Научная статья на тему 'FAZOVIY YUKLANISHLARDAGI UCH QATLAMLI STERJENLARNING KUCHLANGANLIK-DEFORMATSIYALANGANLIK HOLATLARINI MATEMATIIK MODELLASHTIRISH'

FAZOVIY YUKLANISHLARDAGI UCH QATLAMLI STERJENLARNING KUCHLANGANLIK-DEFORMATSIYALANGANLIK HOLATLARINI MATEMATIIK MODELLASHTIRISH Текст научной статьи по специальности «Техника и технологии»

CC BY
7
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
tebranish / uch qatlamli sterjen / matematik model / Guk qonuni / kuchlanganlik / deformatsiyalanganlik / ko‘ndalang egilish / ko‘chish / Ostrogradskiy-Gamilton variatsion tamoyili / chekli ayrmalar / haydash usuli / kinetik energiya / potensial energiya / tashqi kuchlar. / вибрация / трехслойная стержень / математическая модель / закон Гука / напряжение / деформация / поперечный изгиб / смещение / вариационный принцип Остроградского-Гамильтона / конечные разности / способ вождения / кинетическая энергия / потенциальная энергия / внешние силы

Аннотация научной статьи по технике и технологии, автор научной работы — Shokirov Davron Abdugaffor Ogli

Maqolada fazoviy yuklanishlardagi uch qatlamli sterjenning kuchlanganlik-deformatsiyalanganlik holatini tadqiq etishning matematik ta’minotini keltirilgan bo‘lib, ushbu ta’minotni ishlab chiqishda Ostrogradskiy-Gamilton variatsion tamoyili asosida matematik model yaratilgan. Uch qatlamli sterjenlarning tebranish tenglamalari mos ravishda umumlashgan boshlang‘ich va tabiiy chegaraviy shartlari bilan ishlab chiqilgan. Qo‘yilayotgan masalaning hisoblash algoritmini markaziy chekli ayirmalar usulida ishlab chiqilgan. Masalani yechishda ushbu usulning oshkormas sxemasidan foydalanilgan. Hisoblash algoritmida ikkinchi tartibli differensial tenglamalarni matrisali haydash usulidan foydalanilgan natijalar olinishi ko‘rsatib o‘tilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A mathematical modeling the situation of the stress-deformation of three layer rods under spatial loads

В данной статье представлена математическая интерпретация исследования напряженно-деформационного состояния трехслойных стержней при пространственных нагрузках и в этой разработке создана математическая модель на основе вариационного принципа Гамильтона Остроградского. Оно соответствует уравнениям вибрации трехслойных стержней, естественным начальным и граничным условиям. Для решения этой задачи был использован метод центральных конечных разностей и схема неразглашения. В алгоритме расчета показано, что результаты получены методом матричного управления дифференциальными уравнениями второго порядка.

Текст научной работы на тему «FAZOVIY YUKLANISHLARDAGI UCH QATLAMLI STERJENLARNING KUCHLANGANLIK-DEFORMATSIYALANGANLIK HOLATLARINI MATEMATIIK MODELLASHTIRISH»

MEXANIKA

UDK: 539.3

FAZOVIY YUKLANISHLARDAGI UCH QATLAMLI STERJENLARNING KUCHLANGANLIK-DEFORMATSIYALANGANLIK HOLATLARINI MATEMATIIK MODELLASHTIRISH

Shokirov Davron Abdugaffor ogli Namangan muhandislik-qurilish intituti, shokirov1004@gmail. com 160103, O'zbekiston, Namangan, I. Karimov ko'chasi, 12.

Annotatsiya. Maqolada fazoviy yuklanishlardagi uch qatlamli sterjenning kuchlanganlik-deformatsiyalanganlik holatini tadqiq etishning matematik ta'minotini keltirilgan bo'lib, ushbu ta'minotni ishlab chiqishda Ostrogradskiy-Gamilton variatsion tamoyili asosida matematik model yaratilgan. Uch qatlamli sterjenlarning tebranish tenglamalari mos ravishda umumlashgan boshlang'ich va tabiiy chegaraviy shartlari bilan ishlab chiqilgan. Qo'yilayotgan masalaning hisoblash algoritmini markaziy chekli ayirmalar usulida ishlab chiqilgan. Masalani yechishda ushbu usulning oshkormas sxemasidan foydalanilgan. Hisoblash algoritmida ikkinchi tartibli differensial tenglamalarni matrisali haydash usulidan foydalanilgan natijalar olinishi ko'rsatib o'tilgan.

Annotation. In this article presents a mathematical interpretation of the study of the stress-deformation state of three layered rods under spatial loads and in this development, a mathematical model was created based on the Ostrogradskiy Hamilton variation principle. The calculation algorithm of the given problem was developed by the method of central finite differences. The vibration equations of three-layered rods are derived with appropriate generalized initial and boundary conditions. An undisclosed scheme of this method was used to solve the problem. In the calculation algorithm, it is shown that the results are obtained using the method of matrix driving of second- order differential equations.

Аннотация. В данной статье представлена математическая интерпретация исследования напряженно-деформационного состояния трехслойных стержней при пространственных нагрузках и в этой разработке создана математическая модель на основе вариационного принципа Гамильтона Остроградского. Оно соответствует уравнениям вибрации трехслойных стержней, естественным начальным и граничным условиям. Для решения этой задачи был использован метод центральных конечных разностей и схема неразглашения. В алгоритме расчета показано, что результаты получены методом матричного управления дифференциальными уравнениями второго порядка.

Kalit so'zlar: tebranish, uch qatlamli sterjen, matematik model, Guk qonuni, kuchlanganlik, deformatsiyalanganlik, ko'ndalang egilish, ko'chish, Ostrogradskiy-Gamilton variatsion tamoyili, chekli ayrmalar, haydash usuli, kinetik energiya, potensial energiya, tashqi kuchlar.

Ключевые слова: вибрация, трехслойная стержень, математическая модель, закон Гука, напряжение, деформация, поперечный изгиб, смещение, вариационный принцип Остроградского-Гамильтона, конечные разности, способ вождения, кинетическая энергия, потенциальная энергия, внешние силы

Keywords: vibration, three-layer rods, mathematical model, Hooke's law, stress, deformation, transverse bending, displacement, Ostrogradskiy-Hamilton variational principle, finite differences, driving method, kinetic energy, potential energy, external forces.

Respublikamizda ko'p qatlamli sterjen turiga oid tuzilmalarni nazariy asoslarini takomillashtirish va hisoblash usullarini ishlab chiqish bo'yicha ko'plab olimlar o'z ilmiy

Mexanika va Texnologiya ilmiy jurnali 5-jild, 1-son, 2024

MEXANIKA

izlanishlarini olib borishgan, jumladan, akademik V.Q.Qobulov tomonidan kostruksion elementlarining chiziqli deformatsiyalanish jarayonlarini aniqlashtirilgan nazariyasi ishlab chiqilgan va amaliy masalalarni yechishga algoritmik yondashuvlar taklif etilgan [1]. O'zbekistonda ko'plab turdagi mexanika masalalarini algoritmlash va avtomatlashtirish uchun algoritmik tizimlar yaratish dastlab akademik V.Q.Qobulov tomonidan taklif etilgan hamda algoritmlash nazariyasi ishlab chiqilgan, akademik T.Bo'riyev, K.Sh.Bobomurodov, F.B.Badalov, B.Kurmanbayev, T.Yuldashev, Sh.A.Nazirov, X.Eshmatov, B.Mardonov, M. Usarov, B.Babajanov va ularning shogirdlari tomonidan rivojlantirilgan.

Masalani qo'yilishi. Bo'ylama, ko'ndalang kuchlarning birgalikdagi ta'sirida fazoviy yuklanishlardagi uch qatlamli sterjenlar nuqtalarining ko'chish masalalarini matematik modellarini Ostrogradskiy-Gamilton variatsion tamoyili asosida ishlab chiqiamiz. Uch qatlamli sterjenning yuk ko'taruvchi qatlamlari uchun Bernulli gipotezasi o'rinli, to'ldiruvchi qatlam balandligi bo'ylab nuqtalar ko'chishining chiziqli approksimatsiyasi bilan elastiklik nazariyasining aniq munosabatlari o'rinlidir.

Mazkur masalaning matemtik modelini ishlab chiqish Ostrogradskiy-Gamilton variatsion tamoyilini quyidagicha ko'rinishida olamiz [1]:

sJ{K-n + A)dt = 0. (1)

t

Bu yerda, (K-n + A) kinetik va potensial energiyalar, tashqi kuchlarning bajargan ishi. Uch qatlamli sterjenda nuqtalarining ko'chishi quyidagicha bo'ladi [2, 3]:

u(1) = u, -| z - c —1 la

w(1) = w (c < z < c + —);

ul2) = u2z + c +2 Ja ', w(2) = w2(-c-h2 < z <-c); u (3) =fl + z If I u + — a« Vi 1 - z If I u - a(2) 1,

(2)

w(3) = I fl + - J w - - j w2, (-c < z < c ).

Bu yerda bo'ylama va ko'ndalang ko'chishlar u(k)(x,z) va w(k)(x,z), k-qatlam raqami,

—, —, — = 2c - 1, 2 va 3 qatlamlarning qalinliklari.

Asosiy qism. Uch qatlamli sterjenning kinetik energiya variatsiyani aniqlash. Koshi mnosabatlariga ko'ra va (2) formulaga asosan fazoviy yuklanishlardagi deformatsiya komponentalari quyidagi ko'rinishda aniqlanadi [4]:

s = —

•j 2

du duj duk duk

dx. dx dx. dx

V J • • J J

(3)

Kinetik energiyaning variatsiyasini hisoblashda quyidagi munosabatdan foydalanamiz:

JöKdt = \\p^ ^^u^dvdt + d^Suf)dvdt + |Jp]T ^llsufctvdt. (4)

a t

d t

t t v k=1 d t v k=l d t v k=1

Bu erda p - materialning zichligi, bir necha matematik hisoblashlar (differensallash, variatsiyalash, integrallashlardan) so'ng quyidagiga ega bo'lamiz:

(2)-formulani kinetik energiyaning variatsiyasini hisoblash (4) ifodasiga qo'yib, keltirib chiqarilgan formuladan ushbu belgilanishlar hosil bo'ladi.

pF = JJpdzdy, pSy = JJpzdzdy, ply = JJ pz2 dzdy,

y z y z y z

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

<

1

MEXANIKA

F - sterjen ko'ndalanag kesim yuzi, Sy - statik moment, Iy - inersiya momenti.

Guk qonuniga asosan kuchlanganlik-deformatsiyalanganlik holatlarini bog'liqligi quyidagicha bo'ladi [5]:

(k) ( ßu(k) du(k) ^

-(.k) _ J7 e(k) _ F dui . _ _ n ßu1 ^ ßu3 °11 - Ekb11 - E

ßx

a - G?

ßz ßx

(5)

Bu yerda E- elastiklik moduli, G^-siljish moduli, a -kuchlanish.

jn-]LT jja^dtdv - ||(an(1) &rn(1) + an(2ön(2) +

(2)

i-1 J-1 v t v t (6)

(3) (1)&13(1) (2) +a3 (3)&r13 (3)) dtdv;

(5) dan kelib chiqib potensial energiyalarni hisoblashda (2) ni (6) ga qo'yib quyidagi tenglikga ega bo'lamiz:

jöMt -jji<)

f ßu(1)

ßx

-öz

ßa

(1)

ßa

(1)

h ßa

(1)

+ öc-+ ö-

ßx ßx 2 ßx

(2)

.ßu(2)

h

A

-öza(2>-öca(2)-ö ^ a(2) ßx 2

1 (3) ( _ ßu(1) _ h ßa(1) _ z ßu(1) Qzh ßa ~(3) ö-+ aö ' *

(1)

2 11 ^ ßx

2 ßx c ßx c 2 ßx

„ ßu(2) h ßa(2) c z ßu(2) z h ßa(2) ^ ö--ö —--ö--+ ö—-- +

(7)

ßx

2 ßx c ßx c 2 ßx

1 (3) ( c- ßW e z ßw, e c- z ßw

+ -a1(3)| ö—- + ö—— + ö —--ö—~ +

2

ßx c ßx ßx c ßx

+ö1 u(1) +öh-a(1) -ö1 u(2) +ö^a(2) I \dvdt. c 2c c 2c JJ

(7) da bir necha matematik hisoblashlar (differensallash, variatsiyalash, integrallash,

belgilashlar) dan so'ng quyidagiga ega bo'lamiz:

Bu yerda N- normal kuchlanganlik, M- kuchlanganlik momenti, Q- urinma kuchlanish.

N(1 - j j a(1)dzdy; M® - j j aumz dzdy; n^ -j j a /2)dzdy; m1(12) -j j a™z dzdy;

y z y z y z y z

n1(13) - j ja„(3)dydz; M^ - j ja„(3)zdydz; Q3 dzdy; - jjza%dzdy.

y z y z y z

Tashqi kuchlar bajargan ishini quyidagi ifoda orqali aniqlaymiz:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

y z

jöAtdt -jj

T F(k )öul (k )dvdt + T F3 (k )öw3 (k )dvdt

k-1

jj

k-1 3

+

jj

t l

T q(k )öul (k )d^dt + T q(k )öw3 (k )d^dt

k-1

k-1

+

(8)

T f(kö)d^dt + T f(k öu()dsidt

k-1 k-1

Bu yerda P-hajmiy kuchlar, g-yuzaga ta'sir etuvchi kuchlar, f-chetki kuchlar.

Tashqi kuchlar bajargan ishini hisoblaymiz. Buning uchun (2) gaH uv u larni (8) ga qo'yib, quyidagilarga ega bo'lamiz:

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

t v

t v

\SAdt =JJ

MEXANIKA

F( 1 ô Iu( 1 ) - (z - c -h)a( 1 )J + F(2)ô[u(2) - (z + c + ^)a(2)J +

+F

(3)ôI(1 + z)(!u( 1 ) + ha(1 )) + (1 - z)(iu<2) - h2-a(2))J +

c 2

c 2

+F° }ÔWi + F^ôw, + F^ôi1 (1 + -)wi + 1 (1 - -)w2

I 2 c 2 c

+JJ

t i

dvdt +

h

q(1)ô I u(1) - (z - c - |)a(1) J + q(2)ô I u(2) - (z + c + ^)a(2) I +

,(3ô

(1);

Zv L. (1^ h-

+q(3)ôI (1 + zX1u(1) + ha(1)) + (1 - u(2) - ^a(2)) | + 1 1 c 2 4 c 2 4 J

+ q^ôw, + q®ôw2 + q3(3)ô [ 1 (1 + Z K +1 (1 - Z K

I 2 c 2 c

(3)

didt +

(9)

1"ô

+ 11 t, ôu(1) -Mf[(r>ôa(r> + cf;'ôa(l) + h+ 77ôu(2) -^^^ô2) -

;(1),

h 7(1);

;(2) ,

2

2'

4

-c7(2)ôa(2) -hJ^ +1]/(3)ôu(1) + ¡3)ôa(1) + -1 M7((3ôu« + 1 1 1 1 2c 1

+hLMtj(3)ôa(1) +17j(3)ôu(2) - h27(3)ôc(2) - Mf^ôu(2) + ^M7((3)ôa(2) 4c 2 4 2c 4c

;(1 ) ^ —(2^ 1 -(3^ 1 , 1 -(3^ 1

dt

+f 3 ôW1 + 73 ôw2 + - 73 ôW1 + —Mf( )ôW1 +- 73 ôw2 - —Mf3( ^

2 2c 2 2c

Qavslarni ochib yuborib, sterjenga ta'sir etuvchi hajmiy kuchlar ifodasini y va z o'qlar bo'yicha integrallash, yuzaga ta'sir etuvchi kuchlarni esa x o'qi bo'yicha (sterjenning uzunligi) bo'yicha integrallash amallarini bajargandan so'ng quyidagilarga ega bo'lamiz:

J Adt = JJ

J J F {l)ôu{l)dydz - J J F(1) zôamdydz + c J J F {l)ôamdydz + h J J F {l)ôamdydz +

+J J F(2)ôu{2)dydz - J J F(2)zôa(2)dydz - -c J J F{2)ôa(2)dydz - ^ J J F{2)ôa(2)dydz +

y z

y z

y z

y z

+ -2

+ -2

+

1JJ F (3)ôu ()dydz + ^ JJ F (3)ôa(1) dydz + — JJ F(3) zôu {1)dydz + h\J F?3) zôa( l)dydz + 2 4 2c 4c

y z y z y z y z

1 J J F (3)ôu (2)dydz - ^ J J F (3)ôa(2) dydz - — J J F(3) zôu (2)dydz + h f fF (3) zôa(ï)dydz +

2 J J 4JJ 2c ^ 4c ^

y z y z y z y z

J J F{l)ôwldydz + J J F(2)ôw2dydz +1J J F3(3)ôwldydz + — J J F3(3)zôw.dydz +

? z y z y z

1J J Fsôw2dydz - — J J F(3) zôw2dydz

+ — 2

dxdt +

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

t v

t x

y z

y z

yz

yz

MEXANIKA

+J J q(lSu (l)dl -J q(1)zSa(V>dl + c J q(1)Sa(1)di + K J q(1)Sa(1)di + J q(2)Su (2)di -t _ i i i 2 i i

-J q(2)zSa(2)di - c J q{2)Sa(2)di - ^ J q(2)Sa(2)di + - J q(3Su(1)di + ^ J q(3) Ja(1)di + i i 4 i 2 i 4 i

+ — fq/3)zSu(1)di + A. fq^zadi + - fq/3)Su(2)di -^ fq(3)Ja(2)di - — f q^zSu(2)di + (10) 2c i 4c , 2 , 4 , 2c ,

+ A J q(3) zSa<2) di + J q (l)Swldi + J q(2) Sw2di + - J q {3)Swldi + ^ J q3 (3) zSw^di + +—J q3^3Sw2di --— J q3^zSw2di dt + J

J f (l)Su(l)ds, - J f(1)zöa^ds, + cJf (l)Sa{X)ds, +

+ — 2

| Jf (1)Sa(1)dsx +Jf (2)Su(2)ds - Jf(2)zöa(2)dsl - cJ f {2)öa(2)ds, - hJf 2)Ja(2)ds1 +

— Jf (3)Ju(1)ds + ^ Jf (3)Ja(1)ds + — Jf(3)zJu(1)ds + A Jf(3)zSa^ds, + 1Jf (3Su^

I sl sl sl sl

Jf(3W2)d^, - — Jf(3)zSu(2)ds + — J f(3) zSa(2) ds + J f ^1)Jw1ds1 + J f(2^Sw2d^ + s1 s1 s1 s1

+ — J tfSwfa + ^ J f3(3) zSw—ds— + — J f^'Sw2dsl-A- J f3(3) zSw2dSj

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+ — 2

h 4

Bu erda

Fi = JJFmdydz, Fi = JJF(2)dydz, Fi = JJF(3)dydz, MF,(1) = JJF(1)zdydz,

y z yz yz y z

MF(2) = JJF(2)zdydz, MF(3) = JJF(3)zdydz, F? = JJF3(1)dydz, F32) = JJF3(2)dydz, (11)

y z y z y z y z

F 33) = JJf3(3) dydz, MF3(1) = JJ F3(1) zdydz, MF3(2) = JJ F3(2) zdydz, MF3(3) = J J F3(3) zdydz;

q(1) = J J q(1)dydz, q(2) = J J q^dydz, q(3) = J J qf)dydz, Mqf ) = J J q(1)zdydz,

yz yz y z y z

Mq(2) =JJq(2)zdydz, MqJ3 =JJq(3)zdydz, q(1) =JJq^dydz, q(2) =JJq(2)dydz,

yz yz yz yz

q(3) = JJ qfdydz, Mq(1 = J J q<zdydz, Mq<2) = J J q(2) zdydz, Mq<3) = J J q<3) zdydz.

Kinetik energiya (4), potensial energiya (7) va tashqi kuchlar bajargan ish (9) lardan ishlab chiqilgan ifodalarni (1) ifodaga qo'yib, fazoviy yuklanishlardagi uch qatlamli sterjenlarning tebranishlari umumlashgan tenglamalar sistemasi va tabiiy boshlang'ich va chegaraviy shartlarini hosil qilamiz [6-10].

Fazoviy yuklanishlarda uch qatlamli sterjenni umumlashgan tenglamalari:

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

s

s

s

s

X

yz

yz

yz

yz

yz

yz

yz

2„(1)

pF

d u

MEXANIKA 2^(1) u i f

V

dt2

+ pcF

d2 a

- + p — F

— „ d a(

dt2 2 dt2

1

- + — 4

d2u(1) —

pF

^(i)

+ — pF

d2a

V

dt2 2 dt2

1 , d2u(1) — T d2a(1) ^d2u(2) — ^d2a(2) 1 d2u(2)

+ —^plv-7- + 9 plv-r" + pF-Ö---2 pF-;---TpF-+

c2 y dt2 2c2 y dt2 dt2 2 dt2 c2 y dt2

+

2c

2 ply

d 2a(2) 11 fd#1(1) 1 dN? 1 dM,(3) 1 ^ ,1

a

JJ

11

-+--+--^- — Q

dx 2 dx 2c dx 2c

(3) 13

f— (1) 1~(3) 1,^(3) 1 (-(1) 1"(3) 1,^(3)

+1F( + 2 F( + 2cMF1 M «1 + 2 « + 2cMq1

J

Su(1) = 0

pF

2„ (2)

d2u

dt2

- pcF

2„ (2)

d2a

— „d2a(2) 1 f ^d2u(1) — ^d2a(1)

-p-^ F

dt2 2 dt2

- + — 4

pF

- + -1 pF-

dt2 2 dt2

1 , d2u(1) k T d2a(1) ^d2u(2) — ^d2a(2) 1 d2u(2)

-—^plv-,---V ply-+ pF-ö---2 pF-+ —rplv-^

c2 y dt2 2c y dt2 dt2 2 dt2 c2 y dt2

2 (2)

2c

ply

d2a

2 r y

dt2

f dN,(,2) 1 dN(3 ) 1 dM,(,3 ) 1 „(3 ) 1

dx 2 dx 2c dx

+— Q

2c 1

+VF " + 2 F ' - -¿MFr J+V + 2 «(3) - ¿M«,m

Su(2) = 0

( ^d2u(1) d2u(1) rd2a(1)

pcF-+ p — F-— + ply-

dt2 2 dt2 y dt2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

_ d 2a(1) ^ d 2a(1) + pc F^^ 1 — 1

— d 2a(1) —2 d2a

2

+p — cF 2 dt2

+ F-4 dt2

1

■ + — 4

dt2

— d 2u(1) —

- + pc—F-

2 dt2

- pF- , 2 dt2

d2a

+ pF-4 dt2

+

—1

2«fl)

2c2

pl

du

2 ^ y

dt2

+

— r d2a(1) — d2u(2) —— ^d2a(2) — r d2u(2) —— r + — ply^T + ~ ---— pF plv^T~ + TT ply

d 2a(2)^

+

4c

f

V

dt2

dt2

dt2

2c

2 ^ y ^2

dt2

4c

2y

dt2

JJ

dN11)+— —_ d_NL+—L ML — dQH1+(^A^d^ +

dx dx 2 dx 4 dx 4c dx 4c dx v

—1 —(1) fy — (3) — (3) 1 f (1) -(1) fy-a) — -(3) —

+—F1 + —F1 +— MFC) i +1 -Mq\ ' + cq} +— « + —« + —Mq(3) 2 4 4c y v 2 4 4c

Sa(1) = 0

' rd2u(2) rd2u(2) rd2a(2) 2l7

— ^ d a

(2)

da(2)

dt2 p 2 F dt2 ' py dt2 ' p F dt2 ' 2 F dt2

■ + pc—F

— ^ d 2a( 2) —2 d 2a(2) 1 f — ^ d 2u(1) —— ^ d 2a(1)

^--i-n—^F--1—--L nF---L^LpF-

+pcF- 9 2 dt2

■ + F - , 4 dt2

■ +---2 pF- ,

4, ^ dt2

V

4

a

d?

+

+

d2u(1) —— d2a

2c2

pl

^ y ^2

dt2

4c

2 p ly

dt2

- — pF

d 2u(2) „d 2a(2)

dt2

^^^ pF-4

dt2

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

MEXANIKA

a

2c:

Ply

d 2u

dt2

A

4c:

2^(2A 1

d2 a

dt2

f

JJ

dM1(12) d<2) h dN1(12) — c

dx

dx

2 dx

h dN^ h2 dM(3 h2 dÖ!(33) 1

4 dx 4c dx 4c dx

+f-MF(2) - cF12) - h F 12) - h2F13) +

I 1 2 4

(12)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+ ^MF,'3 \(-Mq(2)3a(2) - cq? - A qf - A q? + ^Mq(3)

Sa( 2) = 0

PF

d2 w 1

dt2 4

PF

d 2w

1 d2 w1

, d 2w,

dt

1 + p~7 !v—^ +pF—-r -p—; !v

c2 v dt2 -2 v

dt

d_V

dt2

+

1 dQ

(3) 13

1 dM,(3) 1 (-(1) 1 —(3) 1

2 dx 2c dx

-(1) 1 (3)

+1 F31) +1F33) + AMF^ | +1 q(1) +1 q( + AMq,\3)

2c

2c

Swl = 0

( ^ d2w 1 ( ^ d2w 1 . d2w-

pF

dt2

- + -4

d V

PF^T-P—h^r + PF^T + P—1

1 . d2 w.

2

dt2

dt

dt2

,2 y

dt2

+

1 dQ(3)

13

1 dM1(33) 1

2 dx 2c dx

T;(2) 1 T;(3)

+ 1 F 3 +- F 3--MFF

V 2 2c

(3)

f

Tabiiy umumlashgan boshlang'ich shartlar

du(1) ^da(1)1 h ^ da(1) 1

pF--+ pcF -

dt

dt

■ + p — F-

2

dt

+ —

4

pF

du

+

(1)

-(2) 1 (3) 1 , , q3 +- q3 Mq3

(3) 1

Sw, = 0

h da

+ — pF dt 2

(1) h T da(1)

+—V piv—+

dt 2c2 v dt

du(1) dt

du(2) K ^da(2) 1 T du(2) h

+pF---1 pF

dt

dt

da( 2)

dt 2c

da(2) dt

Su(1)

= 0

ßu(2) ßa( 2) /2

pF--pcF--p — F

dt dt 2 dt

A du(1) h da(1) 1 du(1)

pf~^+^Pf~---- PIv

dt

2

2c2

p!y

da

(1)

dt

■ + pF-

, du

(2)

dt

h 77

---2 pF -

2

da

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(2)

dt

+

^v

du

(2)

dt 2c2

dt c-

da(2) pIy a

y dt

Su(2)

= 0

da(1)

„ du(1) h r du(1) , da(1)

pcF--+ p — F--+ pi--+ pc F

dt 2 dt y dt dt

h r da(1) h ^ da(1) + pc — F-+ p — cF-+

2 dt 2 dt

h' da(1) +p — F-+

4 dt 4

1 (h

r du(1) h ^ da(1)

pF-+ — pF-+ ,

2 dt 4 dt 4c2

h2 T da(1) h . du(1) ph-;- + ph — +

h _ du(2) hh Z7da(2) h du(2) hh

+ — pF 2 dt

,(2)

4

pF

dt

„ duh 7—' du(2) T da12) 2 „ dal/J h t-

-pcF--p — F--hp/--hpc F--hpc — F

dt 2 dt y dt dt 2 dt

2c2

,(2)

pK

y dt 2c

da(2) 1

dt

dt

4c'

-pK

,(2)

dt da

J.

(2)

Sa(1)

= 0

h da

(2)

+ pc—F 2

dt

- +

h2 da

+p—F-

4 dt

(2)

1

+ — 4

f

h

du(1) hh

^^^ pF 2 dt

4

pF

da

(1)

dt

+

h du(1) hh

2? p v ^T + 4?"

pi,

da

(1)

dt

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

v

c

t

v

2

c

t

MEXANIKA

— ^du(2) — ^da(2)

—2 pF--I-—2— pF- pi , pi

2 dt 4 dt 2c2 y dt 4c2 2 dt

— , du(2) da(2) 1

2 p^^+'tTP1

J

dw1 1 pF—1 + — dt 4

, dw.

1 5w,

dw

pF ^^ + p— + pF-p—i

1 Sw,,

dt

dt

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

^ dw 1 f ^dw-pF—2 + -dt 4

1 dw.

dt

dw

c2 * dt 1

Sa

Sw,

(2)

= 0

= 0

dt c

Tabiiy umumlashgan chegaraviy shartlar:

2

Sw~

'{W + 2 MS) + i1cM!f) J+V 7(1)+2 71"+iM3' 1

_VN(1!)+1 MS' - j-Mi? 1+f7(22)+27(3) - Im'3 J

- (m + aNt! + N™ + — N(3 + — M,(,3) 1 +

(1)

Su

Su(2)

= 0

= 0

= 0

(13)

(14)

'U 2 4 11 4c 11

i , ,,(1) "TOO — -GO — -(3) — (3)

+|-Mf() + c 71 71 +f 71 + ^ 7

Sa

(1)

= 0

-^-M1(12) -cM1(12) -1M(12) -Mi3) + ^M1(13) j +

f »^(2) 2?(2) K -(2) ^ -(3) -..(3)'

+I^M71(2) - ( -y 7( 7( 7

-11 Ö1(33)+1 M1(33) J+i731)+1733)+^ M73(3)

-12 ö13) - J+f 7 32)+27 33) - ¿M

(3)

Sa

Swj

Sw,

(2)

= 0

= 0

= 0

Hisoblash algoritmi: Fazoviy statik va dinamik yuklangan sterjen tenglamalari (12), (13) va (14) hisoblash algoritmini ishlab chiqishda ularning vektor ko'rinishda quyidagicha keltirish mumkin.

Sterjennnig tebranish tenglamasi:

dt2 dx2 Tabiiy boshlang'ich va chegaraviy shartlar:

~dUk

[M ]

d t

dx

= 0,

m^]ük+[D]FclK=0,

(15)

(16)

(17)

Tenglamaning vektorli ko'rinishi (15), (16), (17) formulalarda M,A,B,C,D,M,B matrisasalardir [11-12].

Hisoblash algoritmini ishlab chiqishda chekli ayirmalar usulining oshkormas sxemasidan foydalanib tenglamani quyidagi ko'rinishga keltiramiz [13]:

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

U/-XAX/K.!

Uch diagonalli tenglamalar tizimi (18) ifodani matrisali haydash usuli orqali quyidagicha

yozib olamiz:

UiJ+1=äMUMJ+1+ßM,

Bu yerda CCi+l va Д+1 noma'lum koyeffisiyentlar quyidagi ko'rinishdagi

В

"i+l =

; Д+1 = Aßl~ ; (i = i,2,...,/i-i).

Д • а, - С,

Л-а: -() . . .

formulalar yordamida topiladi.

Ikki tomoni qattiq mahkamlangan uch qatlamli sterjenga 50 kN kuch ta'sir qilgandagi deformatsiyalanganligini tekshiramiz. Uzunligi l=2000 mm, eni b=200 mm va balandliklari h1=5mm, h2=5mm, h3=190 mm o'lchamlarga teng.

1-rasm. X o'qi bo'yicha ko'ndalang 2-rasm. Z o'qi bo'yicha ko'ndalang kesim

kesimning maraziy o'qiga nisbatan umumiy makazuy o'qiga nisbatan umumiy ko'chishi ko'chishi

Xulosa. Fazoviy yuklanishlardagi uch qatlamli sterjen masalalarini Ostrogradskiy-Gamilton tamoyili asosida tuzulgan matematik modelning sonli natijalar olishda matrisali haydash usuli boshqa usullardan bir muncha aniqligi hamda qulayligini ko'rish mumkin.

ADABIYOTLAR

1. Кабулов В.К. Алгоритмизация в теории упругости и деформационной теории пластичности. - Ташкент: Фан, 1966. - 391 с.

2. Плескачевский Ю. Деформирование металлополимерних систем / Минск:Бел. навука., 2004. 342 с.

3. Старовойтов Э. Трехслойние стержни в терморадиационних полях. / Минск.: Беларуская наука, 2017. 275 с.

4. Anarova Sh.A., Yuldashev T. Derivation of Differential Equations of Oscillation of Rods in Geometrically Nonlinear Statement, Problems of Computational and Applied Mathematics. Tashkent, (2018). № 2. - Pp. 72-105.

5. С.П.Тимошенко, Дж. Гудьер — "Теория упругости"Перевод с английского М.Н.Рейтмана. М:. — "Наука" 1979.

6. Anarova Sh.A., Nuraliyev F.M., Usmonov B.Sh., Chulliyev Sh.I. Numerical solution of the problem of spatially loaded rods in linear and geometrically nonlinear statements.

7. International Journal of Engineering & Technology, 7 (4) (2018) 4563-4569.

8. Sh Anarova and Sh Ismoilov. Mathematical simulation of stress-strain state of loaded rods with account of transverse bending. 2019 J. Phys.: Conf. Ser. 1260 102002.

Mexanika va Texnologiya ilmiy jurnali 5-jild, 1-son, 2024

MEXANIKA

9. T.R. Rashidov, T.Yuldashev, D.A. Bekmirzaev. Seismodynamics of underground pipelines with arbitrary direction of seismic loading // Soil Mechanics and Foundation Engineering. Vol. 55. New York. 2018. Pp. 243-248.

10. Анарова Ш.А., Шокиров Д.А., Исмоилов Ш.М. Современное состояние и постановка задачи исследования трёхслойных стержней // Проблемы вычислительной и прикладной математики. - 2022. - № 4(42). - С. 54-78.

11. Анарова Ш.А., Шокиров Д.А., Исмоилов Ш.М. Современное состояние и постановка задачи исследования трёхслойных стержней // Проблемы вычислительной и прикладной математики. - 2023. - № 5(52). - С. 56-82.

12. Т. Юлдашев, А.И. Исомиддинов. Алгоритмы решения системы дифференциальных уравнений второго порядка и сравнительный анализ результатов // Узб. журнал «Проблемы информатики и энергетики».- Ташкент, 2011. - №2. - С. 29-34.

13. Ш.А. Анарова, А.И. Исомиддинов, Ш.М. Исмоилов. Численный анализ процессов колебаний пространственно-нагруженных стержней // Проблемы вычислительной и прикладной математики. - 2019. - № 5(23). - С. 29-44.

14. S. Anarova, S. Ismoilov and D. Shokirov, "Nonlinear Mathematical Model of Oscillation Processes of Spatially Loaded Rods with Account for Temperature," 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2021, pp. 1-5, doi: 10.1109/ICISCT52966.2021.9670072.

Mexanika va Texnologiya ilmiy jurnali

5-jild, 1-son, 2024

i Надоели баннеры? Вы всегда можете отключить рекламу.