4.0 ± 0.0 4.8 ± 0.4

Aroma 1.5 ± 0.1 4.4 ± 0.5 2.6 ± 0.2 3.9 ± 0.5

Taste and Aftertaste 1.1 ± 0.3 3.8 ± 0.2 2.9 ± 0.3 4.5 ± 0.4

Total, Average Score 3.3 ± 0.4 4.2 ± 0.5 3.5 ± 0.3 4.6 ± 0.4

The control sample - the inverse emulsion had a more homogeneous, dense and viscous consistency compared to DEFS o/w/o (Fig. 1), which is typical for double emulsions with an "emulsion in emulsion" structure.

emulsion characteristics), assessed their intensity, and built organoleptic profiles shown in the Fig. 2 and 4.

Tallowy Aftertaste

Harmonious Aftertaste

Aftertaste Duration

Metal Tone

White Color 5

Density

Viscosity

Fish Oil Tone Homogeneity

Odor Intensity

- Control Emulsion o/w/o

a

b

Fig. 1. Inverse Emulsion and DEFS o/w/o with Fish Oil: a - Inverse Emulsion with Fish Oil; б - ДЭПС м/в/м с инкапсулированным рыбьим жиром

Рис. 1. Обратнаяэмульсия и ДЭПС м/в/м с рыбьимжиром: а - обратная эмульсия с рыбьим жиром; b - DEFS o/w/o with Encapsulated Fish Oil

The Fig. 1 displayed that the control sample and DEFS with fish oil were white, but the control sample had a pronounced yellow tint. Thus, the fish oil encapsulation by ultrasonic homogenization into the internal DEFS matrix phase prevented the appearance of a shade peculiar to the added ingredient.

Further, in accordance with the research purpose, the tasters compiled descriptors panel (individual

Fig. 2. Organoleptic Profiles of Inverse Emulsion (Control) and DEFS o/w/o with Fish Oil Рис. 2. Органолептические профили обратной

эмульсии (контроль) и ДЭПС м/в/м с рыбьим жиром

The control sample (inverse emulsion) odor intensity received the maximum score, while it was insignificant for DEFS. There was practically no fish oil odor when it was encapsulated in DEFS.

There is the same trend in terms of indicators characterizing the emulsion taste. The control sample aftertaste at the tongue root had a pronounced fish oil tone (4 points) with a duration of about 120 caudalies (1 caudalie = 1 sec). The aftertaste was disordered, slightly tallowy and caused rejection.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

When analyzing DEFS taste and aftertaste, the aftertaste was concentrated on the middle part of the tongue;the aftertaste intensity was less pronounced (30-40 caudalies); it was harmonious (4 points), short (1 point); there was no tallowy aftertaste, practically no fish oil tone.

Comparative organoleptic control sample (direct emulsion with vitamin Вт and DEFS w/o/w with vitamin Вт encapsulated in the internal emulsion matrix phase) analysis demonstrated the following results.

The control sample had a less homogeneous consistency compared to DEFS w/o/w, as well as a white color (Fig. 3) due to the ultrasonic homogenization use, which facilitates the finely dispersed emulsions production [23].

During the organoleptic consistency evaluation, a man assessed samples viscosity and density by pressing tactilely and in the oral cavity. The samples had similar characteristics and received the same number of points (Fig. 4).

Л

s*

a

b

Fig. 3. Direct Emulsion and DEFS w/o/w with vitamin B1: a - Direct Emulsion with Thiamine; b - DEFS w/o/w with Encapsulated Thiamine

Рис. 3. Прямая эмульсия и ДЭПС в/м/в с витамином В1: а - прямая эмульсия с тиамином: б - ДЭПС в/м/в с инкапсулированным тиамином

White Color

- Control Emulsion w/o/w

Fig. 4. Organoleptic Profiles of a Direct Emulsion with Vitamin B1 and DEFS w/o/w with Encapsulated Vitamin B1 Рис. 4. Органолептические профили прямой эмульсии с витамином В1 и ДЭПС в/м/в с инкапсулированным витамином В1

The odor intensity was more pronounced in the control sample, the difference in values compared to DEFS was 2 points. The thiamine tone in the control sample was appeared to a greater extent; both samples had slightly pronounced lecithin tone due to the indifferent general flavor, against which the thiamine odor was perceived more clearly.

The aftertaste duration in both samples was at the same level. DEFS had a more harmonious flavor - 4 points, which is 2 points higher than the value for this indicator in the control sample.

The next stage of the research was a comparative analysis of the resistance to oxidation of the inverse emulsion and DEFS with fish oil according to the peroxide value in dynamics during storage. The researchers obtained peroxide number values of the studied samples on the 1st, 7th, 14th, 21st, 28th, and 35th days of storage (Fig. 5).

1 7 14 21 28 35

Storage Duration, Days

Fig. 5. Peroxide Value Dynamics of the Inverse Emulsion and DEFS o/w/o with Fish Oil during Storage Рис. 5. Динамика перекисного числа обратной эмульсии и ДЭПС м/в/м с рыбьим жиром в процессе хранения

Ingredients of the studied samples, i.e. sunflower and fish oil are subjected to oxidation. Due to the fact that the PUFAs oxidation occurs more actively, and fish oil exceeds sunflower oil in terms of their content, despite their ratio in the recipe, a man can project obtained results on the fish oil resistance to oxidation to a greater extent than sunflower oil.

According to the dynamics presented in the Fig. 5, fish oil encapsulated in the internal phase of DEFS o/w/o is more resistant to oxidative processes compared to fish oil introduced into the inverse emulsion. Additionally, during storage, the fat oxidation intensity of the control sample was higher than that of DEFS. The peroxide value in the control sample increased 6 times during storage and amounted to 7.9 mmol of active oxygen per 1 kg of fat, while in DEFS - only 4 times, from 1.3 on the first day of storage to 5.1 for 35th day. For every 7 days of storage,

the peroxide value increased on average by 1.32 for the control sample and by 0.76 for DEFS.

Conclusion

Comparative organoleptic analysis of an inverse emulsion with fish oil and DEFS o/w/o with fish oil encapsulated in the internal emulsion matrix phase, as well as a direct emulsion with vitamin Bi and DEFS w/o/w with vitamin B1 encapsulated in the internal emulsion matrix phase, showed the BAS encapsulation advantages for the organoleptic profile formation of emulsion food products. Fish oil and vitamin B1 encapsulation in DEFS contributes to flavor correction: deodorization, fish oil and vitamin B1 (thiamine) taste removal, off-flavours treatment, and sample color improvement. In addition, the fish oil encapsulation in DEFS improves its resistance to oxidation, helping to reduce oxidative processes degree and intensity.

Bibliography

1. Velasco, J.; Dobarganes, C.; Márquez-Ruiz, G. Variables Affecting Lipid Oxidation in Dried Microencapsulated Oils. Grasas y Aceites. 2003. Vol. 54. Iss. 3. Pp. 304-314. DOI: https://doi.org/l0.3989/ gya.2003.v54.i3.246.

2. Augustin, M.A.; Abeywardena, M.Y.; Patten, G., et al. Effects of Microencapsulation on the Gastrointestinal Transit and Tissue Distribution of a Bioactive Mixture of Fish Oil, Tributyrin and Resveratrol. Journal of Functional Foods. 2021. Vol. 3. Iss. 1. Pp. 25-37. DOI: https://doi.org/10.1016/jjff.2011.01.003.

3. Ye, A.; Cui, J.; Taneja, A., et al. Evaluation of Processed Cheese Fortified with Fish Oil Emulsion. Food Research International. 2009. Vol. 42. Iss. 8. Pp. 1093-1098. DOI: https://doi.org/10.1016/jJood-res.2009.05.006.

4. O'Brien, K.; Boeneke, Ch.; Aryana, K., et al. Effect of Oil Based and Microencapsulated Omega-3 Fatty Acids on Physical and Chemical Properties of Processed Cheese. Milchwissenschaft. 2012. Vol. 67. Iss. 3. Pp. 267-269.

5. Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Quality of Selected Cheeses Fortified with Vegetable and Animal Sources of Omega-3. LWT - Food Science and Technology. 2011. Vol. 44. Iss. 7. Pp. 15771584. DOI: https://doi.org/10.1016/jj.lwt.2011.01.023.

6. Josquin, N.M.; Linssen, J.P.H.; Houben, J.H. Quality Characteristics of Dutch-style Fermented Sausages Manufactured with Partial Replacement of Pork Back-Fat with Pure, Pre-Emulsified or Encapsulated Fish Oil. Meat Science. 2012. Vol. 90. Iss. 1. Pp. 81-86. DOI: https://doi.org/10.1016/jj.meatsci.2011.06.001.

7. Pelser, W.M.; Linssen, J.P.H.; Legger, A., et al. Lipid Oxidation in n-3 Fatty Acid Enriched Dutch Style Fermented Sausages. Meat Science. 2007. Vol. 75. Iss. 1. Pp. 1-11. DOI: https://doi.org/10.1016/jj.meats-ci.2006.06.007.

Библиографический список

1. Velasco, J.; Dobarganes, C.; Márquez-Ruiz, G. Variables Affecting Lipid Oxidation in Dried Microencapsulated Oils. Grasas y Aceites. 2003. Vol. 54. Iss. 3. Pp. 304-314. DOI: https://doi.org/l0.3989/ gya.2003.v54.i3.246.

2. Augustin, M.A.; Abeywardena, M.Y.; Patten, G., et al. Effects of Microencapsulation on the Gastrointestinal Transit and Tissue Distribution of a Bioactive Mixture of Fish Oil, Tributyrin and Resveratrol. Journal of Functional Foods. 2021. Vol. 3. Iss. 1. Pp. 25-37. DOI: https://doi.org/10.1016/jjff.2011.01.003.

3. Ye, A.; Cui, J.; Taneja, A., et al. Evaluation of Processed Cheese Fortified with Fish Oil Emulsion. Food Research International. 2009. Vol. 42. Iss. 8. Pp. 1093-1098. DOI: https://doi.org/10.1016/jJ.food-res.2009.05.006.

4. O'Brien, K.; Boeneke, Ch.; Aryana, K., et al. Effect of Oil Based and Microencapsulated Omega-3 Fatty Acids on Physical and Chemical Properties of Processed Cheese. Milchwissenschaft. 2012. Vol. 67. Iss. 3. Pp. 267-269.

5. Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Quality of Selected Cheeses Fortified with Vegetable and Animal Sources of Omega-3. LWT - Food Science and Technology. 2011. Vol. 44. Iss. 7. Pp. 15771584. DOI: https://doi.org/10.1016/jJ.lwt.2011.01.023.

6. Josquin, N.M.; Linssen, J.P.H.; Houben, J.H. Quality Characteristics of Dutch-style Fermented Sausages Manufactured with Partial Replacement of Pork Back-Fat with Pure, Pre-Emulsified or Encapsulated Fish Oil. Meat Science. 2012. Vol. 90. Iss. 1. Pp. 81-86. DOI: https://doi.org/10.1016/jj.meatsci.2011.06.001.

7. Pelser, W.M.; Linssen, J.P.H.; Legger, A., et al. Lipid Oxidation in n-3 Fatty Acid Enriched Dutch Style Fermented Sausages. Meat Science. 2007. Vol. 75. Iss. 1. Pp. 1-11. DOI: https://doi.org/10.1016/jj.meats-ci.2006.06.007.

8. Vyatkin, A.V.; Arisov, A.V.; Chugunova, O.V. Vliyanie Okislitel'no-go Stressa na Zdorov'e Naseleniya Sverdlovskoj Oblasti [Oxidative Stress Impact on the Population Health of the Sverdlovsk Region]. Tekhnologiya i Tovarovedenie Innovacionnyh Pishchevyh Produk-tov. 2016. No. 4 (39). Pp. 99-104. EDN: WQSWHT.

9. Rubilar, M.; Morales, E.; Contreras, K., et al. Development of a Soup Powder Enriched with Microencapsulated Linseed Oil as a Source of Omega-3 Fatty Acids. European Journal of Lipid Science and Technology. 2012. Vol. 114. Iss. 4. Pp. 423-433. Portico. DOI: https://doi. org/10.1002/ejlt.201100378.

10. Wan, Y.; Bechtel, P.J.; Sathivel, S. Physical and Nutritional Properties of Baby Food Containing Menhaden Oil (Brevoortia Tyran-nus) and Microencapsulated Menhaden Oil. LWT - Food Science and Technology. 2011. Vol. 44. Iss. 2. Pp. 576-581. DOI: https://doi. org/10.1016/j.lwt.2010.08.002.

11. Wan, Y.; Li, J.; Solval, K.M., et al. Physicochemical Properties of Red Salmon Oil (Oncorhynchus Nerka) and Microencapsulated Red Salmon Oil Added to Baby Food. Journal of the American Oil Chemists' Society. 2011. Vol. 89. Iss. 4. Pp. 727-734. Portico. DOI: https:// doi.org/10.1007/s11746-011-1957-y.

12. Curtis, J.M.; Berrigan, N.; Dauphinee, P. The Determination of n-3 Fatty Acid Levels in Food Products Containing Microencapsulated Fish Oil Using the One-Step Extraction Method. Part 1: Measurement in the Raw Ingredient and in Dry Powdered foods. Journal of the American Oil Chemists' Society. 2008. Vol. 85. Iss. 4. Pp. 297-305. DOI: https://doi.org/10.1007/s11746-008-1194-1.

13. Nagachinta, S.; Akoh, C.C. Spray-Dried Structured Lipid Containing Long-Chain Polyunsaturated Fatty Acids for Use in Infant Formulas. Journal of Food Science. 2013. Vol. 78. Iss. 10. Pp. C1523-C1528. DOI: https://doi.org/10.1111/1750-3841.12243.

14. Verardo, V.; Ferioli, F.; Riciputi, Y., et al. Evaluation of Lipid Oxidation in Spaghetti Pasta Enriched with Long Chain n-3 Polyunsaturated Fatty Acids under Different Storage Conditions. Food Chemistry. 2009. Vol. 114. Iss. 2. Pp. 472-477. DOI: https://doi.org/10.1016/j. foodchem.2008.09.074.

15. Gallardo, G.; Guida, L.; Martinez, V., et al. Microencapsulation of Linseed Oil by Spray Drying for Functional Food Application. Food Research International. 2013. Vol. 52. Iss. 2. Pp. 473-482. DOI: https://doi.org/10.1016/jj.foodres.2013.01.020.

16. Ilyasoglu, H.; El, S.N. Nanoencapsulation of EPA/DHA with Sodium Caseinate-Gum Arabic Complex and Its Usage in the Enrichment of Fruit Juice. LWT - Food Science and Technology. 2014. Vol. 56. Iss. 2. Pp. 461-468. DOI: https://doi.org/10.1016/jj.lwt.2013.12.002.

17. Yuce Altuntas, O. Encapsulation of Vitamin B1 Using Double Emulsion Method [Ph.D. - Doctoral Program]: Electron. Resource. Middle East Technical University. 2016. 181 p. URL: https://etd.lib.metu. edu.tr/upload/12620037/index.pdf.

18. Carlan, I.C.; Estevinho, B.N.; Rocha, F. Production of Vitamin B1 Mi-croparticles by a Spray Drying Process Using Different Biopolymers as Wall Materials. The Canadian Journal of Chemical Engineering. 2020. Vol. 98. Iss. 8. Pp. 1682-1695. DOI: https://doi.org/10.1002/ cjce.23735.

19. Aserin, A. (Ed.). Multiple Emulsions. New York: Wiley, 2007. DOI: https://doi.org/10.1002/9780470209264.

20. Zadymova, N.M.; Arshakyan, G.A.; Kulichihin, V.G. Obratnye i Dvo-jnye Emul'sii kak Osnova Mikrogeterogennyh Matric dlya Transder-mal'nojDostavki Lipofil'nyh Lekarstv [Inverse and Double Emulsions as the Microheterogeneous Matrices Basis for Transdermal Lipophilic Drugs Delivery]. Izvestiya Akademii Nauk. Seriya Himich-eskaya. 2013. No. 3. Pp. 801. EDN: TEKPPL. (in Russ.)

8. Вяткин А.В., Арисов А.В., Чугунова О.В. Влияние окислительного стресса на здоровье населения Свердловской области // Технология и товароведение инновационных пищевых продуктов. 2016. № 4 (39). С. 99-104. EDN: WQSWHT.

9. Rubilar, M.; Morales, E.; Contreras, K., et al. Development of a Soup Powder Enriched with Microencapsulated Linseed Oil as a Source of Omega-3 Fatty Acids. European Journal of Lipid Science and Technology. 2012. Vol. 114. Iss. 4. Pp. 423-433. Portico. DOI: https://doi. org/10.1002/ejlt.201100378.

10. Wan, Y.; Bechtel, P.J.; Sathivel, S. Physical and Nutritional Properties of Baby Food Containing Menhaden Oil (Brevoortia Tyran-nus) and Microencapsulated Menhaden Oil. LWT - Food Science and Technology. 2011. Vol. 44. Iss. 2. Pp. 576-581. DOI: https://doi. org/10.1016/j.lwt.2010.08.002.

11. Wan, Y.; Li, J.; Solval, K.M., et al. Physicochemical Properties of Red Salmon Oil (Oncorhynchus Nerka) and Microencapsulated Red Salmon Oil Added to Baby Food. Journal of the American Oil Chemists' Society. 2011. Vol. 89. Iss. 4. Pp. 727-734. Portico. DOI: https:// doi.org/10.1007/s11746-011-1957-y.

12. Curtis, J.M.; Berrigan, N.; Dauphinee, P. The Determination of n-3 Fatty Acid Levels in Food Products Containing Microencapsulated Fish Oil Using the One-Step Extraction Method. Part 1: Measurement in the Raw Ingredient and in Dry Powdered foods. Journal of the American Oil Chemists' Society. 2008. Vol. 85. Iss. 4. Pp. 297-305. DOI: https://doi.org/10.1007/s11746-008-1194-1.

13. Nagachinta, S.; Akoh, C.C. Spray-Dried Structured Lipid Containing Long-Chain Polyunsaturated Fatty Acids for Use in Infant Formulas. Journal of Food Science. 2013. Vol. 78. Iss. 10. Pp. C1523-C1528. DOI: https://doi.org/10.1111/1750-3841.12243.

14. Verardo, V.; Ferioli, F.; Riciputi, Y., et al. Evaluation of Lipid Oxidation in Spaghetti Pasta Enriched with Long Chain n-3 Polyunsaturated Fatty Acids under Different Storage Conditions. Food Chemistry. 2009. Vol. 114. Iss. 2. Pp. 472-477. DOI: https://doi.org/10.1016/)'. foodchem.2008.09.074.

15. Gallardo, G.; Guida, L.; Martinez, V., et al. Microencapsulation of Linseed Oil by Spray Drying for Functional Food Application. Food Research International. 2013. Vol. 52. Iss. 2. Pp. 473-482. DOI: https://doi.org/10.1016Zj.foodres.2013.01.020.

16. Ilyasoglu, H.; El, S.N. Nanoencapsulation of EPA/DHA with Sodium Caseinate-Gum Arabic Complex and Its Usage in the Enrichment of Fruit Juice. LWT - Food Science and Technology. 2014. Vol. 56. Iss. 2. Pp. 461-468. DOI: https://doi.org/10.1016/j.lwt.2013.12.002.

17. Yuce Altuntas, O. Encapsulation of Vitamin B1 Using Double Emulsion Method [Ph.D. - Doctoral Program]: Electron. Resource. Middle East Technical University. 2016. 181 p. URL: https://etd.lib.metu. edu.tr/upload/12620037/index.pdf.

18. Carlan, I.C.; Estevinho, B.N.; Rocha, F. Production of Vitamin B1 Mi-croparticles by a Spray Drying Process Using Different Biopolymers as Wall Materials. The Canadian Journal of Chemical Engineering. 2020. Vol. 98. Iss. 8. Pp. 1682-1695. DOI: https://doi.org/10.1002/ cjce.23735.

19. Aserin, A. (Ed.). Multiple Emulsions. New York: Wiley, 2007. DOI: https://doi.org/10.1002/9780470209264.

20. Задымова Н.М., Аршакян Г.А., Куличихин В.Г. Обратные и двойные эмульсии как основа микрогетерогенных матриц для трансдермальной доставки липофильных лекарств // Известия Академии наук. Серия химическая. 2013. № 3. С. 801. EDN: TEKPPL.

21. Zadymova, N.M.;Arshakyan, G.A.; Kulichikhin, V.G. Invert and Double Emulsions as a Base for Microheterogeneous Matrices for

21. Zadymova, N.M.;Arshakyan, G.A.; Kulichikhin, V.G. Invert and Double Emulsions as a Base for Microheterogeneous Matrices for Transdermal Delivery of Lipophilic Drugs. Russian Chemical Bulletin. 2013. Vol. 62. Iss. 3. Pp. 802-815. DOI: https://doi.org/10.1007/ s11172-013-0109-y.

22. Chugunova, O.V.;Zavorokhina, N.V. Ispol'zovanie Metodov De-gustacionnogo Analiza pri Modelirovanii Receptur Pishchevyh Pro-duktov s Zadannymi Potrebitel'skimi Svojstvami [Tasting Analysis Methods Use in Modeling Food Recipes with Prescribed Consumer Properties]: Monografiya. Ekaterinburg: Ural. Gos. Ekon. Un-t. 2010. 148 p. ISBN 978-5-9656-0153-0. EDN: QNIQLZ. (in Russ.)

23. Feofilaktova, O.V.; Zavorokhina, N.V.; Labeckij, V.V. Poluchenie Sta-bil'nyh Emul'sionnyh Sistem [Stable Emulsion Systems Production]. Industriya Pitaniya|Food Industry. 2021. Vol. 6. No. 3. Pp. 76-83. DOI: https://doi.org/10.29141/2500-1922-2021-6-3-9. EDN: SX

Transdermal Delivery of Lipophilic Drugs. Russian Chemical Bulletin. 2013. Vol. 62. Iss. 3. Pp. 802-815. DOI: https://doi.org/10.1007/ s11172-013-0109-y.

22. Чугунова О.В., Заворохина Н.В. Использование методов дегустационного анализа при моделировании рецептур пищевых продуктов с заданными потребительскими свойствами: монография. Екатеринбург: Урал. гос. экон. ун-т, 2010. 148 с. ISBN 9785-9656-0153-0. EDN: QNIQLZ.

23. Феофилактова О.В., Заворохина Н.В., Лабецкий В.В. Получение стабильных эмульсионных систем // Индустрия питания^ Industry. 2021. Т. 6, № 3. С. 76-83. DOI: https://doi. org/10.29141/2500-1922-2021-6-3-9. EDN: SXJZUE.

Information about Authors / Информация об авторах

Feofilaktova, Olga Vladimirovna

Феофилактова Ольга Владимировна

Тел./Phone: +7 (343) 283-11-70 E-mail: feofiov@usue.ru

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Food Technology Department

Ural State University of Economics

620144, Russian Federation, Ekaterinburg, 8 March/Narodnoy Voli St., 62/45

Кандидат технических наук, доцент, доцент кафедры технологии питания Уральский государственный экономический университет

620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0003-1210-0845

Zavorokhina, Natalia Valerievna

Заворохина Наталия Валерьевна

Тел./Phone: +7 (343) 283-10-19 E-mail: degustator@olympus.ru

Doctor of Technical Sciences, Associate Professor, Professor of the Food Technology Department Ural State University of Economics

620144, Russian Federation, Ekaterinburg, 8 March/Narodnoy Voli St., 62/45

Доктор технических наук, доцент, профессор кафедры технологии питания Уральский государственный экономический университет 620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45

ORCID: https://orcid.org/0000-0001-5458-8565

i Надоели баннеры? Вы всегда можете отключить рекламу.