Научная статья на тему 'FERROELECTRIC FILMS FOR RENEWABLE ENERGY'

FERROELECTRIC FILMS FOR RENEWABLE ENERGY Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
12
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
RENEWABLE ENERGY / ENERGY HARVESTING / FERROELECTRIC FILMS / PULSED LASER DEPOSITION

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Vakulov Z.E., Tominov R.V., Dzyuba D.A., Shihovcov I.A., Smirnov V.A.

This paper shows the results of the development of an energy harvester based on hybrid carbon nanostructures. SiO2/TiN/LiNbO3 and SiO2/TiN/BaTiO3 samples were fabricated by pulsed laser deposition to study the piezoelectric effect. It is shown that the obtained nanocrystalline ferroelectric films exhibit a stable piezoelectric effect, which weakly depends on the nanoscale structure. An energy harvester architecture based on hybrid carbon nanostructures is developed. The use of the developed technology will improve the operational parameters of the converters, as well as replace toxic materials in their composition with lead-free ones, reducing the harmful anthropogenic impact on the nature. The obtained results can be used to create promising lead-free energy harvesters based on ferroelectric films for renewable energy and internet of things devices.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «FERROELECTRIC FILMS FOR RENEWABLE ENERGY»

i i St. Petersburg Polytechnic University Journal: Physics and Mathematics. 2022 Vol. 15, No. 3.2 Научно-технические ведомости СПбГПУ. Физико-математические науки. 15 (3.2) 2022

Conference materials UDC 539.234

DOI: https://doi.org/10.18721/JPM.153.249

Ferroelectric films for renewable energy

Z. E. Vakulov R. V. Tominov 2, D. A. Dzyuba 2, I. A. Shihovcov 2, V. A. Smirnov 2, O. A. Ageev 2

1 Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russia;

2 Southern Federal University, Rostov-on-Don, Russia H zakhar.vakulov@gmail.com

Abstract. This paper shows the results of the development of an energy harvester based on hybrid carbon nanostructures. SiO2/TiN/LiNbO3 and SiO2/TiN/BaTiO3 samples were fabricated by pulsed laser deposition to study the piezoelectric effect. It is shown that the obtained nanocrystalline ferroelectric films exhibit a stable piezoelectric effect, which weakly depends on the nanoscale structure. An energy harvester architecture based on hybrid carbon nanostructures is developed. The use of the developed technology will improve the operational parameters of the converters, as well as replace toxic materials in their composition with lead-free ones, reducing the harmful anthropogenic impact on the nature. The obtained results can be used to create promising lead-free energy harvesters based on ferroelectric films for renewable energy and internet of things devices.

Keywords: renewable energy, energy harvesting, ferroelectric films, pulsed laser deposition

Funding: The study was supported by the Russian Foundation for Basic Research as part of Projects 19-38-60052 and 19-29-03041 мк, Agreement of Foundation for Assistance to Small Innovative Enterprises in Science and Technology 53ГУРЭС14/72779, Grant of the President of the Russian Federation MK-6252.2021.4 and Agreement of the Government of the Russian Federation 075-15-2022-1123.

Citation: Vakulov Z. E., Tominov R. V., Dzyuba D. A., Shihovcov I. A., Smirnov V. A., Ageev O.A., Ferroelectric films for renewable energy, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.2) (2022) 269-273. DOI: https://doi. org/10.18721/JPM.153.249

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 539.234

DOI: https://doi.org/10.18721/JPM.153.249

Сегнетоэлектрические пленки для возобновляемой энергетики

З. Е. Вакулов ,В|, Р. В. Томинов 2, Д. А. Дзюба 2, И. А.

Шиховцов 2, В. А. Смирнов 2, О. А. Агеев 2

1 Южный научный центр Российской академии наук (ЮНЦ РАН), г. Ростов-на-Дону, Россия;

2 Южный федеральный университет, г. Ростов-на-Дону, Россия н zakhar.vakulov@gmail.com

Аннотация. В работе представлены результаты разработки преобразователя энергии на основе гибридных углеродных наноструктур. Для исследования пьезоэлектрических параметров методом импульсного лазерного напыления были изготовлены образцы SiO2/TiN/LiNbO3 и SiO2/TiN/BaTiO3. Показано, что полученные нанокристаллические сегнетоэлектрические пленки проявляют устойчивый пьезоэлектрический эффект, слабо зависящий от наноразмерной структуры. Разработана архитектура преобразователя энергии на основе гибридных углеродных наноструктур. Полученные результаты могут

© Vakulov Z.E., Tominov R.V., Dzyuba D.A., Shihovcov I.A., Smirnov V.A., Ageev O.A., 2022. Published by Peter the Great St. Petersburg Polytechnic University.

быть использованы для создания перспективных бессвинцовых преобразователей энергии на основе сегнетоэлектрических пленок для устройств возобновляемой энергетики и Интернета вещей.

Ключевые слова: возобновляемые источники энергии, преобразование энергии, сегнетоэлектрические пленки, импульсное лазерное осаждение

Финансирование: Исследование выполнено при финансовой поддержке РФФИ в рамках научных проектов № 19-38-60052 и № 19-29-03041 мк, поддержано Фондом содействия инновациям, Договор № 53ГУРЭС14/72779, Грантом Президента Российской Федерации МК-6252.2021.4 и Правительством РФ, Соглашение № 075-15-2022-1123.

Ссылка при цитировании: Вакулов З. Е., Томинов Р. В., Дзюба Д. А., Шиховцов И. А., Смирнов В. А., Агеев О. А. Сегнетоэлектрические пленки для возобновляемой энергетики // Научно-технические ведомости СПбГПУ. Физико-математические науки. Т. 15. № 3.2. С. 269-273. DOI: https://doi.org/10.18721/JPM.153.249

Статья открытого доступа, распространяемая по лицензии СС BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

Introduction

Today energy harvesting is considered as one of the alternatives to electrochemical batteries and can be applied as an autonomous power supply for portable IoT devices and wireless sensors [1, 2]. Energy harvesting is prospective to minimize the harmful anthropogenic impact on nature. In [3, 4] has been shown that piezoelectric nanowires, composites, ferroelectric films, and hybrid carbon nanostructures are promising materials for mechanical energy harvesting. The study of the ferroelectric materials synthesis process is urgent since it determines the parameters of fabricated piezoelectric energy harvesters [5, 6]. A large number of piezoelectric materials studies make it possible to design prototypes of energy harvesters, while the manufacture of commercial converters requires a comprehensive solution of a number of technical issues related to the optimization of the fabrication process [7]. Thus, the purpose of the work is to study the synthesis process of ferroelectric films by pulsed laser deposition and develop a mechanical energy harvester based on hybrid carbon nanostructures.

Materials and Methods

SiO2/TiN/LiNbO3 and SiO2/TiN/BaTiO3 samples were fabricated by pulsed laser deposition to study the piezoelectric effect [8]. The growth of LiNbO3 and BaTiO3 films was carried out in Pioneer 180 PLD module (Neocera LCC, USA) for 50,000 pulses at a laser pulse repetition rate of 10 Hz and an oxygen pressure of 1x10-2 Torr.

The substrate temperature varied from 300 °С to 600 °С. Oxide films were grown using the mask-template to provide electrical contact to TiN layer. Atomic force microscopy (AFM) at the Ntegra probe nanolaboratory (NT-MDT Spectrum Instruments, Russia) in the piezoresponse force microscopy (PFM) mode was used to study piezoelectric parameters of the fabricated samples. The influence of oxide films morphology on the piezoelectric parameters was studied by a two-stage approach. Two regions were scanned on the surface of the oxide films of each sample in the AFM contact mode at constant voltages of opposite polarity. At the first stage, a region of 7x7 ^m2 was formed by scanning the surface of the oxide film with the voltage between the probe and the sample of -10 V. At the second stage, an area of 3x3 ^m2 inside the region was formed with the voltage between the probe and the sample of +10 V.

The study of the piezoelectric response of the formed regions was carried out in the mode of applying an AC voltage to the probe (the TiN film is grounded) at a frequency of 16 kHz with an amplitude of 1 V. The sample was studied in a capacitor-like structure, (conducting AFM probe and the TiN layer are electrodes). In order to minimize the number of distortions in the measurement process, as well as to correctly compare the piezoelectric parameters of samples from the same experimental series, all measurements were carried out using one AFM probe with the same laser parameters on a microcantilever.

© Вакулов З. Е., Томинов Р. В., Дзюба Д. А., Шиховцов И. А., Смирнов В. А., Агеев О. А., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

Results and Discussion

It was established that the PFM signal amplitude in 7x7 ^m2 area is less than the amplitude in of 3x3 ^m2 the area with the phase (9) in 7x7 ^m2 area of is equal to 9 = —180°, and 9 = 0° in of 3x3 ^m2 area, respectively (Fig. 1). It can be explained by the fact that a negative voltage applied to the probe leads to an upward electric field, which also orients the polarization vector from the substrate towards the probe, while a positive voltage orients the polarization vector away from the probe towards the substrate. So, one can conclude that the AC voltage signal applied to the probe and the electric field generated in the oxide film are in antiphase in the 7x7 ^m2 region. Therefore, the PFM amplitude in the region is less than in 3x3 ^m2.

a)

Fig. 1. Results of PFM study: amplitude (a), phase (b)

Obtained nanocrystalline ferroelectric films exhibit a stable piezoelectric effect, which weakly depends on their nanoscale structure (Fig. 1). On the phase curves, one can observe the presence of intrinsic lattice polarization and 180-degree switching, which indicates the existence of domains.

Based on the obtained experimental results, the piezoelectric parameters for LiNbO3 and BaTiO3 films fabricated under different substrate temperatures were determined (Fig. 2). The piezoelectric coefficient d33 was determined from the slope of the PFM amplitude vs. bias voltage curves measured between the probe and the sample (Fig. 1,a). We used the curve of the approach of the probe to the sample obtained on single-crystal silicon to calculate d33.

An increase in the substrate temperature under PLD from 300 °C to 600 °C leads to an increase in the piezoelectric coefficient d33 from (3.22±0.41) pm/V to (6.84±1.13) pm/V for films LiNbO3, and from (17.42±1.32) pm/V to (32.12±2.17) pm/V for BaTiO3 films. The obtained result can be explained by the different growth kinetics of oxide films: the higher mobility of adatoms LiNbO3 and BaTiO3, with an increase in the substrate temperature, favors more oriented film growth and the increase in d33.

Based on the obtained results, the energy harvester was developed (Fig. 3).

The harvester has a carbon nanotube [9] coated with a ferroelectric film (LiNbO3 or BaTiO3) as an active element. A stretched part (positive strain) will create a positive electrical potential, while a compressed part (negative strain) will create a negative electrical potential across the device.

Fig. 2. Dependences of d33 piezoelectric coefficient on the substrate temperature under PLD: LiNbO and BaTiO,

a)

b)

Fig. 3. Piezoelectric energy harvester based on hybrid nanostructures: architecture (a), SEM image of carbon nanotubes coated with BaTiO3 (b)

As a result, a potential difference will be created at the top of the nanostructure, distributed over the surface of the structure. The obtained results can be used to create next-generation lead-free energy harvesters based on ferroelectric films for renewable energy and IoT devices.

Conclusion

Studies of the piezoelectric properties of the obtained nanocrystalline LiNbO3 and BaTiO3 films have been carried out. The method of atomic force microscopy in the mode of force microscopy of the piezoresponse to study the piezoelectric parameters of the films has been used. It is shown that all the obtained nanocrystalline LiNbO3 and BaTiO3 films exhibit a stable piezoelectric effect, which is weakly dependent on their nanoscale structure. The phase curves of the obtained films show the presence of intrinsic lattice polarization and 180° switching, which indicates the existence of the domains in the lattice. The obtained experimental results were used to determine the piezoelectric parameters of LiNbO3 and BaTiO3 films formed at different substrate temperatures. An analysis of the obtained results showed that an increase in the substrate temperature from 300 °C to 600 °C leads to an increase in the piezoelectric coefficient d33 from (3.22±0.41) pm/V to (6.84±1.13) pm/V for films LiNbO3, and from (17.42±1.32) pm/V to (32.12±2.17) pm/V for BaTiO3 films.

REFERENCES

1. Harb A., Energy harvesting: State-of-the-art, Renewable Energy. 10 (36) (2011) 2641—2654.

2. Vullers, R. J. M., van Schaijk, R., Doms, I., Van Hoof, C., Mertens, R., Micropower energy harvesting, Solid-State Electronics. 7 (53) (2009) 684-693.

3. Wang Z. L., Song J., Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science. 5771 (312) (2006) 242-246.

4. Song J., Zhou J., Wang Z. L., Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment, Nano letters. 8 (6) (2006) 1656-1662.

5. Bowen C. R., Kim H. A., Weaver P. M., Dunn S., Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy & Environmental Science. 1 (7) (2014) 25-44.

6. Topolov V. Y., Isaeva A. N., Bisegna P., Squared Figs. of merit and electromechanical coupling factors of a novel lead-free 1-3-0 composite for sensor and energy-harvesting applications, Sensors and Actuators A: Physical. (318) (2021) 112473-1-112473-11.

7. Ryu H., Yoon H. J., Kim S. W., Hybrid energy harvesters: toward sustainable energy harvesting, Advanced Materials. 34 (31) (2019) 1802898-1-1802898-19.

8. Vakulov Z., Khakhulin D., Zamburg E., Mikhaylichenko A., Smirnov V. A., Tominov R., Klimin V. S., Ageev O.A., Towards scalable large-area pulsed laser deposition, Materials. 17 (14) (2021) 4854-1-4854-14.

9. Il'in O. I., Il'ina M. V., Rudyk N. N., Polyvyanova O. R., Saenko A. V., Fedotov A. A., Effect of the sublayer material on geometric dimensions and piezoelectric response of vertically aligned carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures. 30 (1) (2022) 185-190.

THE AUTHORS

VAKULOV Zakhar

SHIHOVCOV Ivan

shihovcov@sfedu.ru ORCID: 0000-0002-0355-9665

zakhar.vakulov@gmail.com

ORCID: 0000-0003-3084-4522

TOMINOV Roman

tominov@sfedu.ru ORCID: 0000-0002-1263-2158

SMIRNOV Vladimir

vasmirnov@sfedu.ru ORCID: 0000-0001-7130-2194

DZYUBA Dmitry

dmdzyuba@sfedu.ru ORCID: 0000-0002-6028-9518

AGEEV Oleg

agevoa@gmail.com

ORCID: 0000-0003-1755-5371

Received 12.07.2022. Approved after reviewing 24.07.2022. Accepted 26.07.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.