5.Запропоновані варіанти класифікації внутрішньопазушних утворень сигмоподібних пазух: за функціональними можливостями; за локалізацією; за наявністю в будові стінки гладком’язових клітин.
1. Журавлёва Ю.П. Достижения и перспективы в изучении твёрдой оболочки головного мозга человека//Перспективи медицини та біології, Т. І, №1-2009. - С. 31-37.
2. Журавлёва Ю.П., Вовк О.Ю. Гистотопографические и биомеханические особенности твердой оболочки головного мезга человека.//Світ медицини та біології,№3 - 2009. - С. 45-48.
3. Журавльова Ю.П. Біомеханічні властивості твердої оболонки головного мозку.//Клінічна анатомія та оперативна хірургія, Т. 8, №4 - 2009.- С. 58-61.
4. Клосовский Б.Н. Циркуляция крови в мозгу. - Москва: Медгиз, 1951.- С. 34-49.
5. Куликов В.В. Функциональная морфология твердой оболочки головного мозга: дис. д-ра. мед. наук; Российский государственный медицинский університет. - М., 1995. - С. 59.
6. Кульбаба П.В. Мінливість випускних каналів черепа людини/ Тези доп. Всеукраїнської наук. конф. «Акт. пит. клін. анат. та опер. хірургії» // Клінічна анатомія та оперативна хірургія. - 2004. - Т. 3. №3. - С. 50.
7. Сресели М.А., Большаков О.П. Клинико-физиологические аспекты морфологии синусов твердой мозговой оболочки.-Ленинград: Медицина, 1976.- С. 176.
8. Хилько Ю.К. Розвиток, становлення та відмінності в будові стінок пазух твердої оболонки головного мозку людини в онтогенезі : Автореф. дис. д-ра мед. наук: 14.03.01/ Ю.К. Хилько; МОЗ України. Харк. держ. мед. ун-т. -Х., 2003.- С. 32.
ОСОБЕННОСТИ СТРОЕНИЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ СИГМОВИДНОГО СИНУСА ТВЕРДОЙ ОБОЛОЧКИ ГОЛОВНОГО
МОЗГА Черно В.С.
В статье приведены результаты макро-микроскопического исследования люменальной поверхности сигмовидного синуса твердой оболочки головного мозга человека. Указаны основные принципы и закономерности распределения внутрисинусных образований в просвете синуса. Указаны собственные варианты классификации внутрисинусных образований.
Ключевые слова: твердая оболочка головного мозга, синусы, внутренняя поверхность сигмовидного синуса, внутрисинусные образования.
Стаття надійшла: 10.05.2012 р.
PECULIARITIES OF THE STRUCTURE OF THE INTERNAL SURFACE OF THE SIGMOID SINUS SOLID SHELL OF THE BRAIN Cherno V.S.
The article presents the results of the macro-microscopic research of luminal surface of the sigmoid sinus solid shell of the human brain. Contains the basic principles and laws of distribution of inner formations of the sinus in the lumen of the sinus. Specify their own versions of the classification inner formations of the sinus.
Key words: hard shell of the brain, sinuses, the inner surface of the sigmoid sinus, inner formations of the sinus.
UDC 611.12.131 : 611.12.132
K. I. Dyagovets
Sf «Medical academia of Dnepropetrovsk of MPH from Ukraine», Dnipropetrovsk
FEATURES OF HISTOGENETIC RESTRUCTURING OF MYOCARDIAL CUFF OF TRUNCUS AND MYOCARDIUM OF CONUS UNDER THE MYOCARDIALIZATION OF STRUCTURAL COMPONENTS OF THE CONOTRUNCUS FROM THE EMBRYONAL MOUSE HEART
This work presents quantitative and qualitative characteristics of reconstruction of myocardium components of conotruncus in smooth muscle cells of tunica media of great vessels. Mouse embryos line C57BL / 6, from 10th to 13th days of development, was used as a material. We used the complex of histological, histochemical, immunohistochemical (choosing antibodies to aSMA and Ki 67) and morphometric methods. Due to comparing features of the histogenetic restructuring of trabecular and compact myocardium between the conus and right ventricle the delay of trabeculation of the conus region of embryo heart was determined. During this research we estimated stages of myocardio - and arteriolization of the conotruncus in qualitative and temporal sides.
Key words: conus, truncus, myocardialization, arterialisation, myocardial cuff.
Researches condacted within the confines of were the SRW «Structural remodeling of the cardiovascular system under the normal and abnormal histogenesis in human and experimental animals» (number of state signup 0111U006621).
In the adult heart outlet septum and tunica media of intrapericardial part of great vessels primarily consist of muscles. At first, mesenchyme of the conotruncus (CT) septum is replaced by myocardium. This process, which is called “myocardialization”, was initially recognized by Okamoto et al in 1978 [1] and was rediscovered in the late 1990s [2, 3, 4]. Then a new stage began, which is called “arterialisation” and is associated with concept of transformation, transdifferentiation of myocardial cells in the wall of the arterial.
There are several views of generation’s mechanisms of myocardia- and arterialization stages. Most of them are thoughts about the role of the connexin 43 (Cx43) gap junction gene, which expresses in the working myocardium and about the critical importance of neural crest cells, which are required for normal coronary patterning by regulating the organization and development of the tunica media of great arteries today [3]. Nowadays researches’ perturbations of Cx43
expression show result in myocardialization disorders in the CT region and may be the same cause of tissue hyperplasia in this region [5].
The others scientists’ views, based on their respective concepts of the remodeling of the arterial trunks, have been proposed to explain the origin of the smooth muscle of the tunica media of the arterial trunks. Some of them discuss the role of epicardial derivate cells population, which is a part of the endocardial components of the CT [6]. According to this view some epicardial derivate cells transit to a mesenchyme phenotype, migrate into the subjacent myocardium, and differentiate into smooth muscle cells and endothelial cells of the future great arteries’ wall [7]. There are thoughts, that cardiac muscle wall of the truncus is transformed into connective tissue and smooth muscle. On the other hand, some deny this transforming and changing from a myocardial to an arterial phenotype (arterialization). They claim that this cell only retreat from primary myocardial phenotype. According to the results of the researches by [8, 9] it was suggested that the smooth muscles in the tunica media of the aorta and pulmonary trunk appear to take origin from the neural crest cells.
The aim of the work was to compare features of the histogenetic restructuring of TM and CM between the conus and right ventricle; estimate stages of myocardio- and arteriolization of the CT in qualitative and temporal sides.
Materials and methods. There were used 215 embryo mice (C57BL/6) hearts obtained by PP “Biomodelservice”, Kiev and the prenatal period lasted from 10-th to 13-th embryonic days (ED) or 16-22 stages by K. Theiler [10]. We used the complex of histological, histochemical, immunohistochemical and morphometric methods [11]. There were created 3-demenshional models of myocardial cuff and some lands from trabecular and compact myocardium of the conus and right ventricle. We carried out biometrical and statistical analysis [12].
Antibodies to aSMA and Ki 67 were chosen to detect the population of smooth muscle cells and to define the degree of proliferative activity from the cells of myocardial cuff. Immunohistochemistry reaction was conducted using visualization system LSAB (Labeled Streptavidin Biotin) (Lab Vision). This research conducted and interpreted on the base of Diagnostic center of Dnepropetrovsk under the supervision of professor, d. med. s. I. S. Shponka.
Results and discussion. The truncus wall is always encircled by the myocardial cells from the onset of their development [13]. This wall is called as myocardial cuff or sleeve [14].
The thickness of the compact myocardium (CM) of conus was veraciously larger than the same myocardial cuff’s index on 34,2% and less than the same right ventricle on 42,0% at 10 ED (fig. 1). Herewith the thickness of trabecular myocardium (TM) of the right ventricle was larger on 60,1% than the thickness of TM of the conus (fig. 2). By the way this index authentically increased by 68,4% in comparison with the same index of the last term at 10,5 ED. Cardyomyoblast’s axis was oriented obliquely longitudinally about heart’s axis and it had dorsoventral direction of growth. Proliferation’s index of myocytes of myocardial cuff increased by 24,0% at this term (p<0,05) (fig. 3; 4 E). The thickness of the myocardial cuff veraciously grew up 2, 3 times and of the CM from conus authentically increased by 32,1% in contrast to the same indexes of the previous term (fig. 1). Significations of tradeculate of the conus and right ventricle increased by 73,2% and 76,3% respectively (p<0,05). At 11 ED TM from the conus veraciously thickened by 34, 8%. It was four times less, than the thickness of right ventricle’s TM (p<0,05) (fig. 2).
60 -50 -40 -|30 20 -10 -
□ conus
□ right ventricle
a
ii
**
d I
rffi
rrfl
їй
і
10
10,5
11 11,5 12
Embyonal day (ED)
12,5
13
450 -400 -350 -300 -£250 -£200 -150 -100 -50 0
□ oonus
□ right ventricle
fl
і
гї
і
10 10,5 11 11,5 12
Embryonal day (ED)
12,5
13
Figure 1. Dynamics indexes of compact myocardium from the
conus and right ventricle. Note: * - significant difference from the
previous stage, p<0,05.
Figure 2. Dynamics indexes of trabecular myocardium from the
conus and right ventricle. Note: * - significant difference from the
previous stage, p<0,05.
Figure 3. Dynamics indexes of proliferation of myocytes from structural components of the conotruncus. Note: * - significant difference from the previous stage, p<0,05.
*
*
=
*
*
0
Figure 4. Histologycal slices of mouse embryo heart on 10, 5 ED (C, E); 11 ED (F); 12 ED (A, D); 12, 5 ED (B). Immunohistochemical reaction on aSMA (A-D) and Ki-67 (E), to staining by the Maer’s hematoxilin. F - A, D are saggital slices of the embryo heart; B, C - frontal slices; E - horizontal slice. A - enlarged detail on D. A, B, C, E increase x 400; D - x 100. Color highlighters on A, B indicate myocardia-and arterialization’s stages. Green highlighter - myocardial cuff’s stage (in truncus) or trabecular’s stage (in conus); red one -subendocardial’s stage; blue one - septation’s step; wight one - subendotelial; rose one - subendocardial stage. 1 - pulmonary trank; 2 - aorta; 3 - right truncus swelling; 4 - left truncus swelling; 5 - dorsal conus ridge; 6 - ventral conus ridge. Therectangle in F indicates the myoid complex under the myocardial cuff’s space.
Myocardial thickening between these two layers of the myocardium began to form. The limit under the ventral ridge of conus was accumulated. The CM rarefy in the top part of the ridge ended at the bottom of the CT transition. CT population of condensed mesenchyme began to form the septation complex. There were visualization myoid cells. They entered this complex and grew in number at the craniocaudal direction. This type of cells had the characteristic linear clusters beside the myocardium (fig. 4 F). TM of the right ventricle increased by 20,2% (p<0,05) at 12 ED. Herewith the thickness of TM of the conus did not have veraciously index of growth in contrast to the same indexes on the previous term (fig. 2). There came out myoid spindle as cells in the tunica media of newform great vessels (fig. 4 A, D). The thickness of TM from the right ventricle was larger by 40,8% in contrast to the previous term, whereas the thickness of CM - by 13,7% (p<0,05) at 12,5 ED. So, when we compared our figures with other researcher [14], it was regarding to comparative growth dynamics of the thickness of layers from the CT myocardium (fig. 1). There was set, that the trabeculation of the conus was doubled slower in contrast to the same index of right ventricle. However, we rejected figures [15] about the appropriate slow compaction by the conus myocardium. Although, the index of thickness CM of the conus was less than half the same index of right ventricle (p<0,05) to CT rotation changes (at 11 ED) (fig. 1). Based on results of the immunohistochemistry reaction of the expression from the proliferation’s marker (Ki-67) by myocardial cuffs myocytes it was concluded about physiological delay in the proliferation of myocardial cuff’s cells. In addition to veraciously changes of proliferation’s of myocytes of myocardial cuff correlates with the thickness of myocardial cuff and with the length of CT (tabl. 1).
Table 1
Matrix of the correlation’s connectives under the myocardial cuff’s research
Pairs of the correlation’s connectives Coefficient of the correlation’s, r^, Probability correlation’s connective, p
Index of proliferation’s of myocytes from 0,552 <0,001
myocardial cuff - thickness of myocardial cuff.
Index of proliferation’s of myocytes from
myocardial cuff - length of conotruncus. 0,43 <0,001
K. Waldo et al. [8, 9] claim that the length of CT is reduced by the mechanisms of CM mesenchyme transformation. There are researches [13], which consider conditions by the contraction under the influence of mechanical pressure.
Under visualization the population of smooth muscle cells from CT we concluded, that this immunohistochemistry reaction is not specific. We saw the same reaction from embryonic myocardium. According to results of the research by J. Ya et al. [4] smooth muscle proteins may contribute to the slow shortening speed that is a characteristic of the embryonic myocardium. So, the expression of aSMA and calponin in embryonic cardiomyocytes increases to reach its highest level at ED14 [16, 17]. On the assumption of analysis of the results by the visualization population of smooth muscle cells from CT we identified myocardia- and arterialization’s stages. So, there were allocated 2 stages in myocardialization of truncus swelling, next 2 stages in arterialization of new formed aorta and pulmonary trunk and 2 stages in myocardialization of conus ridges by the localization of indicated cells. All of them began at half of the embryonic day. The myocardyalization of endocardial structures of truncus started at 10,5 ED from myocardial cuffs stage (fig. 4 C). After then it was replaced on subendocardial’s stage, which started at 11 ED respectively. aSMA-possitive cells were observed in subendocardial space. They became wider and this cells began comprise to aorticopulmonary septation complex. Septation’s stage of arterialization started there, which continued to 12 ED (fig. 4 A, D). After subendotelial’s stage began at the distal part of the truncus. There were complexes from arerialization under the newformed endotelial’s layer of aorta and pulmonary trunk. The myocardyalization of conus ridges started at 11,5 ED, when observed myoid complexes over TM of future outlet structures from both ventricles (fig. 4 B). This stage was replaced by the subendocardial at 13,5 ED. So we identified the differences between the myocardialization of endocardial structures of truncus and conus during our study.
1. Until 10-th to 13-th embryonal days thickness of trabecular myocardium of conus region is significantly less than the same index of the right ventricle. It indicates on the delay of trabeculation of the conus region of embryo heart. The thickness of compact myocardium of the conus region of the heart concede the same index of the right ventricle up to 42,8% (p<0,05) to rotation’s changes of CT region.
2. Myocardialization of truncus swelling begins from the appearance of myoid cells and their quantitate growth at craniocaudal direction. There is allocating sequence of myocardialization’s stages, which begins at half of the day. As of 10,5 ED myocardial cuff’s stage starts. Then begins a subendocardial’s stage (at 11 ED). Next stage of arterialization is septation’s step. It is passing during 11 ED. Followed by this step the last stage of this process begins - subendotelial. Myocardialization of conus ridges has two steps. At first trabecular stage begins at 11,5 ED. Then it continues at subendocardial stage, which is passing from 13,5 ED to 15 ED. Significant decrease of proliferation’s index of myocardial cuff’s myocytes according to the index of right ventricle’s myocardium is determined. Proliferation’s index of myocardial cuff’s myocytes reaches a maximum value 51,2±2,9% at 11,5 ED. It was 41,5% less than the same index by the right ventricle.
Prospects for further research: To detail study the role of neural crest cells on myocardia- and arterialization’s mechanisms towards formation of great vessels.
1. Morphogenesis of congenital heart anomaly - Bulbo-ventricular malformations / N. Okamoto, Y. Satow, N. Hidaka [et al.] // Jap. Cir. - 1978. - Vol. 42. - P. 1105-1120.
2. Gap junction-mediated cell-cell communication modulates mouse neural crest migration / G. Y. Huang, E. S. Cooper, K. Waldo [et al] // J. Cell. Biol. - 1998. - Vol. 143. - P. 1725-1734.
3. Sullivan R. Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cell / R. Sullivan, C. W. Lo // J. Cell. Biol. - 1995. - Vol. 130. - P. 419-429.
4. Normal development of the outflow tract in the rat / J. Ya, J. B. Maurice, M. J. B. van den Hoff [et al.]. // Cir. Res. - 1998. - Vol. 82. - P. 4б4-472.
5. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells / X. Xu, R. Francis, C. J. Wei [et al.] // Development. - 200б. - Vol. 133. - P. 3б29-3б39.
6. Coronary smooth muscle differentiation from proepicardial cells requires RhoA-mediated actin reorganization and p160 Rho-kinase activity / J. Lu, T. E. Landerholm , J. S. Wei [et al.] // Dev. Biol. - 2001. - Vol. 240. - P. 404-418.
7. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart / B. Zhou, Q. Ma , S. Rajagopal [et al.] // Nature. - 2008. -Vol. 454. - P. 109-113.
8. Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field / K. L. Waldo, M. R. Huston, H. A. Stadt [et al.] // Dev. Biol. - 2005a. - Vol. 281. - P. 66-77.
9. Secondary heart field contributes myocardium and smooth muscle to the anterior pole of the developing heart / K. L. Waldo, M. R. Huston, C. C. Ward [et al.] // Dev. Biol. - 2005b. - Vol. 281. - P. 78-90.
10. Theiler K. The House Mouse: Atlas of Mouse Development / K. Theiler. - New York: Springer-Verlag, 1989. - 185 p.
11. Автандилов Г. Г. Медицинская морфометрия. Руководство / Г. Г. Автандилов. - М. : Медицина, 1990. - 384 с.
12. Лакин Г. Ф. Биометрия: Учеб. пособие для биол. спец. вузов. - 4-е изд., переработанное и дополненное / Г. Ф. Лакин - М. : Высшая школа, 1990. - 352 с.
13. Lamers W. H. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis / W. H. Lamers, A. F. M. Moorman // Circ. Res. - 2002. - Vol. 91. - P. 93-103.
14. Building the mammalian heart from two sources of myocardial cells / M. E. Buckingham, S. M. Meilhac, S. Zaffran // Nat. Rev. Genet. - 2005. - Vol.
6. - P. 826-835.
15. Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease / D. Srivastava // Annuurev. Pathol. - 2006. - Vol. 1. - P. 199-213.
16. Muscularizing tissues in the endocardial cushions of the avian heart are characterized by the expression of h1-calponin / I. Moralez, A. Phelps, B. Riley [et al.] // Dev. Dyn. - 2006. - Vol. 235. - P. 1648-1658.
17. Expression of the Smooth-Muscle Proteins a-Smooth-Muscle Actin and Calponin, and of the Intermediate Filament Protein Desmin are Parameters of Cardiomyocyte Maturation / Y. A. Jing, M. W. M. Markman, G. T. M. Wagenaar [et al.] // Anat. Rec. - 1997. - Vol. 249. - P. 495-505.
Реферати
ОСОБЛИВОСТІ ГІСТОГЕНЕТИЧНИХ ПЕРЕБУДОВ МІОКАРДІАЛЬНОЇ МАНЖЕТКИ ТА МІОКАРДА КОНУСА В ПРОЦЕСІ МІОКАРДІАЛІЗАЦІЇ СТРУКТУРНИХ КОМПОНЕНТІВ КОНУСНО-СТОВБУРОВОГО ВІДДІЛУ ЕМБРІОНАЛЬНОГО СЕРЦЯ МИШІ Дяговець К. І.
В цій роботі представлена кількісна та якісна характеристика гістогенетичних перебудов міокардіальних компонентів конуса та стовбура в гладком’язові клітини медії магістральних судин. В якості матеріалу було взято серця ембріонів лінійних мишей (C57BL / б) на 10-13 день ембріонального розвитку. В процесі дослідження було використано комплекс гістологічних, гістохімічних, імуногістохімічних (антитіла до aSMA та Ki 67) та морфометричних методик. Проведено порівняльну характеристику гістогенетичних перебудов трабекулярного та компактного міокарда конуса та правого шлуночка, в результаті якої виявлена затримка трабекуляції конусного відділу ембріонального серця. В процесі дослідження виділено стадії міокардіа - та артеріалізації конусно-стовбурового відділу в якісному та часовому аспектах.
Ключові слова: конус, стовбур, міокардіалізація, артеріалізація, міокардіальна манжетка.
Стаття надійшла 29.01.2013 р.
ОСОБЕННОСТИ ГИСТОГЕНЕТИЧЕСКИХ ПЕРЕСТРОЕК МИОКАРДИАЛЬНОЙ МАНЖЕТКИ СТВОЛА И МИОКАРДА КОНУСА В ПРОЦЕССЕ МИОКАРДИАЛИЗАЦИИ СТРУКТУРНЫХ КОМПОНЕНТОВ КОНУСНО-СТВОЛОВОГО ОТДЕЛА ЭМБРИОНАЛЬНОГО СЕРДЦА МЫШИ Дяговец Е. И.
В этой работе представлена количественная и качественная характеристика гистогенетических перестроек миокардиальных компонентов конуса и ствола в гладкомышечные клетки медии магистральных сосудов. В качестве материала были использованы сердца эмбрионов линейных мышей (C57BL / 6) на 10-13 день эмбрионального развития. В процессе исследования был использован комплекс гистологических, гистохимических, иммуногистохимических (антитела к aSMA и КІ 67) и морфометрических методик. Проведена сравнительная характеристика гистогенетических перестроек тарбекулярного и компактного миокарда конуса и правого желудочка, в результате которой обнаружена задержка трабекуляции конусного отдела эмбрионального сердца. В процессе исследования выделены стадии миокардиа- и артериализации конусно-стволового отдела в качественном и временном аспектах.
Кючевые слова: конус, ствол, миокардиализация, артериализация, миокардиальная манжетка.
Рецензент Гасюк А.П.