UDC 618.531-053.2-08:615.211]-072 O.S. Pavlysh,
FEATURES OF NONINVASIVE CEREBRAL OXIMETRY AND CENTRAL HEMODYNAMICS IN YOUNG CHILDREN WITH HYDROCEPHALUS
https://doLorg/10.26641/2307-0404.202L3.242093
V.I. Snisar
Dnipro State Medical University V. Vernadsky str., 9, Dnipro, 49044, Ukraine Днтровський державний медичний утверситет вул. В. Вернадського, 9, Днтро, 49044, УкраХна е-mail: [email protected]
Цитування: Медичт перспективы. 2021. Т. 26, № 3. С. 119-125 Cited: Medicni perspektivi. 2021;26(3):119-125
Key words: hydrocephalus, children, cerebral oximetry, hemodynamics, anesthesia Ключовi слова: гiдроцефалiя, дiти, церебральна оксиметрiя, гемодинамжа, анестезiя Ключевые слова: гидроцефалия, дети, церебральная оксиметрия, гемодинамика, анестезия
Abstract. Features of noninvasive cerebral oximetry and central hemodynamics in young children with hydrocephalus. Pavlysh O.S., Snisar V.I. Hydrocephalus is one of the most common diseases of the nervous system in young children. Features of structural and morphological changes of the brain in children with hydrocephalus are the predominance of signs of periventricular ischemia of brain tissue due to cerebral circulatory disorders. Despite the existence of a large number of methods for assessing cerebral hemodynamics, in the modern literature there is only limited information about the oxygen status of the brain when using different types of anesthesia in children. The aim of the study was to assess the dynamics of noninvasive cerebral oximetry and central hemodynamics in young children with hydrocephalus during ventriculoperitoneal shunting. The research included 59 young children with acquired hydrocephalus who underwent ventriculoperitoneal shunting. 34 children underwent total intravenous anesthesia with propofol, 25 children - total inhalation anesthesia with sevoflurane. Intraoperative control of vital functions of the patient was performed: systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rate, regional saturation, carbon dioxide level on exhalation, sevoflurane concentration on inspiration and exhalation, non-invasive cerebral indicators. Children with acquired hydrocephalus had cerebral oximetry within normal regional level. The use of sevoflurane leads to increased cerebral oxygenation by inhibiting cerebral metabolic needs for oxygen and vasodilation of blood vessels with increased cerebral blood flow. Total intravenous anesthesia does not change the rate of intraoperative cerebral oxygenation, leads to hemodynamic changes in the form of decreased stroke volume, which may indicate that propofol reduces the level of oxygen consumption by the brain with decreased cerebral blood flow against the background of hemodynamic inhibition.
Резюме. Особливосп моказникш нешвазивноТ церебрально'1 оксиметрп та центрально'1 гемодимамши в д^ей раммього вжу з гiдроцефалieю. Павлиш О.С., Снкарь В.1. Гiдроцефалiя е одним з найбшьш поширених захворювань нервовоХ системи в дiтей раннього eixy. Особливостями структурно-морфологiчнiх змш головного мозку в дтей з гiдроцефалiею е переважання ознак перивентрикулярноХ шемп мозковоХ тканини за рахунок порушення мозкового кровообiгy. Незважаючи на iснyвання великоХ тлькостг методiв оцтки церебральноХ гемодинамки, у сучаснт лiтератyрi е лише обмежеш вiдомостi про показники кисневого статусу головного мозку пiд час використання рiзних видiв анестезп в дтей. Метою роботи була оцтка динамiки показниюв неiнвазивноi церебральноХ оксиметрп та центральноХ гемодинамжи в дтей раннього вк з гiдроцефалiею при проведены вентрикулоперитонеального шунтування. У до^дження було включено 59 дтей раннього вк з набутою формою гiдроцефалii, котрим проводилось вентрикулоперитонеальне шунтування. У 34 дтей була проведена тотальна внутршньовенна анестезiя пропофолом; у 25 дтей - тотальна тгаляцтна анестезiя севофлюраном. 1нтраоперацшно виконувався контроль життево важливих функцш пацiента: систолiчного артерiального тиску, дiастолiчного артерiального тиску, середнього артерiального тиску, частоти серцевих скорочень, регюнарно'Х сатурацп, рiвня вуглекислого газу на видиху, концентраци севофлюрану на вдиху й видиху, показники нетвазивно'Х церебральноХ оксиметрп. У дтей з набутою гiдро-цефалiею показники церебральноХ оксиметрп знаходяться на рiвнi реПонарно'Х норми. Використання севофлюрану призводить до пiдвищення церебральноХ оксигенацп за рахунок пригнiчення церебральних метаболiчних потреб у кисш та вазодилатацп судин з пiдвищенням мозкового кровотоку. Тотальна внутршньовенна анестезiя не змтюе показники ттраоперацшно'Х церебральноХ оксигенацп, призводить до гемодинамiчних змт у виглядi зменшення ударного об 'ему, що може свiдчити про те, що пропофол зменшуе рiвень споживання кисню головним мозком зi зниженням мозкового кровотоку на тлi пригтчення гемодинамти.
21/ Том XXVI/ 3
119
Hydrocephalus is one of the most common diseases of the nervous system in young children. It is found in 0.1-2.5% of newborns and 30-40% of children with perinatal lesions of the central nervous system [7]. Peculiarities of structural and morphological changes of the brain in children with hydrocephalus are the predominance of signs of periventricular ischemia of brain tissue due to cerebral circulatory disorders on the background of ventri-culomegaly [9]. That is why children with acquired hydrocephalus develop oxygen deficiency due to persistent vasospasm, which leads to a decrease in adenosine triphosphate (ATP) production during oxidative phosphorylation. One of the leading methods of surgical treatment is ventriculoperitoneal shunting, and the main goal during anesthesia is to maintain adequate perfusion pressure, as well as maintaining the optimal level of oxygenation of the brain [5].
Despite a large number of methods for assessing cerebral hemodynamics, in the modern literature there is a little information about the oxygen status of the brain while using different types of anesthesia [15]. First of all, the process of oxygen delivery to brain tissues is complex, multicomponent and depending on many indicators (systemic and regional hemodynamics, blood oxygen capacity, metabolic needs); secondly, currently available methods for estimating oxygen status parameters are either too huge to use in the operating room, or invasive, which made limits in their use for everyday practice.
Currently, the method of cerebral oximetry near-infrared reflectance spectroscopy (NIRS) is being actively implemented, the main advantages of which are informativeness, noninvasiveness and safety. In complex settings such as pediatric cardiac surgery, pediatric neurosurgery, pediatric and neonatal intensive care, NIRS is increasingly used to detect episodes of cerebral ischemia, both during surgery and in the postoperative period. Cerebral NIRS devices measure the average oxygen saturation of tissue (rSO2) and, also, reflect the saturation of hemoglobin with oxygen from venous, capillary and arterial blood. Based on multiple studies, most NIRS clinical devices suggest venous-arterial distribution in cortical tissue - 70/30% [14]. As a result, changes in rSO2 largely reflect changes in venous blood oxygen saturation.
Detection of low cerebral oxygenation during anesthesia in children, as well as related physiological factors such as hypotension and hypoxemia, could improve the safety of anesthesia, because these mechanisms may be the cause of neurological damage. However, currently there are insufficient clinical data on the critical levels of measurable variables that are necessary for the safe management of the perioperative period of patients inclined to cerebral ischemia [6].
The aim of the study was to assess the dynamics of noninvasive cerebral oximetry and central hemodynamics in young children with hydrocephalus when using total intravenous anesthesia with propofol and inhalation anesthesia with sevof-lurane during ventriculoperitoneal shunting.
MATERIALS AND METHODS OF RESEARCH
The research included 59 children aged 2.0±1.4 years with an acquired form of hydrocephalus, who underwent ventriculoperitoneal shunting on the basis of ME «Dnipropetrovsk Region Children's Clinical Hospital» Dnipropetrovsk Regional Council», Ukraine for 2018-2019. The physical status of the patients matched to the level of ASA-II [11]. Total intravenous anesthesia (TIVA) with mechanical lung ventilation (propofol + fentanyl + rocuronium) was performed in 34 children. The rest 25 children received inhalation anesthesia (IA) with sevoflurane (sevoflurane + fentanyl + rocuronium).
The research was conducted in accordance with the principles of bioethics set out in the WMA Declaration of Helsinki - "Ethical principles for medical research involving human subjects" and "Universal Declaration on Bioethics and Human Rights" (UNESCO).
Premedication consisted of intravenous atropine 0.01-0.015 mg/kg and dexamethasone 0.15 mg/kg. Propofol in our study was used in a standard dose (induction of 3-5 mg/kg, maintenance of anesthesia by infusion of 8-12 mg/kg/h) [4]. Inhalation anesthesia with sevoflurane was performed according to the method of low flow anesthesia [10]. Induction began with a concentration of 1.5 minimum alveolar concentrations (MAC) followed by a transition to a low flow of oxygen-air mixture of 1.0 l/min (FiO2-40-50%) and an anesthetic content of 0.6-0.8 MAC. In both groups, mechanical lung ventilation was performed in the mode of normoventilation, with the support of End-tidal CO2 in the range of 34-38 mm Hg. Depth of anesthesia was monitored by bispectral index (BIS, Aspect Medical Systems, USA). During intraoperative period the monitor UM-300 (UTAS, Ukraine) was using for performing control of vital functions of the patient: systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), regional saturation (SpO2) and End-tidal CO2 (EtCO2), concentrations of sevoflurane on inhalation and exhalation (FiSev, EtSev) [13]. Noninvasive cerebral oximetry parameters (rSO2) were measured with the NONIN X-100M (Nonin Medical, Inc. USA). Indicators of stroke volume (SV), cardiac output (CO), systemic vascular resistance (SVR) were determined by the calculation methods [2]. The study included 5 stages: initial (1), induction (2), tracheal intubation (3), traumatic stage of surgery (4), awakening (5).
The values obtained in the control group were used as a starting point for comparison, as physiologically normal values. The statistical processing of the received data was conducted with STATISTICA® 10.0 (StatSoft Inc., license no. STA999K347156-W). For a distribution other than normal, the nonparametric Mann-Whitney test was used. Spearman's rank correlation coefficient was calculated to identify relationships between quantitative variables. The analysis of the dynamics of quantitative indicators was performed on the basis of nonparametric Wil-coxon signed-rank test. To take p<0.05 as the confidence level of the statistical indicators [1].
RESULTS AND DISCUSSION
In children with acquired hydrocephalus, the analysis of cerebral oximetry at baseline showed rSO2 values averaging 75.5±1.8%. In both groups, and in comparison with the control group, no significant differences in the initial values were observed. The lack of difference with the control group of the initial rSO2 data can be explained by the fact that prolonged hypoperfusion of the cerebral substance caused by vascular spasm, combined with compression of the distended ventricles of the brain leads to disruption of membrane oxygen transport and venous outflow from the brain. This is confirmed by the fact that in the brain of children with hydrocephalus the level of glucose metabolism increases due to increased anaerobic glycolysis, regardless of the level of cerebral blood flow [8].
In its turn, the analysis of the primary condition of the cardiovascular system and in comparison with the control group, in children with acquired hydrocephalus revealed a significant increase in SV, CO by 18.5% and 28.2%, accordingly, and decrease of SVR by 25.1% (Table 1), which was regarded as a hyperkinetic variation of hemodynamics. On the one
hand, this can be explained by the compensatory mechanism of the physiological decrease in SVR in response to increased output of blood discharge. Another explanation for this is that it remains unclear which of the components of CO is most important for maintaining cerebral perfusion pressure (CPP). It is possible that the stroke volume is most important for cerebral blood flow. This assumption is based on the model "Windkessel" [3], when at sufficient systemic pressure in systole, the capacitive vessels are filled with blood, while the vessel wall expands. In this case, the energy needed to maintain cerebral blood pressure in diastole accumulates. Based on this model, this change in the relationship of hemodynamic parameters can be explained as follows: in conditions of moderate intracranial hypertension, when autoregulation of cerebral blood flow is intense and centralization of blood circulation is not effective, increased cardiac output supports the systolic component of CPP.
After analyzing the dynamics of cerebral oxygenation a significant increase by 15.9% (p<0.05) in the IA group on the second stage in comparison with the initial level (Table 2) was noted. This is explained that all inhaled anesthetics cause cerebral vasodilation (direct effect) by acting directly on the smooth muscle cells of the vessels of the brain, which leads to a decrease in cerebrovascular resistance and acceleration of cerebral blood flow. However, their indirect inhibition of cerebral metabolism leads to a decrease in cerebral blood flow (indirect effect). The disproportionate decrease in cerebral blood flow with a decrease in oxygen consumption by the brain is explained by the fact that the direct effect of vasodilation when using sevoflurane, partially counteracts the decrease in cerebral blood flow with a decrease in cerebral metabolism [12].
Table 1
Initial hemodynamic parameters in children with hydrocephalus(M±m)
Parameters Group TIVA (n=34) Group IA (n=25) Control (n=20)
HR (b/min) 121.9±16.4 127.3±19.2 114.00±20.08
SBP (mm Hg) 92.8±6.6 92.2±9.8 96.00±7.8
DBP (mm Hg) 57.1±4.9 57.0±7.08 62.90±6.2
MAP (mm Hg) 69.0±5.0 68.7±7.5 74.50±14.1
SV (ml) 31.11±5.48* 28.2±4.85* 25.21±2.4
CO (l/min) 3.76±0.65* 3.57±0.71* 2.87±0.98
SVR (D/s/sm-5) 1513.59±277.89* 1613.22±416.15* 2076.65±593.87
Note. * p<0.05 compared with the control group.
21/ Том XXVI/ 3
121
High levels of rSO2 remain in all subsequent stages (Table 2), this shows that sevoflurane, even at a concentration of 0.6-0.8 MAC, causes significant inhibition of cerebral metabolic needs for O2 and maintains high cerebral blood flow, in contrast to the TIVA group, where we recorded the stability of intraoperative rSO2. Under physiological conditions,
to maintain a constant level of O2, the body can either increase oxygen extraction by tissues and/or increase cardiac output. In the case of is decreased oxygen consumption, its extraction by tissues is proportionally reduced, which should also be reflected in an increase of rSO2 indices.
Table 2
Parameters of cerebral oximetry in children with hydrocephalus(M±m)
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Group TIVA
rSO2(%) 75.2±1.8 75.8±1.4* 77.6±1.5* 78.0±1.2* 77.6±2.0*
Group IA
rSO2(%) 75.9±1.7 88.0±4.6*# 87.8±4.1*# 84.9±4.0*# 80.7±3.8*#
Note: * p<0.05 comparing between groups; # p<0.05 compared to the initial stage.
The vasodilatory effect of sevoflurane in small concentrations is characterized by a significant dose dependence and regional features of the vascular bed, while deep anesthesia causes a sharp generalized dilatation of arterioles and venules. The most pronounced hemodynamic effect of halogen-containing anesthetics is a decrease in blood pressure. Meanwhile, in the IA group, starting from the 2nd stage, there is a slow drop in blood pressure. The dynamics of blood pressure indicates that at stage 4
SBP was less by 3.6% (p<0.05), DBP - by 5.9% (p<0.05) and MAP - by 4.9% (p<0.05) from baseline.
This was indeed due to a decrease by 13.7% of the SVR from the initial value (p<0.05) at the stage 4. Against the background of a decrease in SVR and an increase in heart rate, there was an increase in SV (Fig. 1) and CO (by 7.1% and 10%, respectively), which remained elevated at all stages of anesthesia with sevoflurane (p<0.05).
54)
45
AO
® 35
M
25
20
15
Stag es uf the study
- Median □ 25«-75№ X Min-Max
Fig. 1. Dynamics SV(ml.) in the group IA
At the same time, it is known that propofol also lowers blood pressure. The dominant effect of propofol is considered to be a decrease in peripheral vascular resistance, leadsing to the deposition of blood, which is realized through endothelial nitric oxide and a deficiency of sympathetic efferent flow
The CO initially increased at the second stage (although not significantly) by 0.8% from the initial level, due to the chronotropic component. In dynamics, the maximum decrease by 5.4% and 6.6% of the initial level of CO was observed in the fourth and fifth stages of the study (p<0.05). A significant increase in the dynamics of SVR by 4.4% and 7.0% at these stages indicated that in children with hydro-cephalus, on the background of anesthesia with pro-pofol, maintenance of CO is due to increased afterload.
CONCLUSIONS
1. In children with acquired hydrocephalus, against the background of hyperkinetic variant of central hemodynamics and hypoperfusion of the cerebral substance, cerebral oximetry is within normal limits.
2. The use of sevoflurane leads to low arterial pressure by reducing systemic vascular resistance, increasing cardiac output, and a significant increase in cerebral oxygenation by suppressing cerebral metabolic needs for O2 and vasodilation of blood
from the CNS. Dilatation of peripheral vessels leads to a decrease in venous return and a decrease in cardiac output. In the TIVA group up to stage 5 there is a decrease in SV (Fig. 2) by 5.9% from baseline (p<0.05) with minor changes in SBP and MAP.
vessels with increased cerebral blood flow. The vasodilatory effect of sevoflurane is maintained at all stages of anesthesia.
3. Total intravenous anesthesia with propofol leads to hemodynamic changes in the form of a decrease in stroke volume (due to venous dilatation), which can be compensated by an increase in systemic vascular resistance, in order to maintain cardiac output.
4. Unlike sevoflurane, the use of propofol maintains the stability of intraoperative rSO2, which may indicate that propofol reduces oxygen consumption by the brain with a decrease in cerebral blood flow against the background of hemodynamic inhibition, which depletes compensatory mechanisms and further reduces cardiac output can cause potentially dangerous disturbances of cerebral hemodynamics and damage of brain substance due to ischemia.
Conflict of interests. The authors declare no conflict of interest.
Fig. 2. Dynamics of SV (ml.) in the TIVA group
REFERENCES
1. Antomonov M. [Mathematical processing and ana- 2. Zabolotskikh IB., inventor. [Method for determining lysis of biomedical data]. 2nd ed. Kyiv: MIC «Medinform»; the stroke volume of the heart pat. 2186520 Russian 2018. p. 579. ISBN 978-966-409-202-6. Russian.
21/ TOM XXVI/ 3
123
Federation: IPC A61B5/029. No. 2000130456/14: Appl. 12/04/2000]. publ. 10.08.2002, Bul. No. 22. Russian.
3. Bahloul: Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;5018-23. doi: https://doi.org/10.1109/EMBC.2019.8857722
4. Baxter A , McCormack JG. Total intravenous anesthesia in neonates. Paediatr Anaesth. 2019;29(11):1081-2. doi: https://doi.org /10.1111/pan.13745.
5. Limbrick DJr, Baird LC, Klimo PJr, Riva-Cam-brin J, Flannery AM. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr. 2014;14(1):30-4. doi: https://doi.org/10.3171/2014.7.PEDS14324
6. Drummond JC. Blood Pressure and the Brain: How Low Can You Go? Anesth Analg. 2019;128(4):759-71. doi: https://doi.org/10.1213/ANE.0000000000004034
7. Dewan MC, Rattani A, Mekary R, Glancz LG, Yunusa I, Baticulon RE, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg. 2018;1:1-15.
doi: https://doi.org/10.3171/2017.10.JNS17439
8. Chen S, Luo J, Reis C, et al. Hydrocephalus after Subarachnoid Hemorrhage: Pathophysiology, Diagnosis, and Treatment. Biomed Res Int. 2017;2017:8584753. doi: https://doi.org/10.1155/2017/8584753
9. Yeom KW, Lober RM, Alexander A, Cheshier SH, Edwards MS. Hydrocephalus decreases arterial spin-la-
beled cerebral perfusion. AJNR Am J Neuroradiol. 2014;35(7):1433-9.
doi: https://doi.org/10.3174/ajnr.A3891
10. Kennedy RR, Hendrickx JF, Feldman JM. There are no dragons: Low-flow anaesthesia with sevoflurane is safe. Anaesth Intensive Care. 2019;47(3):223-5. doi: https://doi.org/10.1177/0310057X19843304
11. Mayhew D, Mendonca V, Murthy BV. A review of ASA physical status - historical perspectives and modern developments. Anaesthesia. 2019;74(3):373-9. doi: https://doi.org/10.1111/anae.14569
12. Palanca BA, Avidan MS, Mashour GA. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth. 2017;119(4):573-582.
doi: https://doi.org/10.1093/bja/aex244
13. Checketts MR, Alladi R, Ferguson K, Gem-mell L, Handy JM, Klein AA, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2016;71(1):85-93.
doi: https://doi.org/10.1111/anae.13316
14. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20(3):164-72.
doi: https://doi.org/10.1016/j.siny.2015.03.008
15. Williams M, Lee JK. Intraoperative blood pressure and perfusion of the brain: strategies for clarifying hemodynamic goals. Paediatr Anaesth. 2014;24(7):657-67. doi: https://doi.org/10.1111/pan.12401
СПИСОК Л1ТЕРАТУРИ
1. Антомонов М. Ю. Математическая обработка и анализ медико-биологических данных. 2-е изд. Киев: МИЦ «Мединформ». 2018. 579 с.
2. Способ определения ударного объема сердца: пат. 2186520 Российская Федерация: МПК A61B5/029. № 2000130456/14: заявл. 04.12.2000; опубл. 10.08.2002, Бюл. № 22.
3. Bahloul M. A., Kirati T. L. Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance / Annu Int Conf IEEE Eng Med Biol Soc. 2019. Jul. P. 5018-5023.
DOI: https://doi.org/10.1109/EMBC.2019.8857722.
4. Baxter A., McCormack J. G. Total intravenous anesthesia in neonates. Paediatr Anaesth. 2019. Vol. 29, No. 11. P. 1081-1082.
DOI: https://doi.org /10.1111/pan.13745.
5. Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children / D. D. Limbrick Jr et al. J Neurosurg Pediatr. 2014. Vol. 14, No. 1. P. 30-34.
DOI: https://doi.org/10.3171/2014.7.PEDS14324.
6. Drummond J. C. Blood Pressure and the Brain: How Low Can You Go? Anesth Analg. 2019. Vol. 128, No. 4. P. 759-771.
DOI: https://doi.org/10.1213/ANE.0000000000004034
7. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis /
M. C. Dewan et al. J Neurosurg. 2018. No. 1. P. 1-15. DOI: https://doi.org/10.3171/2017.10.JNS17439
8. Hydrocephalus after Subarachnoid Hemorrhage: Pathophysiology, Diagnosis, and Treatment / S. Chen et al. Biomed Res Int. 2017. P. 8584753. DOI: https://doi.org/10.1155/2017/8584753
9. Hydrocephalus decreases arterial spin-labeled cerebral perfusion / K. W. Yeom et al. AJNR Am J Neuroradiol. 2014. Vol. 35, No. 7. P. 1433-149.
DOI: https://doi.org/10.3174/ajnr.A3891
10. Kennedy R. R., Hendrickx J. F., Feldman J. M. There are no dragons: Low-flow anaesthesia with sevoflurane is safe. Anaesth Intensive Care. 2019. Vol. 47, No. 3. P. 223-225.
DOI: https://doi.org/10.1177/0310057X19843304
11. Mayhew D., Mendonca V., Murthy B. V. A review of ASA physical status - historical perspectives and modern developments. Anaesthesia. 2019. Vol. 74, No. 3. P. 373-379. DOI: https://doi.org/10.1111/anae.14569
12. Palanca B. A., Avidan M. S., Mashour G. A. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth. 2017. Vol. 119, No. 4. P. 573582. DOI: https://doi.org/10.1093/bja/aex244
13. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland / M. R. Checketts
et al. Anaesthesia. 2016. Vol. 71, No. 1. P. 85-93. DOI: https://doi.org/10.1111/anae.13316
14. Sood B. G., McLaughlin K., Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015. Vol. 20, No. 3. P. 164-72. DOI: https://doi.org/10.1016/j.siny.2015.03.008
15. Williams M. M., Lee J. K. Intraoperative blood pressure and perfusion of the brain: strategies for clarifying hemodynamic goals. Paediatr Anaesth. 2014. Vol. 24, No. 7. P. 657-67. DOI: https://doi.org/10.1111/pan.12401
CraTTa Hagmm^a go pegaKmi' 29.01.2021
♦
УДК 616.433-008.6-007.213-053.2-058.6:364.63 https://doi.Org/10.26641/2307-0404.2021.3.242113
М.Л. Аряее, ДОМАШНС I ШК1ЛЬНЕ НАСИЛЬСТВО
Ж1 Сеньшвська ЩОДО НИЗЬКОРОСЛИХ Д1ТЕЙ
З ДЕФ1ЦИТОМ ГОРМОНА РОСТУ
Одеський нацгональний медичний унгверситет Валиховский пров., 2, Одесса, 65026, Украина Odessa National Medical University Valikhovskiy lane, 2, Odessa, 65082, Ukraine e-mail: [email protected]
Цитування: Медичт перспективы. 2021. Т. 26, № 3. С. 125-131 Cited: Medicni perspektivi. 2021;26(3):125-131
Ключовi слова: дефщит гормону росту, занедбатсть, фiзичне насильство, психологiчне насильство, шюльний бултг
Ключевые слова: дефицит гормона роста, запущенность, физическое насилие, психологическое насилие, школьный буллинг
Key words: growth hormone deficiency, neglect, psychological abuse, physical violence, school bullying
Реферат. Домашнее и школьное насилие по отношению к низкорослым детям с дефицитом гормона роста. Аряев Н.Л., Сеньковская Л.И. Работа посвящена оценке частоты семейного (запущенность, агрессивные методы наказания) и школьного (буллинг) насилия среди низкорослых детей с дефицитом гормона роста (ДГР) в сравнении с детьми с нормальным ростом. В основной группе находились 94 ребенка с ДГР в возрасте 7,2±0,4 года. В контрольную группу были включены 310 здоровых детей в возрасте 7,1±0,3 года. Признаки насилия в семье (запущенность, агрессивные методы наказания) и школе (школьный буллинг) выявлялись методом анкетирования детей и родителей. Школьный буллинг оценивался с помощью анкеты The Olweus Bully/Victim Questionnaire, адаптированной на украинском и русском языках. Для проверки статистических гипотез о различиях относительных частот в двух независимых выборках использовали критерий хи-квадрат (/2). Не были обнаружены различия в частоте запущенности (neglect) в основной группе (8,5% ) по сравнению с контрольной (9,5%), р>0,05. Установлена одинаковая частота применения неагрессивных методов воспитания без физических и психологических наказаний как в основной (31,9%), так и в контрольной группах (39,6%; р=0,25). Не выявлена повышенная физическая агрессивность по отношению к детям с ДГР: частота физических наказаний составляла 29,8% и не отличалась от контрольной группы - 35,3% (р=0,4). В основной группе чаще применялись психологические методы наказания (38,3%) по сравнению с контрольной группой (25,1%; р=0,04). Школьный
21/ Том XXVI/ 3
125