doi: 10.18720/MCE.72.9
Fiber fine-grained concretes with polyfunctional modifying additives
Дисперсно-армированные мелкозернистые бетоны с полифункциональными модифицирующими добавками
T.A. Nizina, A.S. Balykov, V.V. Volodin, D.I. Korovkin,
Ogarev Mordovia State University, Saransk, Russia
Key words: fine-grained concretes; modifiers; dispersive fiber; mineral additive; optimization; limit of tensile strength in bending; limit of compressive strength
Д-р техн. наук, профессор Т.А. Низина, аспирант А.С. Балыков, студент В.В. Володин, аспирант Д.И. Коровкин,
Мордовский государственный университет им. Н.П. Огарёва, г.Саранск, Россия
Ключевые слова: мелкозернистый бетон; модификаторы; дисперсное волокно; минеральная добавка; оптимизация; предел прочности на растяжение при изгибе; предел прочности при сжатии
Abstract. The purpose of the experimental study was to research the efficiency of dispersive reinforcement and modifying of compositions of cement fiber fine-grained concretes with active mineral and chemical additives, and to optimize the developed compositions according to the strength efficiency criteria. Multicriteria optimization of compositions and properties of modified fiber fine-grained concretes is an urgent task in connection with the complexity of their formulations. The experimental study was planned on the basis of a D-optimal plan containing 15 experiments. Upon the experimental results, experimental and statistical models were built to reflect the dependencies of the limit of compressive strength and tensile strength in bending of fiber fine-grained concretes on the type and concentration of modifiers (mix I) and dispersive fibers (mix II). Analysis of study results of saturated D-optimal plan was carried out on triangular diagrams Gibbs-Roseboom, they was built with use polynomial models of "mixture I, mixture II, technology - properties" and allowed to trace influence of 6 to variable factors in two-dimensional space. Optimum fields of variation of fine-grained modified fiber concrete components are identified with use method of experimental-statistical modeling. The efficiency of modifying finegrained concretes with polyacrylonitrile fiber, astralene-modified basalt microfiber as well as with highly active metakaolin has been established. Use of these modifiers in the compositions allowed to obtain cement composites with a wide range of strength characteristics: from 30 to 53 MPa at compression, from 3.7 to 6.6 MPa for bending tensile.
Аннотация. Целью экспериментального исследования являлось изучение эффективности дисперсного армирования и модифицирования активными минеральными и химическими добавками составов цементных дисперсно-армированных мелкозернистых бетонов, а также оптимизация разработанных составов по прочностным критериям эффективности. Многокритериальная оптимизация составов и свойств дисперсно-армированных модифицированных мелкозернистых бетонов является актуальной задачей в связи с многокомпонентностью их рецептур. Планирование экспериментального исследования осуществлялось на основе D-оптимального плана, содержащего 15 опытов. По результатам эксперимента производилось построение экспериментально-статистических моделей зависимости предела прочности при сжатии и на растяжение при изгибе мелкозернистых бетонов от вида и содержания модифицирующих добавок (смесь I) и дисперсных волокон (смесь II). Анализ результатов исследования осуществлялся по треугольным диаграммам Гиббса-Розебома, построенным по полиномиальным моделям типа «смесь I, смесь II, технология - свойства», позволяющим проследить влияние 6 варьируемых факторов в двухмерном пространстве. С помощью метода экспериментально-статистического моделирования выявлены оптимальные области варьирования компонентов модифицированных мелкозернистых дисперсно-
армированных бетонов. Установлена эффективность модифицирования мелкозернистых бетонов полиакрилонитрильным волокном, модифицированной астраленами базальтовой микрофиброй, а также высокоактивным метакаолином. Использование данных модификаторов в рецептуре позволило получить цементные композиты с широким диапазоном прочностных характеристик: от 30 до 53 МПа - при сжатии, от 3,7 до 6,6 МПа - на растяжение при изгибе.
Introduction
The primary task in designing plans of experimental studies developed in order to obtain compositions of construction materials is an opportunity to provide multi-criteria optimization and to reveal the most reasonable concentration of binding agents, fillers and aggregates, modifying additives, etc.
An increased number of components, e.g., an increased total number of formulation and process factors of cement compositions, results in the need to overcome difficulties caused by so called curse of dimensionality [1]. Furthermore, the optimization of compositions must guarantee high number of operational and process properties of the material, including resource saving criteria. As a rule, optimum coordinates of the quality system criteria under study do not overlap. Solving these multi-criteria tasks is possible in case of integrated realization of reasonable pre-requisites and upon theoretical pre-requisites, as well as by carrying out physical and calculation experiments, and when optimizing their results [2] when the issues related to taking compromise decisions arise.
Currently, a complicated concrete composition that includes 6-7 and more components is becoming a necessary reality [3-7]. Multiple additives and modifiers into concrete (hydrophobic and hydrophilic organic surfactants - super- and hyper- plasticizers [8, 9], fine fillers [5, 10], chemical and active minerals additives of natural and technogenic origin [11-14], dispersive fibers [15-21], including with the use of carbon nanoparticles [22, 23], etc.) are a unique key to solving many process tasks. Multifunctionality and complexity of applied modifiers allows efficiently controlling the structure formation processes at various stages of concrete production [24] and producing composites having high performance characteristics [3-7, 25]: High Performance and Ultra-High Performance Concretes [26-28], High Strength and Ultra-High Strength Concretes [29], Reactive Powder Concretes [30, 31], Self-Compacting Concretes [32], etc.
This causes some complications primarily associated with the cement and additive compatibility and additives' inter-compatibility [6, 33], which is a subject of many studies and discussions at global forums. Reputable Canmet forums distinguish the task of quantitative assessment of complex additives component compatibility between each other and cement/additive compatibility as the primary task [33]. When assessing compatibility, all factors are important, epically the type and concentration of additives in the mix. In various dosages, an additive can be either cure or poison, as the great German doctor Paracelsus once referred to drugs. Increased number of concrete mix components puts the Primum Non Nocere (do no harm) principle to the foreground.
Multi-criteria optimization of compositions and properties of modified fiber fine-grained concretes is undoubtedly an urgent task which requires using mathematical modeling and analysis methods to solve it competently. We believe that the method of experimental and statistical (ES) modeling proposed by V.A. Voznesenskiy [34, 35] and being actively developed at the moment [36, 37] is the most interesting one.
The purpose of this paper was to study the efficiency of dispersive reinforcement and modifying of compositions of cement fiber fine-grained concretes (CFFGC) by active mineral and chemical additives, and to optimize the developed compositions according to the strength efficiency criteria.
Materials and Methods
The experimental study was planned on the basis of a D-optimal plan containing 15 experiments [38]. Two groups of factors varied - the type and concentration of used additives: v (condensed
compacted silica fume (CCSF) by Keznetskiye ferrosplavy OJSC); v2 (white highly active metakaolin
(WHAM)); v (Penetron Admix (Admix) sealant for concrete mixes), as well as the type and
concentration of the applied fiber: wl (polypropylene multi-filament fiber (PP) with the cutting length of 12
mm, diameter of 25^35 microns, density of 0.91 g/cm3); w2 (specially treated polyacrylonitrile synthetic fiber FibARM Fiber W B (PAN) with the cutting length of 12 mm, diameter of 14^31 microns, density of 1.17 ± 0.03 g/cm3); w3 (astralene-modified basalt microfiber Astroflex-MBM (MBM) with the length of
100^500 microns, average diameter of 8^10 microns, bulk density of 800 kg/m3, astralene concentration of 0.0001 + 0.01 % of the fiber weight). The variance levels of the factors under study are given in Table 1.
In designing the experimental study plan, the following conditions were fulfilled:
0 < v < 1; Zv. = 1; i = 1,2,3 ;
' i (1) 0 < w < 1; Zwt = 1; i = 1,2,3.
In experimental studies, several series of sample prisms 40 x 40 x 160 mm were manufactured from fiber-concrete mixes whose compositions included the following modifiers (apart from those mentioned above): Portland cement grade CEM I 42.5R; fine aggregate - natural quartz sand from the Novostepanovsk pit (Smolniy settlement, Ichalovskiy region, Republic of Mordovia) with the grain size below 5 mm - 65 % of the solid phase weight; superplasticizer Melflux 1641 F - 0.5 % of the binder weight. The changes in the compression strength (Russian State Standard GOST 310.4) and tensile strength in bending (Russian State Standard GOST 310.4) were studied after aging for 28 days.
Table 1. Levels of variation of experimental research factors (% by weight of cement)
Variable factors Levels of variation
0 0.5 1
Type of additive CCSF 0 10 20
WHAM 0 3 6
Admix 0 0.75 1.5
Type of fiber W1 PP 0 0.5 1
W2 PAN 0 0.75 1.5
W3 MBM 0 2.5 5
Results and Discussion
Upon the experimental results, experimental and statistical models were built [38, 39] to reflect the dependencies of the studied physical and mechanical quality indicators of fiber fine-grained concretes on the type and concentration of modifiers (mix I) and dispersive fibers (mix II). The generalized ES model was defined as a reduced polynomial MiMiiQ "mix I, mix II - property" in the following form:
y = ¿12 ' V ' v2 + ¿i3 ' V ' v3 + ¿23 ' v2 ' v3 + d 12 • W • Wj + dy$ • Wi ■ W3 +
+ d23 • W2 • W3 + ki 1 • Vi • Wi + ^2 1 • V2 • Wi + кз i • V3 • Wi + ki2 • Vi • W2 + (2)
+ k22 ' V2 • W2 + к32 ' V3 ' W2 + ki3 ' Vi ' W3 + к23 ' V2 ' W3 + k33 ' V3 ' W3.
Two types of models "mix I (modifiers) - property" (Xvi,v2,v3); MiQ) and "mix II (dispersive fibers) - properties" (j)(Wi,W2,W3) ; MiiQ) were distinguished from the MiMiiQ model with recording the
respective group of composition factors [7]. For each type of the models and each physical and mechanical characteristics under study, seven triangle Gibbs-Rosebom diagrams were built in the form of 2D maps of level lines by using Statistica 10.0.1011 software.
To further analyze the impact of modifiers on the properties of cement composites, a generalizing indicators was introduced - a numerical characteristic of the property field in the form of an absolute values of the studied indicator corresponding to its maximum y^ . ES-models "mix I - property
maximum" (.yraix(v1,v2,v3) ; MiQmax) and "mix II - property maximum" (_yraix(w1, w2, w3) ; MiiQmax)
reflecting the connection between the varied factors and the maximums of the properties under study represent polynomial equations of the following form [37, 40]:
У max = b1 ' V1 + b2 ' V2 + b3 ' V3 + d12 ' V1 ' V2 + d13 ' V1 ' V3 + d 23 ' V2 ' V3 + k123 ' V1 ' V2 ' V3; (3)
>max = b1 * W1 + b2 ■ W2 + b3 ■ W3 + d12 ' W1 " W2 + d13 ' W1 " W3 + d23 " W2 " W3 + k123 " W1 " W2 " W3. (4)
By using the data obtained, for each of the studied characteristic, two triangle Gibbs-Rosebome diagrams were built to reflect respective systems ymx (v,v2,v3) and ymx (wx,w2,W) [37, 40]. For
each of the analyzed parameters, the pairs of models >mx (v, v2, v3) and y(wx, w2, w3) as well as
ymax (W1? W2> W3) and X^ V2, V3) are then synthesized. Secondary models j>mx( v)(w) and j>mx( w)(v)
were formed representing a triangle (Figs. 1, 2) sliding along the bearing triangle and fixed in seven centroid points (3 corners + 3 side centers + center of gravity) [37, 39, 40].
W1 W2
Figure 1. Diagrams "dispersive fibers - property" and contours of maximum values of the limit of compression strength of cement fiber fine-grained concretes (CFFGC) on triangle "modifying additives - property" [39, 40]
W1 W2
Figure 2. Diagrams "dispersive fibers - property" and contours of maximum values of the limit of tensile strength in bending of cement fiber fine-grained concretes (CFFGC) on triangle "modifying
additives - property" [40]
The resulting secondary models yw<v}(w) and ymx(M,(v) are highly informative multi-factor
experimental and statistical models comparable to well-known analogues that are widely represented in the work [38]. These ES-models enable establishing a link and quantitative relations between investigated strength characteristics of the cement composites, process and operational factors with simultaneous minimization of labor costs and getting maximum information concerning the studied object.
a)
c)
e)
b)
d)
f)
Figure 3. Field of allowable values of the limit of compression strength of cement fiber fine-grained concretes (CFFGC) based on content of modifying additives (a, c, e)
and dispersive fibers (b, d, f) in compositions
At the final stage of experimental studies, the compositions of modified fiber fine-grained concretes were optimized. By using an ES-model as a polynomial equation (2), for each of the six formulation modifiers, generalizing values of the characteristics under study were obtained - the areas of permitted solutions describing the technology stability (Figs. 3, 4). These areas are confined by minimal and maximum possible values of controlled properties depending on the concentration of the modifier analyzed.
Figures 3 and 4 represent the areas of permitted solutions for the studied mechanical indicators of cement composites - compression strength and tensile strength in bending of fiber fine-grained concretes. It has been found that the increased share of metakaolin in the total mass of active mineral additives causes the compression strength (Fig. 3, c) and the tensile strength in bending (Fig. 4, c) of cement composites to icnrease. For its maximum concentration in composites (6 % of the Portland cement weight), we can produce fiber concretes with a wide range of strength characteristics: 30 to 53 MPa for compression strength and 3.7 to 6.6 MPa for tensile strength in bending.
Introducing condensed compacted silica fume into concrete mixes causes the strength of cement composites to decrease, which shows the CCSF negative impact on the structure formation processes of cement composites as compared to other types of applied additives (Figs. 3, 4, a).
Figure 4. Field of allowable values of the limit of tensile strength in bending of cement fiber fine-grained concretes (CFFGC) based on content of modifying additives (a, c, e)
and dispersive fibers (b, d, f) in compositions
Mounted according to the study results the WHAM efficiency as compared to CCSF is confirmed by data of the work [13]. This is explained by: higher (about 2-2.5 times) pozzolanic activity of metakaolin; different chemical nature of additives (silicate in CCSF and aluminosilicate in WHAM); accelerated reaction between WHAM and lime as compared to CCSF, which ensures its effective binding during the first day of setting; higher plasticity and performance of concrete and mortar mixes, no surface adhesiveness of concrete with WHAM typical of concretes with CCSF; lower water demand of mixes with WHAM, meaning lower consumption of superplasticizers needed to achieve the same mobility of concrete mixes.
When increasing the concentration by means of Admix mineral modifier, the maximum values of strength are somewhat decreased, and the minimum possible values are increased (Figs. 3, 4, e); the area of permitted values is substantially reduced for the maximum filling of this additive (1.5 % of the Portland cement mass) - 36 to 46 MPa for compression strength and 4.7 to 5.7 MPa to tensile strength in bending.
This effect can be explained by newly formed calcium hydrosulfoaluminates and hydrocarboaluminates when Penetron Admix components interact with cement hydration products. These new formations appearing when the volume grows, along with the initial thickening of the structure, may cause negative internal stresses in case of non-optimal use. This is confirmed by the study results of other authors, in particular [14]. Thus, taking into account that it is necessary to accurately select the dosage of this mineral additive in order to rationally control the crystallization process and form the structure of cement composites.
By analyzing the areas of permitted solutions when studying the effect of dispersive fibers on the tensile strength in bending, we can make a conclusion on the efficiency of reinforcing fine-grained concretes with PAN-fibers and MBM-fibers (Figs. 4, d, f), with the highest strength of 6.5 MPa obtained when using a complex of PAN+MBM fibers with equal (50 %) shares of these fibers. This proves the appropriateness and efficiency of the multi-level reinforcement of fine-grained concretes by using carbon nanostructures (applying polyacrylonitrile fiber is reinforcement on the macroscale structural level; applying astralene-modified basalt microfiber is reinforcement on the upper macroscale level).
Presented in [17-23] the study results confirm the efficiency of the multi-level reinforcement (including the use of carbon nanoparticles), this is based on the hypothesis of the proportionality of the reinforcing elements to the "blocked" cracks of the corresponding level of structure (micro-, meso-, macro-).
Increasing the percentage of polypropylene fiber when reinforcing composites results in decreased maximum possible strength (Figs. 3, 4, b), with the area of permitted solutions of this indicators decreased - 3.6 + 4.8 MPa for tensile strength in bending and 26^36 MPa for compression strength.
Conclusions
To produce materials of various functional purpose with a wide range of properties, a systemic approach is needed to be applied when selecting initial materials, composite production technologies, planning and analyzing methods for experimental studies. An important role is played by informative multi-factor experimental and statistical models that enable establishing a link and quantitative relations between material quality indicators, its structural parameters formulation, process and operational factors with simultaneous minimization of labor costs and getting maximum information concerning the studied object.
As result of experimental studies:
1. The efficiency of modifiers and dispersive fibers was assessed for a number of physical and mechanical properties (the limit of compression strength (Russian State Standard GOST 310.4) and the limit of tensile strength in bending (GOST 310.4) after aging for 28 days) in order to produce concretes of various functional purpose.
2. Secondary models j>mx(v ->(w) and j>mxl>)(v) were formed representing a triangle (Figs. 1,
2) sliding along the bearing triangle and fixed in seven centroid points (3 corners + 3 side centers + center of gravity).
3. Thanks to optimization of compositions of fiber fine-grained concretes, the areas of permitted solutions were defined, reflecting the possible range of changes in the quality indicator under study depending on the formulation and the percentage of each of the applied modifiers.
4. By analyzing the areas of permitted solutions when studying the effect of modifying additives on the physical and mechanical properties, we can make a conclusion on the efficiency of modifying finegrained concretes with white highly active metakaolin (WHAM) (Figs. 3, 4, c). For its maximum concentration in composites (6 % of the Portland cement weight), we can produce fiber concretes with a wide range of strength characteristics: 30 to 53 MPa for compression strength and 3.7 to 6.6 MPa for tensile strength in bending.
5. By analyzing the areas of permitted solutions when studying the effect of dispersive fibers on the tensile strength in bending, we can make a conclusion on the efficiency of reinforcing fine-grained concretes with PAN-fibers and MBM-fibers (Figs. 4, d, f), with the highest strength of 6.5 MPa obtained when using a complex of PAN+MBM fibers with equal (50 %) shares of these fibers.
References
1. Garkina I.A., Danilov A.M., Korolev E.V., Smirnov V.A. Preodolenie neopredelennostei tselei v zadache mnogokriterial'noi optimizatsii na primere razrabotki sverkhtyazhelykh betonov dlya zashchity ot radiatsii [Overcoming aim uncertainties in the task of multi-objective optimization by the example of the development of ultraheavy concretes for the protection against radiation]. Building materials. Science. 2006. No. 8. Pp. 23-26. (rus)
2. Ozbay E., Gesoglu M., Guneyisi E. Transport properties based multi-objective mix proportioning optimization of high performance concretes. Materials and Structures. 2011. Vol. 44. No. 1. Pp. 139-154.
3. Gusev B.V., Falikman V.R. Beton i zhelezobeton v epokhu ustoichivogo razvitiya [Concrete and reinforced concrete in the era of sustainable development]. Industrial and Civil Engineering. 2016. No. 2. Pp. 30-38. (rus)
4. Falikman V.R. Novye effektivnye vysokofunktsional'nye betony [New efficient high performance concretes]. Concrete and reinforced concrete. Equipment. Materials. Technologies. 2011. No. 2. Pp. 78-84. (rus)
5. Kalashnikov V.I. Evolyutsiya razvitiya sostavov i izmenenie prochnosti betonov. Betony nastoyashchego i budushchego. Chast' 1. Izmenenie sostavov i prochnosti betonov [Evolution of development of concretes compositions and change in concrete strength. Concretes of present and future. Part 1. Change in compositions and strength of concretes]. Building materials. 2016. No. 1-2. Pp. 96-103. (rus)
6. Usherov-Marshak A.V. Betony novogo pokoleniya - betony s dobavkami [New generation concretes - concretes with additives]. Concrete and reinforced concrete. Equipment. Materials. Technologies. 2011. No. 1. Pp. 78-81. (rus)
7. Nizina T.A., Balykov A.S. Analiz kompleksnogo vliyaniya modificiruyushchih dobavok i dispersnogo armirovaniya na fiziko-mekhanicheskie harakteristiki melkozernistyh betonov [Analysis of the combined effect of the modifier additives and particulate reinforcement on the physico-mechanical characteristics of fine-grained concretes]. Regional Architecture and Construction. 2015. No. 4. Pp. 25-32. (rus)
8. Smirnova O.M. Sovmestimost' portlandtsementa i superplastifikatorov na polikarboksilatnoi osnove dlya polucheniya vysokoprochnogo betona sbornykh konstruktsii [Compatibility of portland cement and polycarboxylate-based superplasticizers in high-strength concrete for precast constructions]. Magazine of Civil Engineering. 2016. No. 6. Pp. 12-22.
9. Huang H., Qian C., Zhao F., Qu J., Guo J., Danzinger M. Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete. Construction and Building Materials. 2016. Vol. 110. Pp. 293-299.
10. Kalashnikov V.I., Tarakanov O.V., Kuznetsov Yu.S., Volodin V.M., Belyakova E.A. Betony novogo pokoleniya na osnove sukhikh tonkozernisto-poroshkovykh smesei [Next generation concrete on the basis of fine-grained dry powder mixes]. Magazine of Civil Engineering. 2012. No. 8.
Литература
1. Гарькина И.А., Данилов А.М., Королев Е.В., Смирнов
B.А. Преодоление неопределенностей целей в задаче многокритериальной оптимизации на примере разработки сверхтяжелых бетонов для защиты от радиации // Строительные материалы. Наука. 2006. № 8. С. 23-26.
2. Ozbay E., Gesoglu M., Guneyisi E. Transport properties based multi-objective mix proportioning optimization of high performance concretes // Materials and Structures. 2011. Vol. 44. № 1. Pp. 139-154.
3. Гусев Б.В., Фаликман В.Р. Бетон и железобетон в эпоху устойчивого развития // Промышленное и гражданское строительство. 2016. № 2. С. 30-38.
4. Фаликман В.Р. Новые эффективные высокофункциональные бетоны // Бетон и железобетон. Оборудование. Материалы. Технологии. 2011. № 2. С. 78-84.
5. Калашников В.И. Эволюция развития составов и изменение прочности бетонов. Бетоны настоящего и будущего. Часть 1. Изменение составов и прочности бетонов // Строительные материалы. 2016. № 1-2.
C. 96-103.
6. Ушеров-Маршак А.В. Бетоны нового поколения -бетоны с добавками // Бетон и железобетон. Оборудование. Материалы. Технологии. 2011. № 1. С. 78-81.
7. Низина Т.А., Балыков А.С. Анализ комплексного влияния модифицирующих добавок и дисперсного армирования на физико-механические характеристики мелкозернистых бетонов // Региональная архитектура и строительство. 2015. № 4. С. 25-32.
8. Смирнова О.М. Совместимость портландцемента и суперпластификаторов на поликарбоксилатной основе для получения высокопрочного бетона сборных конструкций // Инженерно-строительный журнал. 2016. № 6. С. 12-22.
9. Huang H., Qian C., Zhao F., Qu J., Guo J., Danzinger M. Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete // Construction and Building Materials. 2016. Vol. 110. Pp. 293-299.
10. Калашников В.И., Тараканов О.В., Кузнецов Ю.С., Володин В.М., Белякова Е.А. Бетоны нового поколения на основе сухих тонкозернисто-порошковых смесей // Инженерно-строительный журнал. 2012. № 8. С. 47-53.
11. Yu R., Spiesz P., Brouwers H.J.H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses // Cement and Concrete Composites. 2015. Vol. 55. Pp. 383-394.
12. Ghafari E., Costa H., Julio E., Portugal A., Duraes L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete // Materials and Design. 2014. Vol. 59. Pp. 1-9.
13. Захаров С.А., Калачик Б.С. Высокоактивный метакаолин - современный активный минеральный модификатор цементных систем // Строительные материалы. 2007. № 5. С. 56-57.
Pp. 47-53. (rus)
11. Yu R., Spiesz P., Brouwers H.J.H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement and Concrete Composites. 2015. Vol. 55. Pp. 383-394.
12. Ghafari E., Costa H., Julio E., Portugal A., Durées L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials and Design. 2014. Vol. 59. Pp. 1-9.
13. Zakharov S.A., Kalachik B.S. Vysokoaktivnyi metakaolin -sovremennyi aktivnyi mineral'nyi modifikator tsementnykh system [Highly active metakaolin - modern active mineral modifier of cement systems]. Building materials. 2007. No. 5. Pp. 56-57. (rus)
14. Kapustin F.L., Spiridonova A.M., Meteleva L.E. Otchet o NIR "Sostav produktov tverdeniya tsementnogo kamnya do i posle naneseniya pronikayushchey kapillyarnoy smesi "Penetron" [Report on research work "Composition of the products of hardening cement paste before and after the application of mixture of penetrating the capillary "Penetron"]. Yekaterinburg: SEE HPE "Ural State Technical University - UPI named after the first President of Russia B.N. Yeltsin", 2010. 43 p. (rus)
15. Tayeh B.A., Abu Bakar B.H., Megat Johari M.A., Voo Y.L. Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fibre concrete overlay. Construction and Building Materials. 2012. Vol. 36. Pp. 538-548.
16. Wang W., Liu J., Agostini F., Davy C.A., Skoczylas F., Corvez D. Durability of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) under progressive aging. Cement and Concrete Research. 2014. Vol. 55. Pp. 1-13.
17. Chernyshov E.M., Korotkikh D.N. Povyshenie treshchinostoykosti tsementnogo betona pri mnogourovnevom dispersnom armirovanii ego struktury [Increasing the crack resistance of cement concrete in multilevel disperse reinforcement of its structure]. Modern problems of building materials: seventh academic reading of RAABS. Belgorod, 2001. Pp. 587-598. (rus)
18. Rabinovich F.N. Kompozity na osnove dispersno armirovannyh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstrukcii: Monografiya [Composites based on disperse reinforced concretes. Questions of theory and design, technology, constructions: Monograph]. Moscow, Publishing house ASV, 2004. 560 p. (rus)
19. Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Opredelenie vklada fibry v formirovanie prochnosti stalefibrobetona [Determination of fiber contribution in creation of the strength of steel fiber reinforced concrete]. Bulletin of Civil Engineers. 2017. No. 1. Pp. 172-176. (rus)
20. Talantova C.V. Struktura i svoistva stalefibrobetona, opredelyayushchie zadannye ekspluatatsionnye kharakteristiki konstruktsii na ego osnove [Structure and properties of steel fiber concrete defining the master performance characteristics of structures based on it]. Izvestia of St. Petersburg University of means of communication. 2016. Vol. 13. No. 4. Pp. 546-552. (rus)
21. Mailyan L.R., Mailyan A.L., Makarychev K.V. Konstruktivnye svoistva peno- i fibropenobetonov na vode s ponizhennoi temperaturoi zatvoreniya [Technology and properties of fibersfoamconcrete on water with a lowering of the temperature mixing]. Scientific herald of the Voronezh State University of architecture and civil engineering. Construction and architecture. 2012. No. 2. Pp. 75-84. (rus)
22. Gur'eva V.A., Belova T.K. Svoistva tsementnykh rastvorov, dispersno armirovannykh modifitsirovannym mikrovoloknom [Properties of cement mortars dispersed reinforced modified microfiber]. Bulletin of the Orenburg State University. 2015. No. 13. Pp. 124-127. (rus)
23. Ponomarev A.N. Vysokokachestvennye betony. Analiz vozmozhnostei i praktika ispol'zovaniya metodov
14. Капустин Ф.Л., Спиридонова А.М., Метелева Л.Е. Отчет о НИР «Состав продуктов твердения цементного камня до и после нанесения проникающей капиллярной смеси «Пенетрон». Екатеринбург: ГОУ ВПО «Уральский государственный технический университет - УПИ имени первого Президента России Б.Н. Ельцина», 2010. 43 с.
15. Tayeh B.A., Abu Bakar B.H., Megat Johari M.A., Voo Y.L. Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fibre concrete overlay // Construction and Building Materials. 2012. Vol. 36. Pp. 538-548.
16. Wang W., Liu J., Agostini F., Davy C.A., Skoczylas F., Corvez D. Durability of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) under progressive aging // Cement and Concrete Research. 2014. Vol. 55. Pp. 1-13.
17. Чернышов Е.М., Коротких Д.Н. Повышение трещиностойкости цементного бетона при многоуровневом дисперсном армировании его структуры // Современные проблемы строительного материаловедения: седьмые академические чтения РААСН. Белгород, 2001. С. 587-598.
18. Рабинович Ф.Н. Композиты на основе дисперсно армированных бетонов. Вопросы теории и проектирования, технология, конструкции: Монография. M.: Издательство ACB, 2004. 560 с.
19. Пухаренко Ю.В., Пантелеев Д.А., Жаворонков М.И. Определение вклада фибры в формирование прочности сталефибробетона // Вестник гражданских инженеров. 2017. № 1. С. 172-176.
20. Талантова К.В. Структура и свойства сталефибробетона, определяющие заданные эксплуатационные характеристики конструкций на его основе // Известия Петербургского университета путей сообщения. 2016. Т. 13. № 4. С. 546-552.
21. Маилян Л.Р., Маилян А.Л., Макарычев К.В. Конструктивные свойства пено- и фибропенобетонов на воде с пониженной температурой затворения // Научный вестник Воронежского ГАСУ. Строительство и архитектура. 2012. № 2. С. 75-84.
22. Гурьева В.А., Белова Т.К. Свойства цементных растворов, дисперсно армированных модифицированным микроволокном // Вестник Оренбургского государственного университета. 2015. № 13. С. 124-127.
23. Пономарев А.Н. Высококачественные бетоны. Анализ возможностей и практика использования методов нанотехнологии // Инженерно-строительный журнал. 2009. № 6. С. 25-33.
24. Калашников В.И., Тараканов О.В. О применении комплексных добавок в бетонах нового поколения // Строительные материалы. 2017. № 1-2. С. 62-67.
25. Каприелов С.С., Шейнфельд А.В., Кардумян Г.С. Новые модифицированные бетоны. М.: Типография «Парадиз», 2010. 258 с.
26. Aitcin P.-C. High Performance Concrete. London and New York: E&FN Spon, 2004. 591 p.
27. Edward G. №wy. Fundaments of High Performance Concrete. New York: John Wiley & Sons, 2001. 441 р.
28. Schmidt M., Fehling E., Teichmann T., Bunje K., Bornemann R. Ultra-high performance concrete: Perspective for the precast concrete industry // Betonwerk und Fertigteil-Technik. 2003. № 3. Pp. 16-29.
29. Sivakumar N., Muthukumar S., Sivakumar V., Gowtham D., Muthuraj V. Experimental studies on High Strength Concrete by Using Recycled Coarse aggregate // Research Inventy: International Journal of Engineering and Science. 2014. Vol. 4. Issue1. Pp. 27-36.
30. Tayeh B.A., Abu Bakar B.H., Megat Johari M.A., Tayeh S.M. Compressive Stress-Strain Behavior of Composite Ordinary and Reactive Powder Concrete // Iranica Journal
nanotekhnologii [High-quality concretes. Analysis of possibilities and practice of use of nanotechnological methods]. Magazine of Civil Engineering. 2009. No. 6. Pp. 25-33. (rus)
24. Kalashnikov V.I., Tarakanov O.V. O primenenii kompleksnykh dobavok v betonakh novogo pokoleniya [On application of complex additives in concrete of new generation]. Building materials. 2017. No. 1-2. Pp. 62-67. (rus)
25. Kaprielov S.S., Sheinfel'd A.V., Kardumyan G.S. Novye modifitsirovannye betony [New modified concretes]. Moscow: Printing House "Paradise", 2010. 258 p. (rus)
26. Aitcin P.-C. High Performance Concrete. E&FN Spon. London and New York, 2004. 591 p.
27. Edward G. Nawy. Fundaments of High Performance Concrete. John Wiley & Sons. New York, 2001. 441 p.
28. Schmidt M., Fehling E., Teichmann T., Bunje K., Bornemann R. Ultra-high performance concrete: Perspective for the precast concrete industry. Betonwerk und Fertigteil-Technik. 2003. No. 3. Pp. 16-29.
29. Sivakumar N., Muthukumar S., Sivakumar V., Gowtham D., Muthuraj V. Experimental studies on High Strength Concrete by Using Recycled Coarse aggregate. Research Inventy: International Journal of Engineering and Science. 2014. Vol. 4. Issue 1. Pp. 27-36.
30. Tayeh B.A., Abu Bakar B.H., Megat Johari M.A., Tayeh S.M. Compressive Stress-Strain Behavior of Composite Ordinary and Reactive Powder Concrete. Iranica Journal of Energy and Environment. 2013. Vol. 4. No. 3 (Geo-hazards and Civil Engineering). Pp. 294-298.
31. Yazici H., Deniz E., Baradan B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Construction and Building Materials. 2013. Vol. 42. Pp. 53-63.
32. Brouwers H.J.H., Radix H.J. Self-Compacting Concrete: Theoretical and experimental study. Cement and Concrete Research. 2005. Vol. 35. Pp. 2116-2136.
33. Usherov-Marshak A.V. Dobavki v beton: progress i problemy [Additives in concrete: progress and problems]. Building materials. 2006. No. 10. Pp. 8-12. (rus)
34. Voznesenskii V.A., Lyashenko T.V., Ivanov Ya.P., Nikolov I.I. EVM i optimizatsiya kompozitsionnykh materialov [Computer and optimization of composite materials]. Kiev: Budivel'nyk Publ, 1989. 240 p. (rus)
35. Voznesenskii V.A., Lyashenko T.V. ES-modeli v komp'yuternom stroitel'nom materialovedenii [ES-models in computer construction material engineering]. Odessa: Astroprint Publ., 2006. 116 p. (rus)
36. Nizina T.A., Balykov A.S. Postroenie eksperimental'no-statisticheskikh modelei «sostav - svoistvo» fiziko-mekhanicheskikh kharakteristik modifitsirovannykh dispersno-armirovannykh melkozernistykh betonov [Formation of experimental-statistical models «composition - property» of physical and mechanical properties of modified fiber-reinforced fine-grained concretes]. Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Civil Engineering and Architecture. 2016. No. 45. Pp. 54-66. (rus)
37. Nizina T.A., Balykov A.S. Eksperimentalno-statisticheskie modeli svoystv modificirovannyh dispersno-armirovannyh melkozernistyh betonov [Experimental-statistical models of properties of modified fiber-reinforced fine-grained concretes]. Magazine of Civil Engineering. 2016. No. 2. Pp. 13-25. (rus)
38. Lyashenko T.V. Optimizatsiya napolniteley poliefirnykh svyazuyushchikh na osnove modeley novogo klassa: dis. kand. tekhn. nauk [Optimization of fillers polyester connectives on the basis of models of new class: dis. Cand. Techn. Sciences]. Odessa, 1984. 236 p. (rus)
39. Nizina T.A., Balykov A.S., Makarova L.V. Primenenie modelei "sostav - svoistvo" dlya issledovaniya svoistv modifitsirovannykh dispersno-armirovannykh
of Energy and Environment. 2013. Vol. 4. № 3 (Geo-hazards and Civil Engineering). Pp. 294-298.
31. Yazici H., Deniz E., Baradan B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete // Construction and Building Materials. 2013. Vol. 42. Pp. 53-63.
32. Brouwers H.J.H., Radix H.J. Self-Compacting Concrete: Theoretical and experimental study // Cement and Concrete Research. 2005. Vol. 35. Pp. 2116-2136.
33. Ушеров-Маршак А.В. Добавки в бетон: прогресс и проблемы // Строительные материалы. 2006. № 10. С. 8-12.
34. Вознесенский В.А., Ляшенко Т.В., Иванов Я.П., Николов И.И. ЭВМ и оптимизация композиционных материалов. Киев: Будивэльник, 1989. 240 с.
35. Вознесенский В.А., Ляшенко Т.В. ЭС-модели в компьютерном строительном материаловедении. Одесса: Астропринт, 2006. 116 с.
36. Низина Т.А., Балыков А.С. Построение экспериментально-статистических моделей «состав -свойство» физико-механических характеристик модифицированных дисперсно-армированных мелкозернистых бетонов // Вестник Волгоградского государственного архитектурно-строительного университета. Серия: Строительство и архитектура. 2016. № 45. С. 54-66.
37. Низина Т.А., Балыков А.С. Экспериментально-статистические модели свойств модифицированных дисперсно-армированных мелкозернистых бетонов // Инженерно-строительный журнал. 2016. № 2. С. 13-25.
38. Ляшенко Т.В. Оптимизация наполнителей полиэфирных связующих на основе моделей нового класса: дис. ... канд. техн. наук. Одесса, 1984. 236 с.
39. Низина Т.А., Балыков А.С., Макарова Л.В. Применение моделей «состав - свойство» для исследования свойств модифицированных дисперсно-армированных мелкозернистых бетонов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 12. С. 15-21.
40. Низина Т.А., Пономарев А.Н., Балыков А.С. Мелкозернистые дисперсно-армированные бетоны на основе комплексных модифицирующих добавок // Строительные материалы. 2016. № 7. С. 68-72.
melkozernistykh betonov [Application of models "composition - property" to study the properties of modified fiber-reinforced fine-grained concretes]. Bulletin of Belgorod State Technological University named after V.G. Shukhov. 2016. No. 12. Pp. 15-21. (rus) 40. Nizina T.A., Ponomarev A.N., Balykov A.S. Melkozernistye dispersno-armirovannye betony na osnove kompleksnykh modifitsiruyushchikh dobavok [Fine-grained fibre concretes on the basis of complex modifying additives]. Building Materials. 2016. No. 7. Pp. 68-72. (rus)
Tatyana Nizina,
+7(917)9936389; [email protected] Artemy Balykov,
+7(927)183-28-82; [email protected] Vladimir Volodin,
+7(917)0062964; [email protected] Dmitrii Korovkin,
+7(937)5169131; [email protected]
Татьяна Анатольевна Низина, +7(917)9936389; эл. почта: [email protected]
Артемий Сергеевич Балыков,
+7(927)183-28-82;
эл. почта: [email protected]
Владимир Владимирович Володин, +7(917)0062964;
эл. почта: [email protected]
Дмитрий Игоревич Коровкин, +7(937)5169131;
эл. почта: [email protected]
© Nizina T.A.,Balykov A.S.,Volodin V.V.,Korovkin D.I., 2017