Научная статья на тему 'Features of the formation of multilevel housing taking into account energy saving technologies in Kazakhstan'

Features of the formation of multilevel housing taking into account energy saving technologies in Kazakhstan Текст научной статьи по специальности «Строительство и архитектура»

CC BY
135
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
energy-saving technologies / energy efficiency / multi-storey construction / heat supply / engineering systems. / энергосберегающие технологии / энергоэффективность / многоэтажное строи- тельство / теплоснабжение / инженерные системы.

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Sarsen Chingis

The article is devoted to the analysis of the features of energy-saving technologies in high-rise residential construction. The paper substantiates the relevance of the study of energy-efficient construction in Kazakhstan and reveals the main specifics of energy-saving technologies. Methods and ways for ensuring effective device and practical implementation of the indicated technologies are presented. The main problems hindering the implementation of energy-efficient construction are listed. In conclusion, the obtained review data are summarized in the main conclusions of the study.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ОСОБЕННОСТИ ФОРМИРОВАНИЯ МНОГОЭТАЖНОГО ЖИЛИЩА С УЧЕТОМ ЭНЕРГОСБЕРЕГАЮЩИХ ТЕХНОЛОГИЙ В КАЗАХСТАНЕ

Статья посвящена анализу особенностей энергосберегающих технологий в многоэтажном жилищном строительстве. В работе обоснована актуальность исследования энергоэффективного строительства в Казахстане, раскрыта основная специфика энергосберегающих технологий. Приведены методы и способы обеспечения эффективного устройства и практического исполнения обозначенных технологий. Перечислены основные проблемы, препятствующие реализации энергоэффективного строительства. В заключении полученные обзорные данные обобщены в основные выводы по исследованию.

Текст научной работы на тему «Features of the formation of multilevel housing taking into account energy saving technologies in Kazakhstan»

ARCHITECTURE / <<ШЦШМУМ-ШУ®МА1>>#3(Ш7)),2(0]9

12

живопис, скульптура, передбачае безпосередню взаeмодiю студента з викладачем, мае проводитись в псному спiлкуваннi 1 консультуванш роботи студент.

На тепершнш час, коли техшчш можливосп та розвиток сучасних комушкацш дозволяють ство-рювати в1ртуальш навчальш середовища, навчання студент1в-арх1тектор1в можливо здшснювати в очно-дистанцшнш форм! Дистанцшне навчання у ВНЗ не е р1зновидом або вдосконаленим вар1антом заочного, осюльки це нова, самостшна, прогре-сивна форма навчання, яка волод1е бшьшими по-тенцшними можливостями. Сфера можливого за-стосування дистанцшного навчання студент ар-хггектор1в досить широка: вщ цшсно! пщготовки фахiвцiв до окремих курс1в та фрагментiв дидактичного забезпечення шд час р1зних вид1в занять. Впровадження в навчальний процес тако! форми навчання, як вщео конференция, дозволяе здшснити спшкування з учнем в режим консультаций Вико-ристання шформацшно-комушкативних ресурс1в дозволяе студенту ввдсилати результати виконаних завдань на перев1рку викладачу. Викладач виступае як консультант-наставник, який здшснюе мето-дичну та оргашзацшну допомогу здобувачам вищо! освгга у межах конкретно! програми дистанцшного навчання, а також роз'яснюе виконання шдивщу-ально-творчих завдань у вигляд1 творчих проекпв.

Розробка умов оргашзаци дистанцшного навчання фамвц1в з архггектури у ВНЗ базуеться на наступних концептуальних положеннях:

- урахування мети навчання та потреб здобу-вач1в вищо! освгга;

- формування в процес1 дистанцшного навчання досвщу творчо! дгяльностц

- за умови збшьшення частки самостшно! роботи при дистанцшному навчанш навчальний ма-тер1ал повинен бути адаптованим;

- здобувач1 вищо! освгга повинш володгги навичками оргашзаци самостшного навчання;

- оргашзац^я дистанцшного навчання у ВНЗ грунтуеться на оргашзаци продуктивно! дгяльносп студент;

- для оргашзаци дистанцшного навчання ро-зробляються дистанцшш курси дисциплш.

Очно-дистанцшна форма також не може бути першою вищою архггектурною освгтою у студента. Перший р1вень вищо! архггектурно! освгга, який от-римуе студент, мае бути в очнш форм!

Список використаних джерел

1. Положення про дистанцшне навчання (За-тверджено наказом Мшктерства освгга 1 науки Укра!ни 21.01.2004 № 40).

2. Про створення Укра!нського центру ди-станцшно! осв1ти Наказ МОН № 293 ввд 07.07.2000 року.

3. Шуневич, Б. Дистанцшна освгга: зарубгжний досввд на матер1ал1 англшсько! мови // 1ноземш мови. - 2003. - № 3. - С. 64-66.

4. Куцевич В.В. Формування архггектурно!' школи. 1стор1я, традици, сучасшсть : монография / В.В. Куцевич.- К. : Видавництво Л1ра-К, 2018. - 216 с.

УДК 728

Сарсен Чингис

Казахский национальный исследовательский технический университет им. К.И.Сатпаев, Алматы, Казахстан DOI: 10.24411/2520-6990-2019-10003 ОСОБЕННОСТИ ФОРМИРОВАНИЯ МНОГОЭТАЖНОГО ЖИЛИЩА С УЧЕТОМ ЭНЕРГОСБЕРЕГАЮЩИХ ТЕХНОЛОГИЙ В КАЗАХСТАНЕ

Sarsen Chingis

Kazakh National Research Technical University after K.I. Satpayev, Almaty, Kazakhstan

FEATURES OF THE FORMATION OF MULTILEVEL HOUSING TAKING INTO ACCOUNT ENERGY SAVING TECHNOLOGIES IN KAZAKHSTAN

Аннотация.

Статья посвящена анализу особенностей энергосберегающих технологий в многоэтажном жилищном строительстве. В работе обоснована актуальность исследования энергоэффективного строительства в Казахстане, раскрыта основная специфика энергосберегающих технологий. Приведены методы и способы обеспечения эффективного устройства и практического исполнения обозначенных технологий. Перечислены основные проблемы, препятствующие реализации энергоэффективного строительства. В заключении полученные обзорные данные обобщены в основные выводы по исследованию.

Abstract.

The article is devoted to the analysis of the features of energy-saving technologies in high-rise residential construction. The paper substantiates the relevance of the study of energy-efficient construction in Kazakhstan and reveals the main specifics of energy-saving technologies. Methods and ways for ensuring effective device and practical implementation of the indicated technologies are presented. The main problems hindering the implementation of energy-efficient construction are listed. In conclusion, the obtained review data are summarized in the main conclusions of the study.

<<C©yL©MUM"J©URMAL>>ffiM27)),2M9 / ARCHITECTURE_13_

Ключевые слова: энергосберегающие технологии, энергоэффективность, многоэтажное строительство, теплоснабжение, инженерные системы.

Key words: energy-saving technologies, energy efficiency, multi-storey construction, heat supply, engineering systems.

Most modern researchers note that energy-saving technologies will become an integral part of the construction industry [1]. The annual increase in electricity prices makes the most pressing issue of improving the energy efficiency of buildings and reducing energy consumption. Due to the lack of energy, the main task was to minimize heat loss in buildings [2]. Energy saving is of particular importance in cases of increasing the scale of construction, that is, in high-rise construction. In addition, the relevance of the work is determined by the fact that the constant increase in requirements for quality, safety, energy efficiency and environmental friendliness in the area of multi-storey housing construction also causes a corresponding increase in construction costs due to the need to introduce new technologies, materials, and new requirements. As a result, the cost of finished construction products increases significantly.

One of the main goals of construction, solved with the use of energy-efficient technologies in construction, is to ensure effective thermal insulation of the building. In turn, thermal insulation solves the following practical tasks. First, the increase in temperature comfort, insulation and sound insulation of buildings and structures. Secondly, the fuel resources are saved directly and the operating costs are reduced.

Also quite significant savings in fuel resources and other energy resources in a multi-storey building that has been commissioned can be achieved with the help of some architectural and engineering solutions. This system of energy efficiency is called passive. The main constructive construction solutions for the construction of passive systems include such elements as massive thick walls, double or triple glazed windows and other openings, thermal mass, effective thermal insulation, as well as glazed summer rooms.

Summer premises in multi-storey buildings are not only an addition to the apartment, they play an important role in the energy efficiency of the house. They form an intermediate space between the apartment and the street. Energy consumption for space heating also depends on the temperature difference between indoor and outdoor air. A study by Adam Turecki, a professor at the Bialystok University of Technology, shows that glazing of loggias and balconies saves about 6-7% of energy [3]. That is an increase in the energy efficiency of the building. This is a value, if we consider the loss of heat through the walls to 15-20%.

A field survey of residential buildings in the city of Warsaw, on Koleeva Street, confirms the trend of increasing summer space (Fig. 1). It is worth noting that in Kazakhstan the area of summer premises is calculated taking into account the reduction factors to the total price. For example, for the loggia the coefficient is 0.5, which uncritically affects the final cost of housing.

The maintenance of an energy-efficient multi-storey building includes not only insulation of building structures with the help of heat-insulating materials, but also specific engineering solutions for the heat supply and ventilation system. For example, to ensure effective energy conservation in a building, various solutions are applied related to engineering equipment, which in this case is called active equipment [4].

These active energy-saving systems can include engineering equipment that uses and converts the energy of renewable energy sources, such as for heating, water supply and ventilation. It is common to refer to such equipment solar panels and collectors, wind-powered generators, pumps that use the heat generated by air ventilation systems, or heat generated from the ground or groundwater, and the like.

Figure 1. Examples of increasing the area of summer space in buildings on the Koleev street in Warsaw.

In turn, the thermal insulation of a building negatively affects the indoor climate and the well-being of the residents, since the shell becomes a strong barrier between the inside and the outside environment. Residential premises must be constantly ventilated. Airing

in winter with the opening of the window significantly increases the heat loss of the building. The use of a mechanical ventilation system with heat recovery is one of the solutions to ensure cost-effective energy use in buildings [8,9].

14

ARCHITECTURE / «C@yL©(MUM~J0URMAL»#M27)),2(

The mechanism of the supply and exhaust ventilation system with heat recovery according to the scheme in Figure 2 is as follows: the outside air, which is approximately -10 ° C, enters the supply air filter, where it is further directed to the heat exchanger or the heat exchanger, which forms the supply air through a heat exchanger air, approximately + 20 ° C. And the reverse process where, the exhaust air temperature is + 22 ° C,

it enters the exhaust air filter and is transformed in the heat exchanger into exhaust air, the temperature of which is + 8 ° Q through the exhaust fan. This technology provides an inflow of fresh heated air into the room due to the heat of exhaust air, which saves up to 80% of the loss of thermal energy due to recovery [7]. Thus, the room will have fresh air and a favorable microclimate.

Figure 2. The scheme of the supply and exhaust ventilation system with heat recovery.

The supply and exhaust ventilation system combined with heat recovery has become the preferred solution to meet the requirements for improving indoor air quality while reducing energy consumption in the building. However, these systems are often simple heat exchangers that cannot operate in an unbalanced mode. As a result, unwanted heat conditioning can trigger systems operating during periods when energy recovery is undesirable. Ventilation with heat recovery combined with heat pumps is considered one of the solutions to reduce energy consumption [10].

Figure 3 shows a heat pump tuned by heat recovery ventilation, and figure 4 is shown without a connection. The air supplied by the heat pump enters the premises, and the exhaust air is directed to the heat exchanger, where it heats the outside air entering the heat

pump. Then the air is heated or cooled by the heat pump to the desired temperature, before being fed into the room.

These home heating appliances are considered to be one of the promising opportunities for energy-efficient and low-carbon solutions for buildings and structures. However, sustainability is not always an integral feature of all heat pumps. According to the life cycle thinking approach, a direct assessment of environmental, economic and social aspects throughout the life cycle is necessary to assess the full sustainability of the technology [5]. There is a greater awareness of the relatively higher costs at the investment stage in the case of heating systems using heat pumps, with relatively lower operating costs of these systems.

Figure 3. Diagram of an air heat pump with a heat exchanger [10].

<<ШЦШетУМ-ШУГМА1>#3(Ш7)),2©1]9 / ARCHITECTURE

15

Figure 4. Diagram of an air heat pump without a heat exchanger [10].

Based on the economic analysis of researchers, it is obvious that, despite the high investment costs for the installation of heat pumps, the cost of generating thermal energy is much lower compared to coal, natural gas and fuel oil [6]. The use of this technology saves about 70% of electricity for heating, which significantly affects the energy efficiency of the building. However, a barrier to the widespread use of heat pumps is undoubtedly a high investment cost and a long payback period.

To select the most optimal energy-saving solutions, it is necessary to begin work on the analysis and selection of solutions at the design stage of buildings. For example, due to the choice of planning solution, in which the optimal orientation of the building and the most acceptable form is achieved, in particular, for protection against wind, distribution of solar lighting, increase of heat-accumulating ability of enclosing exterior structures of the building and so on.

A competent approach to making construction decisions can be the following activities:

- energy audit, which is the calculation of the energy balances of the building;

- conducting thermal imaging analysis of building envelopes, as well as their reconstruction;

- installation of systems for keeping records of water consumption and thermal resources;

- installation of energy resource cost control systems;

- introduction of a system for regulating water consumption and heat consumption.

Thus, it becomes obvious that the most effective solution for energy saving of a multi-storey residential building is the use of integrated solutions. Complex solutions include both measures to improve the structural elements of the building, as well as the use of energy-efficient engineering systems.

Accordingly, it can be concluded that with the obvious long-overdue relevance and urgent need, the concept of energy-saving multi-storey construction is delayed and gradually finds recognition in Kazakhstan. The relative cheapness of energy in the country in the old days sometimes did not allow to feel the maximum positive effect from the use of modern energy-saving technologies, materials, as well as engineering and architectural solutions in high-rise construction.

Therefore, today the problems of forming multistorey residential construction, taking into account energy efficiency in construction and energy conservation in the operation of buildings and structures, become especially acute both within individual enterprises and branches of the economy, and to the scale of the whole country. Accordingly, there is no doubt that gradually the problem of introducing energy-saving technologies becomes a matter of national importance. Note that this issue is of particular importance in the field of high-rise residential construction.

At the level of the key task of the construction industry and at the level of government policy, the basic principle of energy conservation is to ensure the possibility, if necessary, to reduce the consumption of energy resources without causing damage to consumers and without causing environmental damage to the environment. It should be noted here that such a policy is carried out not only through the total saving of resources, but through a competent and safe use of resources.

In conclusion, it is worth noting that well-thought-out decisions on the design of energy-efficient multistorey residential buildings will ensure a comfortable life-support of the population and the rational consumption of energy resources. Moreover, a competent policy in the field of improving energy efficiency through the use of energy-saving technologies is becoming a prerequisite for achieving economic growth, improving the quality of life, and ensuring the country's environmental safety.

References

1. Балагура Н.Ю., Позмогова С.Б. Использование энергосберегающих технологий в строительстве // Вестник УлГТУ. 2011. №4 (56). С. 45-47.

2. Бадьин, Г. М. Строительство и реконструкция малоэтажного энергоэффективного дома. — СПб.: БХВ-Петербург, 2011. — 432 с.

3. Adam Turecki, Niewykorzystany potencjal przeszklen loggii balkonow // Wydawnictwo Politechniki Krakowskiej. 2011. №2. P. 205-211.

4. Куспангалиев, Б.У. Устойчивое развитие в типологии энергоэффективных зданий Казахстана // Знание. 2016. - Вып. 7-2 (36). С. 84-91

5. Simona Marinelli, Francesco Lolli, Rita Gam-berini, Bianca Rimini, Life Cycle Thinking (LCT) ap-

16

ARCHITECTURE / <<C©1L©qUlUM~J0URMAL>>#3(I27)),2(0]9

plied to residential heat pump systems: A critical review, // Energy and Buildings. 2019. Volume 185, P. 210-223.

6. Karmowski Z., Rynkowski P. Analiza techniczno-ekonomiczna wykorzystania pomp ciepla na przykladzie wybranego obiektu // Budownictwo i Inzynieria Srodowiska. 2010. №1, P. 45-49.

7. Edite Kamendere, Gatis Zogla, Agris Kamend-ers, Janis Ikaunieks, Claudio Rochas, Analysis of Mechanical Ventilation System with Heat Recovery in Renovated Apartment Buildings // Energy Procedia. 2015. Volume 72, P. 27-33.

8. Lai Dayi, Qi Yue, Liu Junjie, Xilei Dai, Wei, Shen. Ventilation behavior in residential buildings with

mechanical ventilation systems across different climate zones in China // Building and Environment. 2018. №143. P. 679-690.

9. Yi Zhao, Hejiang Sun, Daixin Tu, Effect of mechanical ventilation and natural ventilation on indoor climates in Urumqi residential buildings // Building and Environment. 2018. Volume 144, P. 108-118.

10. Bo Li, Peter Wild, Andrew Rowe, Performance of a heat recovery ventilator coupled with an air-to-air heat pump for residential suites in Canadian cities // Journal of Building Engineering. 2019. Volume 21, P. 343-354.

i Надоели баннеры? Вы всегда можете отключить рекламу.