Научная статья на тему 'Final surface and subsurface structures formed as a result of laser action'

Final surface and subsurface structures formed as a result of laser action Текст научной статьи по специальности «Медицинские технологии»

CC BY
25
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Final surface and subsurface structures formed as a result of laser action»

The 30th International Conference on Advanced Laser Technologies

ALT'23

LM-I-4

Final surface and subsurface structures formed as a result of laser action

N.A. Inogamov1-3, V.A. Khokhlov1, Yu.V. Petrov14, V.V. Zhakhovsky23, S.I. Ashitkov3, S.A. Romashevskiy3, D.S. Sitnikov3, K.V. Khishchenko3, Yu.R. Kolobov5, S.S. Manokhin5, I.V. Nelasov5, S.V. Fortova6, E.A. Perov3 6, V.V. Shepelev6

1- L.D. Landau Institute for Theoret. Physics, RAS, 142432,Mosc. Reg., Chernogolovka, Ak. Semenova, 1A 2- N.L. Dukhov All-Russia Research Institute of Automatics, 127055, Moscow, Sushchevskaya, 22 3- Joint Institute for High Temperatures, RAS, 125412, Moscow, Izhorskaya st. 13 Bd.2 4- The Moscow Institute of Physics and Technology, 141701, Mosc. Reg., Dolgoprudny, Institutskiy per., 9 5- Institute of Problems Chem. Phys. RAS, 142432, Moscow Region, Chernogolovka, Ak. Semenova, 1 6- Institute of Computer Aided Design of the RAS, 123056, Moscow, 2 Brestskaya st, 19/18

[email protected]

The physics of processes caused by action of a laser is discussed. The influence of laser parameters on these processes is considered: pulse duration (fs [1-5], ps [1-5], subns [1,2], ns [1,2]), absorbed energy (~0.1-10 J/cm2 [1-6] appropriate to the technological applications), wavelength (from optical [1-6] to soft [7,8] and hard X-rays [9-11]), spot radius (0.1-103 ^m [3,12-15]), metals and dielectrics. Conclusions are made concerning the characteristics of the plume (including during ablation into a liquid) [1,2,5,16,17], laser shocks [3,4,6,10,18-23], the random structures that arise on the surface [8,11,24] and in the volume (changes in crystalline structure [6]) of the target. Effects on homogeneous, film and layered objects are investigated. Typical initial plasma temperatures are ~ 1 eV for nanosecond pulses acting through liquid to metal or semiconductor [1,2,5] targets and up to ~ few tens of eV in the case of femtosecond pulses [6] acting through air near threshold (~ 10-100 J/cm2, ~ 1014-15 W/cm2) of optical breakdown of air. Applications related to laser shock peening [3,4,6,19-21], optoacoustics, and nanoparticle production [1,2,5,16,17] are described.

[1] Petrov et al., Hydrodynamic phenomena induced by laser ablation of metal into liquid, Applied Surface Science, 492, 285-297, (2019).

[2] Petrov et al., Condensation of laser-produced gold plasma during expansion and cooling in a water environment, Contrib. Plasma Phys., 59(6), e201800180, (2019).

[3] Shepelev et al., Attenuation and inflection of initially planar shock wave generated by femtosecond laser pulse, Optics and Laser Technology 152, 108100, (2022).

[4] Inogamov et al., Laser Shock Wave: The Plasticity and Thickness of the Residual Deformation Layer and the Transition from the Elastoplastic to Elastic Propagation Mode, JETP Letters, 115, 71-78, (2022).

[5] Inogamov et al., Dynamics of Gold Ablation into Water, JETP, 127, (1), 79-106, (2018).

[6] Khokhlov et al., Melting of Titanium by a Shock Wave Gener. by an Intense Femtosec. Laser Pulse, JETP Letters, 115, 523-530, (2022).

[7] Inogamov et al., Hydrodyn. driven ultrashort laser pulse: simul. and opt. pump-X-ray probe exper., Appl. Phys. B, 119, 413-419, (2015).

[8] Ishino et al., Study of damage structure formation on aluminum film targets by picosecond soft X-ray laser ablation around threshold region, Applied Physics A, 124, 649, 8pp., (2018).

[9] Albertazzi et al., Dynamic fracture of tantalum under extreme tensile stress, Sci. Adv., 3: e1602705, (2017).

[10] Makarov et al., Direct imaging of shock wave splitting in diamond at Mbar pressures, arXiv:2207.01719

[11] Kohmura et al., Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration, Appl. Phys. Lett., 112, 123103, (2018).

[12] Inogamov and Zhakhovskii, Formation of Nanojets and Nanodroplets by an Ultrashort Laser Pulse at Focusing in the Diffraction Limit, JETP Lett., 100 (1), 4-10, (2014).

[13] Inogamov et al., Jet Formation in Spallation of a Metal Film from a Substrate under the Action of a Femtosecond Laser Pulse, JETP, 120 (1), 15-48, (2015).

[14] Inogamov et al., Solitary Nanostructures Produced by Ultrashort Laser Pulse, Nanoscale Res. Lett., 11, 177 (13 pp.), (2016).

[15] Wang et al., Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale, Phys. Rev. Applied, 8 (4), 044016, 17 pp., (2017).

[16] Inogamov et al., Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation, Opt Quant Electron. 52, 63, 24 pp., (2020).

[17] Inogamov et al., Physical Processes Accompanying Laser Ablation in Liquid, JETP Letters, 115, 16-22, (2022).

[18] Ashitkov et al., Behavior of Al near an ultimate theor. strength in experim. with femtosec. laser pulses, JETP Lett. 92, 516-520. (2010).

[19] Zhakhovskii and Inogamov, Elastic-plastic phenomena in ultrashort shock waves, JETP Lett. 92, 521-526, (2010).

[20] Zhakhovsky et al., Single two-zone elastic-plastic shock waves in solids, Phys. Rev. Lett. 107, 135502, (2011).

[21] Inogamov et al., Superelasticity and the Propagation of Shock Waves in Crystals, JETP Letters, 93 (4), 226-232, (2011).

[22] Demaske et al., Ultrashort shock waves in Nickel induced by femtosecond laser pulses, Phys. Rev. B 87, 054109, (2013).

[23] Perriot et al., Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations, J. Phys.: Conf. Ser. 500, 172008, (2014).

[24] Ashitkov et al., Formation of nanostructures under femtosecond laser ablation of metals, Quantum Electronics, 45 (6), 547-550, (2015).

i Надоели баннеры? Вы всегда можете отключить рекламу.