Научная статья на тему 'Фильтрация алюминиевых сплавов, применяемых в конструкциях летательных аппаратов'

Фильтрация алюминиевых сплавов, применяемых в конструкциях летательных аппаратов Текст научной статьи по специальности «Технологии материалов»

CC BY
623
153
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АЭРОКОСМИЧЕСКОЕ МАШИНОСТРОЕНИЕ / АЛЮМИНИЕВЫЕ СПЛАВЫ / ФИЛЬТРОВАНИЕ / КАЧЕСТВО ЛИТЫХ ИЗДЕЛИЙ / AEROSPACEMACHINE-BUILDING / ALUMINIUM ALLOYS / FILTRATION / QUALITY MOLDED ARTICLES

Аннотация научной статьи по технологиям материалов, автор научной работы — Крушенко Генрих Гаврилович, Воеводина Марина Александровна

Применяемые в аэрокосмическом машиностроении алюминиевые сплавы делятся на два класса: литейные, из которых изготовляют детали сложной объемной геометрии типа корпусов авиационных поршневых двигателей и турбонасосных агрегатов жидкостных ракетных двигателей, и деформируемые, из которых отливают слитки, а впоследствии прокаткой получают листы, из которых сваркой изготовляют топливные баки, а также прессованием и штамповкой шпангоуты, стрингеры, лонжероны и силовые каркасы. При приготовлении сплавов обеих групп применяются по существу одинаковые технологии, сводящиеся к двум основным дегазация (удаление водорода) и модифицирование (измельчение структуры). Однако при этом зачастую в расплаве остаются продукты взаимодействия рафинирующих и модифицирущих средств с жидким металлом, что ухудшает качество литых изделий. Приведены результаты исследований по очистке металлических расплавов от этих продуктов путем фильтрования как при литье слитков полунепрерывным способом, так и при литье деталей.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Крушенко Генрих Гаврилович, Воеводина Марина Александровна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The filtration of aluminum alloys used in constructions of aircrafts

Aluminum alloys used in aerospacemachine-building are divided into two classes casting, which the components of complicated geometry (eg. frame cases of aviation free-piston engines and turbo-pump assemblies of liquid-propellant rocket engines) are made from, and deformable,which the ingots are casted of, afterwards the plates are made by rolling for fuel tanks made by welding and also frames, stringers, longerons, power frames made by pressing. By preparation the alloys of both groups, in essence, the identical technologies reduced to two main degassing (moving hydrogen off) and modification (decomposition of structure) are used. However, the products of interaction between fining and modifying substances and fluid metal often remain in liquid. And it makes the quality of molded articles worse. The results of investigations for the refinement of metallic liquids from these products by filtration during ingots casting by semicontinuos method and so during details casting are demonstrated in this work.

Текст научной работы на тему «Фильтрация алюминиевых сплавов, применяемых в конструкциях летательных аппаратов»

УДК 693.22

ФИЛЬТРАЦИЯ АЛЮМИНИЕВЫХ СПЛАВОВ, ПРИМЕНЯЕМЫХ В КОНСТРУКЦИЯХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Г. Г. Крушенко1, М. А. Воеводина2

1 Институт вычислительного моделирования Сибирского отделения Российской академии наук Российская Федерация, 660036, г. Красноярск, Академгородок, 50 E-mail: [email protected] 2 Хакасский технический институт - филиал Сибирского федерального университета Республика Хакасия, 655017, г. Абакан, ул. Щетинкина, 27 E-mail: [email protected]

Применяемые в аэрокосмическом машиностроении алюминиевые сплавы делятся на два класса: литейные, из которых изготовляют детали сложной объемной геометрии типа корпусов авиационных поршневых двигателей и турбонасосных агрегатов жидкостных ракетных двигателей, и деформируемые, из которых отливают слитки, а впоследствии прокаткой получают листы, из которых сваркой изготовляют топливные баки, а также прессованием и штамповкой - шпангоуты, стрингеры, лонжероны и силовые каркасы. При приготовлении сплавов обеих групп применяются по существу одинаковые технологии, сводящиеся к двум основным - дегазация (удаление водорода) и модифицирование (измельчение структуры). Однако при этом зачастую в расплаве остаются продукты взаимодействия рафинирующих и модифицирущих средств с жидким металлом, что ухудшает качество литых изделий. Приведены результаты исследований по очистке металлических расплавов от этих продуктов путем фильтрования как при литье слитков полунепрерывным способом, так и при литье деталей.

Ключевые слова: аэрокосмическое машиностроение, алюминиевые сплавы, фильтрование, качество литых изделий.

THE FILTRATION OF ALUMINUM ALLOYS USED IN CONSTRUCTIONS OF AIRCRAFTS

G. G. Krushenko1, M. A. Voevodina2

1 Institute Computational Modeling Siberia Branch Russian Academy of Science 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation E-mail: [email protected] 2 Khakasski Technical Institute - branch of Siberia Federal University 27, Chetinkin str., Abakan, 655017, Khakass Republic E-mail: [email protected]

Aluminum alloys used in aerospacemachine-building are divided into two classes - casting, which the components of complicated geometry (eg. frame cases of aviation free-piston engines and turbo-pump assemblies of liquid-propellant rocket engines) are made from, and deformable,which the ingots are casted of, afterwards the plates are made by rolling for fuel tanks made by welding and also frames, stringers, longerons, power frames made by pressing. By preparation the alloys of both groups, in essence, the identical technologies reduced to two main - degassing (moving hydrogen off) and modification (decomposition of structure) are used. However, the products of interaction between fining and modifying substances and fluid metal often remain in liquid. And it makes the quality of molded articles worse. The results of investigations for the refinement of metallic liquids from these products by filtration during ingots casting by semicontinuos method and so during details casting are demonstrated in this work.

Keywords: aerospacemachine-building, aluminium alloys, filtration, quality molded articles.

Алюминиевые сплавы широко применяются в машиностроении, в том числе и при изготовлении конструкций аэрокосмических летательных аппаратов (ЛА) [1-3], главным образом, в связи с тем, что они обладают высокой удельной прочностью (отношение временного сопротивления разрушению к плотности

металла - ав/р), которая показывает, насколько прочной в эксплуатации будет конструкция при ее массе. По этому показателю высокопрочные алюминиевые сплавы [4] превосходят чугун, низкоуглеродистые и низколегированные стали и уступают лишь высоколегированным сталям повышенной прочности, а также

сплавам титана. Кроме того, алюминиевые сплавы обладают высокой стойкостью против коррозии, а также высокими технологическими характеристиками -низкой температурой плавления, хорошей деформируемостью и обрабатываемостью резанием и др. [5].

Для работы узлов в реальных условиях эксплуатации в космосе необходима также стойкость материалов к воздействию факторов космического пространства: высокого вакуума, перепадов температур, радиации и пр. В настоящий момент этим требованиям максимально отвечают алюминиевые деформируемые сплавы, которые и используются наиболее активно. Наглядные примеры - материалы конструкции планеров отечественного орбитального корабля «Буран» и американского космического корабля Space Shuttle (см. http ://www.buran.ru/htm/inside .htm/).

Наличие таких положительных характеристик и объясняет тот факт, что в современных ЛА доля алюминиевых сплавов составляет от 2/3 до 3/4 сухого веса пассажирского самолета и от 1/20 до 1/2 сухого веса ракеты (см. http://www.aluminiumleader.com/around/ transport/aircraft).

Применяемые в аэрокосмическом машиностроении алюминиевые сплавы делятся на два класса: литейные, из которых изготовляют детали типа корпусов двигателей летательных аппаратов, и деформируемые, из которых прокаткой изготовляют листы, которые применяется для изготовления корпусов и топливных баков, а также прессованием и штамповкой - шпангоутов, стрингеров, лонжеронов и силовых каркасов ЛА. Таким образом, в основе и деформационных, и литейных технологий лежат литейные технологии как приготовления сплавов, так и получения из них литейной продукции [6]. Поэтому при приготовлении обеих групп сплавов применяются по сути одинаковые технологии, сводящиеся к двум основным - рафинирование, при котором из расплава удаляется водород (дегазация) [7; 8] и частично неметаллические включения [9], и модифицирование (измельчение структуры) различными средствами [10-13].

Однако при этом зачастую в расплаве остаются продукты взаимодействия рафинирующих и модифи-цирущих средств с жидким металлом, что ухудшает физико-механические характеристики литых изделий. В связи с этим еще в 60-е годы прошлого столетия были проведены исследования по очистке металлических расплавов от этих продуктов [14; 15]. Эффективность этой технологии оказалась настолько высокой, что работы в этом направлении были продолжены впоследствии [16; 17] и проводятся в настоящее время [18].

Фильтрование алюминиевых расплавов при литье слитков полунепрерывным способом. Фильтрование алюминиевых расплавов рассмотрено на примере литья слитков 0 300 мм полунепрерывным способом из деформируемого алюминиевомагниевого сплава АМг6. При этом в качестве исходной шихты использовался электролизный алюминий, который после перелива в миксер путем легирования доводился до нужного состава. Температура литья слитков составляла 710...720 °С, скорость литья

(опускания слитка из кристаллизатора) - 70 мм/мин. При получении алюминия электролизным способом происходит его нагревание вплоть до 900°, что приводит к существенному уменьшению количества, а также к дезактивации присутствующих в расплаве центров кристаллизации и, как результат, к формированию в слитках крупнокристаллической структуры. В свою очередь, крупнокристаллическая структура является причиной низких механических свойств получаемой из слитков методами обработки давлением продукции. С целью повышения качества слитков сплав модифицировали нанопорошками (НП) нитрида бора БМ, нитрида тантала ТаМ и карбида кремния 8Ю, которые вводили в расплав в объеме прутков, предварительно уложенных в лоток. Расплав фильтровали в восходящем потоке по принятой на металлургическом заводе технологии через последовательно установленные сетки из стеклоткани ССФ-4 и СФФ-0,06. Отлитые слитки гомогенизировали, разрезали на заготовки длиной 550 мм, обтачивали их до 0 280 мм и затем на прессе с усилием 3500 тс со скоростями 10,0, 12,5 и 15,0 мм/с прессовали прутки диаметром 35 мм, из выходного, среднего и утяжного сечений которых вырезали образцы для испытания механических свойств как в горячепрессованном, так и в отожженном (нагрев с печью до 583...608 К, выдержка 30 мин, охлаждение на воздухе) состояниях и полученные при испытаниях результаты для трех сечений усредняли. С целью определения степени загрязненности сплава неметаллическими включениями из поперечных темплетов слитков вырезали по 8 заготовок для изготовления технологических проб. Изучение шлифов поперечных темплетов слитков показало, так же как и во всех ранее проведенных исследованиях, измельчающее воздействие НП. Изучение шлифов поперечных темплетов слитков показало наличие измельчающего эффекта в результате введения в расплав НП. При анализе микроструктуры серийных слитков выявились грубые скопления интерметалли-дов, тогда как в результате введения в расплав НП они раздробляются. Механические свойства образцов в горячепрессованном состоянии оказались более высокими по сравнению со свойствами серийных слитков (<зв = 364 МПа; с0,2 = 192 МПа; 5 = 18,1 %). Так, модифицирование БМ без последующей фильтрации повышает ов до 379 МПа (на 4,1 %), ТаМ (без фильтрации) - до 383 МПа (на 5,2 %) и с последующей фильтрацией - до 378 МПа (на 3,8 %); соответственно, повышается и с0,2: до 209 МПа (на 8,6 %), до 213 МПа (на 10,6 %) и до 206 МПа (на 7,0 %). При модифицировании ТаМ 5 возрастает до 21,0 % (на 15,4 %), - до 19,2 % (на 5,5 %), но несколько сни-

жается в случае БМ.

В проведенном исследовании была установлена возможность повышения в 1,5 раза (до 10 мм/с) скорости прессования прутков по сравнению с серийной технологией. При этом качество поверхности прутков практически не отличалось от серийных.

Из полученных данных видно, что фильтрация (на примере НП БЮ) не ухудшает модифицирующее воздействие НП, выразившееся в приросте механических свойств. Более того, при работе с БЮ коэффициент загрязненности сплава Кср составил всего 0,07 мм2/см2 (Кср = ЕЕ дефектов на изломах технологических проб / ЕЕ изломов проб, мм2/см2), что оказалось наиболее близким к серийному слитку, для которого этот показатель оказался равным нулю. В то же время при введении в расплав прутка-свидетеля, отпрессованного из гранул без НП, Кср составляет 1,65 мм2/см2, прутка с НП ТаМ — 1,47 мм2/см2, а с НП БМ — 0,67 мм2/см2. Что касается загрязнений, связанных с введением в расплав НП, то этому можно дать следующее объяснение. Известно, что избыточная энергия частиц НП способствует их активному насыщению газами из окружающей атмосферы как на стадии синтеза, так и особенно при хранении на воздухе, даже в двойной полиэтиленовой упаковке. При этом просматривается связь между интенсивностью насыщения газами и технологией синтеза. Так, продукты хлоридного синтеза, к которым относится и НП ТаМ [19], по сорбционной активности превосходят соединения, полученные синтезом из элементов, которые, в свою очередь, превосходят по этой характеристике продукты восстановительной переработки оксидного сырья, включая и получение БЮ с использованием БЮ2. В подавляющем большинстве случаев наиболее вредными из адсорбированных газов является кислород и его соединения, вызывающие при последующих переделах, связанных с нагревом, формирование на поверхности частиц оксидного или карбонитридного (нитридного) слоя, что в итоге затрудняет или делает невозможным достижение у порошковых материалов специального комплекса свойств. В то же время относительно БЮ известно [20], что это соединение обладает высокой окислительной способностью вплоть до 1873 К. Приведенные данные могут свидетельствовать в пользу того, что БЮ не является источником загрязнений. Что касается загрязнений, связанных с применением НП БМ, то анализ процесса его получения путем кар-ботермического восстановления оксида бора в высо-коэнтальпийном газовом потоке (исходные реагенты: порошкообразный В2О3, углеродистый восстановитель пропан и азотирующий агент аммиак, в качестве плазмообразующего газа использовали азот) [21] не позволил установить их прямых источников. Возможно, это связано с повышенной химической активностью БМ [22]. Тем не менее, как отмечается всеми, кто связан с производством НП, источником загрязнений могут служить только газы, адсорбированные либо в процессе синтеза НП, либо при их хранении. Установить источник загрязнений при применении прутка, отпрессованного из гранул, еще сложнее, так как в нем вообще отсутствует НП, и, кроме того, в данном исследовании в расплав вводили точно такой же пруток, но содержащий в своем объеме НП БЮ, и загрязнения при этом было близко к нулю.

Фильтрование алюминиевых расплавов при литье деталей. В качестве примера рассмотрены

результаты применения фильтрования расплава при литье широко применяемого в промышленности до-эвтектического алюминиево-кремниевого сплава

АК7. При производстве отливок из сплавов этого вида с целью измельчения структурных составляющих и, как следствие, повышения уровня механических свойств литых изделий применяется известный еще с 20-х годов прошлого столетия способ обработки расплава натрием [23], называемый в настоящее время модифицированием и выполняемый посредством нанесения на зеркало металла 1,5...2,0 мас. % флюсов, состоящих из натрийсодержащих солей с последующей выдержкой до 15 мин без перемешивания [24].

Однако при таком способе обработки расплава взаимодействие между солями и жидким металлом происходит в основном в поверхностных слоях металлической ванны, и выделившийся при этом натрий распространяется по ее объему только путем диффузии, что, во-первых, замедляет процесс модифицирования, и, во-вторых, весь объем расплава не «прорабатывается» равномерно: по направлению к его донной части эффект модифицирования уменьшается, что, в конечном счете, проявляется в том, что залитые из этого объема отливки будут иметь более низкий уровень механических свойств, чем залитые из верхнего объема.

В работе опробовано модифицирование путем замешивания в расплав при 730.750 °С в течение

4.6 мин уменьшенного до 0,8 % по сравнению с обычной дозой (1,5.2,0 %) количества универсального флюса (50 % NaCl + 30 % NaF + 10 % KCl + 10 % Na3AlF6). При этом упакованную в алюминиевую фольгу дозу флюса помещали в окрашенный титановый колокольчик, погружали в расплав и производили его перемешивание. Затем с поверхности металла снимали окисную пленку и шлак с целью его очистки от непрореагировавших солей и продуктов их взаимодействия. Заливку металла в форму производили через частицы фильтрующего материала, помещенного в цилиндрическую керамическую емкость с соотношением высоты засыпки фильтра к диаметру h/D = = 1,17, имеющую отверстие в дне и устанавливаемую на заливочное отверстие в кокиле. Такое устройство имеет идентичную конструкцию с конструкцией вертикальных фильтрующих колонн, широко применяемых в химической промышленности для очистки различных жидкостей [25].

Фильтрующим материалом служила смесь предварительно сплавленных при 1300 °С фторидов (50 % MgF2 + 50 % СaF2), которую после разливки в изложницы и затвердевания дробили на кусочки размером

4.6 мм и подогревали до 800 °С перед засыпкой в установленную на кокиль нагретую «заливочную» емкость. Оценочный расчет суммарной площади поверхности всех фильтрующих частиц, находящихся во внутреннем цилиндрическом объеме (D = 60 мм, h = 70 мм) заливочной емкости, с учетом их «рельефа», дает величину порядка 0,25 м2. Назначение фильтрующего материала заключается в адсорбции остатков расплава модифицирующих солей и механического

«захвата» различных инородных примесей (частицы окисной плены, неметаллические включения, а также удаление водорода, адсорбированного на этих частицах и др.). Эти процессы интенсифицируются в результате протекания расплава по поверхности частиц множеством струек [15].

Выбор фторидов в качестве фильтрующего материала объясняется тем, что согласно данным, полученным на сплаве АК9ч, отличающемся от сплава АК7 малыми добавками магния и марганца [16], при близком увеличении механических свойств в результате фильтрования через графит, магнезит, корунд и сплав фторидов последний дает максимальное снижение содержания водорода. Этот эффект, согласно гипотезе, высказанной М. Б. Альтманом еще в 1965 году [9], связан с удалением из расплава при фильтровании комплексов «оксид алюминия - водород» (А120з-Н2).

Для сравнения заливали детали из сплава той же плавки, но модифицированного обычным способом (засыпка 1,5 % универсального флюса на поверхность расплава, выдержка 15 мин, очистка зеркала металла) и залитого без фильтрации. В качестве отливки была выбрана серийная фасонная деталь с черновой массой 5 кг, из вертикальной стенки которой вырезали горизонтально расположенные фрагменты, а из них вытачивали стандартные 5-кратные образцы для испытания механических свойств.

Результаты испытаний при литье в кокиль показали, что эффект повышения физико-механических характеристик сплава наступает раньше при модифицировании замешиванием, а полученные из этого сплава отливки имеют более высокие механические свойства и плотность (определяли методом гидростатического взвешивания) (табл. 1).

Фильтрование расплава было использовано и при литье из специального сплава системы А1-Б1-М£ (6,0-6,5 % Б1; 1,0-1,2 % Mg; ост. - А1) детали типа заглушки, входящей в сборочную единицу силового агрегата, работающего в сложнонагруженных условиях. Изучаемыми факторами являлись очередность загрузки и агрегатное состояние шихтовых материалов, а также температурные режимы плавки и металлургической обработки расплава (рафинирование и модифицирование) и температуры заливки. Особенностями

проведенного исследования является применение двух нестандартных, но взаимосвязанных технологий, используемых при приготовлении и заливке сплава. Одна из них заключается в применении высокого перегрева расплава и способа его охлаждения перед заливкой, другая - в очередности загрузки шихтовых материалов, причем в разных агрегатных состояниях (твердом и жидком).

Первая из них (перегрев расплава) заключается в применении так называемой температурной обработки расплава, технологию которой еще в 40-е годы прошлого столетия разработал и использовал при приготовлении сплава А1 - 12 % известный специалист в области литейного производства, профессор А. Г. Спасский [26]. В этой работе было установлено, что в результате перегрева жидкого сплава А1 - 12 % выше обычно применяемых «низкотемпературных» технологий, при кристаллизации формируется тонко-дисперсная структура фаз (дендриты а-твердого раствора и эвтектика), аналогичная структуре, получаемой при модифицировании сплава общепринятым тройным модификатором (45,0 % №С1 + 40 % МаР + + 15 % №зА№6).

В настоящем исследовании рабочий сплав готовили путем введения в расплавленную основу сплава (силумин СИЛ0) в разной очередности: магния, образующего в сплаве упрочняющее соединение Mg2Si; лигатур А1 - 4,34 % Т1 и А1 - 3,40 % 2г, содержащих интерметаллические соединения, соответственно Т1А1з и 2гА1з, частицы которых выполняют роль центров кристаллизации; лигатуры А1 - 3,0 % Ве, с помощью которой на поверхности расплава образуется прочная защитная пленка ВеО и лигатуры А1 - 50 % Си, содержащей упрочняющее соединение СиА12. При приготовлении сплава варьировали очередность загрузки шихтовых материалов и их агрегатного состояния, используя технологию, при реализации которой объем расплава, содержащего 50 % навески силумина и лигатуру А1-Мп, доводили до 950 °С с целью улучшения растворимости марганца, а объем расплава, содержащего остальной силумин, доводили до 700 °С, после чего в него вводили лигатуру A1-Mg с целью уменьшения окисления магния и вливали первый объем во второй открытой струей.

Таблица 1

Влияние способа обработки сплава АК7 универсальным флюсом на механические свойства и плотность

Время между заливкой и обработкой расплава, мин Временное сопротивление ств, МПа Относительное удлинение, % Твердость, НВ, МПа Плотность в твердом состоянии р, кг/м3

Флюс на поверхности / замешивание Прирост, % Флюс на поверхности / замешивание Прирост, % Флюс на поверхности/ замешивание Прирост, % Флюс на поверхности/ замешивание Прирост, %

ГОСТ 160 - 2,0 - 500 - Не оговаривается

0 165 - 5,8 - 520 - 2640 -

4 171/181 5,85 12,9/15,6 20,93 530/535 0,94 2643/2662 0,71

7 176/185 5,11 14,2/16,7 17,60 535/545 1,87 2646/2755 4,12

10 175/183 4,57 14,8/16,9 14,19 535/540 0,93 2655/2755 3,77

15 179/184 3,37 16,0/16,4 2,50 535/540 0,93 2654/2750 3,62

Таблица 2

Влияние технологии плавки и заливки на механические свойства сплава АК9ч

Технология плавки: вливание перегретого до 950 °С объема расплава (силумин + лигатура А1-Мп) в низкотемпературный (700 °С) объем (силумин + лигатура A1-Mg) при заливке в кокиль Механические свойства

Временное сопротивление ств, МПа Относительное удлинение 5, % Твердость НВ, МПа

Открытой струей 253/7,70 6,0/в 2 раза 700/-

Закрытой струей 260/10,63 8,2/2,73 700/-

С фильтрацией через стеклоткань 275/17,02 8,2/2,73 897/28,14

ГОСТ 1583-93 235 3,0 700

Примечание. В графах «механические свойства»: первая цифра - величина, вторая - прирост относительно ГОСТ 1583-93.

Затем при 750 °С производили модифицирование сплава тройным модификатором и производили заливку в кокиль. Результаты испытания механических свойств при литье в кокиль показали их увеличение (табл. 2) по сравнению с требуемыми по ГОСТ 1583— 93 (ств > 235 МПа; 5 > 3,0 %) при заливке открытой струей: ств до 253 МПа (на 7,7 %), 5 до 6,0 % (в два раза), твердость НВ практически не изменялась и оставалась на уровне 700 МПа. В случае приготовления сплава по описанной выше технологии, но с заливкой металла в форму закрытой струей, ств повысилось до 260 МПа (на 10,63 %), 5 - до 8,2 % (в 2,73 раза), а при дополнительной фильтрации расплава через стеклоткань ССФ-06 ств повысилось до 275 МПа (на 17,02 %), 5 осталось на том же уровне - 8,2 %, тогда как НВ увеличилась до 897 МПа (на 28,14 %).

Библиографические ссылки

1. Heinz A. A [et al.] Recent development in aluminium alloys for aerospace applications // Materials Science and Engineering: A. 2000. Vol. 280. Iss. 1. P. 102-107.

2. Starke E. A., Jr., Staley J. T. Application of modern aluminium alloys to aircraft. Fundamentals of Aluminium Metallurgy. 2011. P. 747-783.

3. Клочков Г. Г., Плотников А. Д. Применение новых сплавов в конструкциях ракет // Цветные металлы. 2013. № 9. С. 51-57.

4. Постников Н. С. Упрочнение алюминиевых сплавов и отливок. М. : Металлургия, 1983. 119 с.

5. Codden R. Aluminium: Physical properties, characteristics and alloys. Training in aluminium application technologies. Alcan. Banbury: European Aluminium Association. 1994. 60 p.

6. Алюминиевые сплавы. Плавка и литье алюминиевых сплавов. Справочное руководство. М. : Металлургия, 1970. 416 с.

7. Крушенко Г. Г. Предотвращение образования и блокирование отрицательного воздействия пористости на свойства отливок из алюминиевых сплавов // Вестник СибГАУ. 2012. Вып. 3 (43). С. 124-126.

8. Irfan M. A., Schwam D., Karve A., Ryder R. Porosity reduction and mechanical properties in die engine blocks // Materials science and engineering. 2012. Vol. A 535. P. 108-114.

9. Альтман М. Б. Неметаллические включения в алюминиевых сплавах. М. : Металлургия. 1965. 127 с.

10. Бондарев Б. И., Напалков В. И., Тарарышкин В. И. Модифицирование алюминиевых деформируемых сплавов. М. : Металлургия, 1979. 224 с.

11. Модифицирование силуминов. Киев : АН УССР. 1970. 180 с.

12. Kashyap K. T., Chandrashekar T. Effects and mechanisms of grain refinement in aluminium alloys // Bull. Mater. Sci. 2001. Vol. 24, no. 4. P. 345-353.

13. Крушенко Г. Г., Фильков М. Н. Модифицирование алюминиевых сплавов нанопорошками // Нанотехника. 2007. № 4. С. 58-64.

14. Спасский А. Г., Калягина Н. С. Очистка металлов от неметаллических включений // Литейное производство. 1959. № 4. С. 30-32.

15. Калабушкин В. С., Пикунов М. В. Фильтрование металла // Литейное производство. 1960. № 6. С. 30-31.

16. Курдюмов А. В. [и др.] Флюсовая обработка и фильтрование алюминиевых расплавов. М. : Металлургия, 1980. 196 с.

17. Тэн Э. Б. Механизм фильтрационного рафинирования металлических расплавов // Литейное производство. 1990. № 9. С. 5-6.

18. Воеводина М. А., Крушенко Г. Г. Фильтрование металлических расплавов : монография / Хакасский техн. ин-т - филиал Сиб. федер. ун-та, Абакан, 2013. 80 с.

19. Гаврилко В. П., Галевский Г. В., Крутский Ю. Л.

О механизме синтеза нитридов ниобия и тантала из хлоридов в высокотемпературном потоке азота // Фи-зико-химия и технология дисперсных порошков : сб. науч. тр. Киев : ИПМ АН УССР. 1984. С. 33-36.

20. Свойства, получение и применение тугоплавких соединений : справ. изд. / под ред. Т. Я. Косолаповой М. : Металлургия. 1986. 928 с.

21. Крутский Ю. Л., Корнилов А. А., Галевский Г. В. Исследование процесса получения ультрадисперсного порошка гексагонального нитрида бора // Материалы на основе нитридов. Киев : ИПМ АН УССР. 1988. С. 17-21.

22. Косолапова Т. Я. [и др.] Исследование структуры и свойств нитрида бора // Материалы на основе нитридов. Киев : ИПМ АН УССР. 1988. С. 17-21.

23. Pacz A. Patent US 1387900. Serial № 358555. Alloy. Application filed February 13, 1920. Patented August

16, 1921.

24. Цветное литье : справочник. М. : Машиностроение. 1989. 528 с.

25. Gibson W. D. Get more from towers & columns // Chemical Engineering. 1998. Vol. 105, no. 9. Р. 107-108.

26. Спасский А. Г., Рогожин В. В. К вопросу о модификации силуминов // Юбилейный сборник научных трудов МИЦМиЗ. 1930-1940. № 9. М. : Метал-лургиздат. 1940. С. 566-567.

References

1. Heinz A., Haszler A., Keidel C. et al. Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering, A. 15 March 2000. Vol. 280, Issue 1. P. 102-107.

2. Starke E. A., Jr., Staley J. T. Application of modern aluminium alloys to aircraft. Fundamentals of Aluminium Metallurgy, 2011, p, 747-783.

3. Klochkov G. G., Plotnikov A. D. [Application of new alloys in the construction of missiles]. Cvetnye met-ally. 2013, no. 9, p. 51-57 (In Russ.).

4. Postnikov N. S. Uprochnenie aljuminievyh splavov i otlivok [Hardening aluminum alloys and castings]. Moscow, Metallurgija Publ., 1983, 119 p.

5. Codden R. Aluminium: Physical properties, characteristics and alloys. Training in aluminium application technologies. Alcan. - Banbury: European Aluminium Association, 1994, 60 p.

6. Aljuminievye splavy. Plavka i lit'e aljuminievyh splavov. Spravochnoe rukovodstvo [Aluminum alloys. Melting and casting of aluminum alloys. Reference Guide]. Moscow, Metallurgija Publ., 1970, 416 p.

7. Krushenko G. G. [Prevention and blocking of the negative impact of porosity on the properties of aluminum alloy castings]. Vestnik SibGAU, 2012, vol. 43, no. 3, p. 124-126 (In Russ.).

8. Irfan M. A., Schwam D., Karve A., Ryder R. Porosity reduction and mechanical properties in die engine blocks. Materials science and engineering, 15 February 2012, vol. A 535, p. 108-114.

9. Al’tman M. B. Nemetallicheskie vkljuchenija v al-juminievyh splavah [Non-metallic inclusions in aluminum alloys]. Moscow, Metallurgija Publ., 1965, 127 p.

10. Bondarev B. I., Napalkov V. I., Tararyshkin V. I. Modificirovanie aljuminievyh deformiruemyh splavov [Modification of wrought aluminum alloys]. Moscow, Metallurgija Publ., 1979, 224 p.

11. Modificirovanie siluminov [Modification silumins]. Kiev, AN USSR Publ., 1970, 180 p.

12. Kashyap K. T., Chandrashekar T. Effects and mechanisms of grain refinement in aluminium alloys. Bull. Mater. Sci., August 2001, vol. 24, no. 4, p. 345-353.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

13. Krushenko G. G., Fil'kov M. N. [Modification of aluminum alloy nanopowders]. Nanotehnika. 2007, vol. 12, no. 4, p. 58-64 (In Russ.).

14. Spasskij A. G., Kaljagina N. S. [Refining of metals from non-metallic inclusions]. Litejnoe proizvodstvo. 1959, no. 4, p. 30-32 (In Russ.).

15. Kalabushkin V. S., Pikunov M. V. [Filtration metal]. Litejnoe proizvodstvo. 1960, no. 6, p. 30-31 (In Russ.).

16. Kurdjumov A. V., Inkin S. V., Chulkov V. S. et al. Fljusovaja obrabotka i fil'trovanie aljuminievyh raspla-vov [Flux processing and filtering molten aluminum]. Moscow, Metallurgija Publ., 1980, 196 p.

17. Tjen Je. B. [Mechanism of filtration of molten metal refining]. Litejnoe proizvodstvo. 1990, no. 9, p. 5-6 (In Russ.).

18. Voevodina M. A., Krushenko G. G. Fil'trovanie metallicheskih rasplavov, monografija [Filtration of molten metal, monograph]. Abakan Khakassia tehn. Inst -branch Sib. Fader. University Press, 2013, 80 p.

19. Gavrilko V. P., Galevskij G. V., Krutskij Ju. L.

0 mehanizme sinteza nitridov niobija i tantala iz hloridov v vysokotemperaturnom potoke azota. Fiziko-himija i tehnologija dispersnyh poroshkov [On the mechanism of the synthesis of niobium and tantalum nitride chlorides in high nitrogen flow. Physical chemistry and technology of dispersed powders]. Kiev, Ukrainian Academy of Sciences IPM Publ., 1984, p. 33-36.

20. Svojstva, poluchenie i primenenie tugoplavkih soedinenij. Sprav. izd. Pod red. T. Ja. Kosolapovoj [Properties, production and application of refractory compounds. Right. ed. Ed. T. J. Kosolapovo]. Moscow, Metallurgija Publ., 1986, 928 p.

21. Krutskij Ju. L., Kornilov A. A., Galevskij G. V. Issledovanie processa poluchenija ul'tradispersnogo poroshka geksagonal’nogo nitrida bora. Materialy na osnove nitridov [Investigation of the process of obtaining ultrafine powder of hexagonal boron nitride. Materials based on nitrides]. Kiev, Ukrainian Academy of Sciences IPM Publ., 1988, p. 17-21.

22. Kosolapova T. Ja., Ljashenko V. I., Serebrjakova T. I.

1 dr. Issledovanie struktury i svojstv nitrida bora. Materialy na osnove nitridov [Investigation of the structure and properties of boron nitride. Materials based on nitrides]. Kiev, Ukrainian Academy of Sciences IPM Publ., 1988, p. 17-21.

23. Pacz A. Patent US № 1387900. Serial № 358555. Alloy. Application filed February 13, 1920. Patented August 16, 1921.

24. Cvetnoe lit’e. [Ferrous castings]. Moscow, Mashi-nostroenie Publ., 1989, 528 p.

25. Gibson W. D. Get more from towers & columns. Chemical Engineering. 1998, vol. 105, no. 9, p. 107-108.

26. Spasskij A. G. i Rogozhin V. V. [On the modification silumins]. Jubilejnyj sbornik nauchnyh tru-dov MICMiZ, 1940, no. 9, p. 566-567 (In Russ.).

© Крушенко Г. Г., Воеводина М. А., 2014

i Надоели баннеры? Вы всегда можете отключить рекламу.