ГИАБ. Горный информационно-аналитический бюллетень / MIAB. Mining Informational and Analytical Bulletin, 2020;(10):5-15 ОРИГИНАЛЬНАЯ СТАТЬЯ / ORIGINAL PAPER
УДК 622.3 DOI: 10.25018/0236-1493-2020-10-0-5-15
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ДЕФОРМАЦИОННЫХ СВОЙСТВ БИШОФИТА
Ю.В. Осипов1, А.Е. Кошелев1, А.С. Вознесенский2
1 ООО «Газпром геотехнологии», Москва, Россия, e-mail: [email protected] 2 НИТУ «МИСиС», Москва, Россия
Аннотация: Определение свойств горных пород является важным для проектирования и строительства скважин, а также подземных хранилищ газа (ПХГ) в соляных отложениях. В современной практике отсутствуют экспериментальные данные о прочностных и деформационных свойствах встречающегося при их строительстве бишофита. Такие данные необходимы для расчетов устойчивости массива пород вокруг этих объектов. Бишофит является сверхгигроскопичным минералом, который при малейшем контакте с окружающей средой впитывает в себя влагу и переходит в текучее состояние. Это обстоятельство обуславливает большую сложность размещения каких-либо средств измерения на образце, что затрудняет получение достоверных данных о свойствах. К тому же даже при минимальном механическом воздействии проявляются аномально высокие пластические свойства бишофита, а следовательно, сложно применять существующие методики для определения механических свойств. Целью исследований было создание и опробование методики определения деформационных свойств бишофита. Работа включала создание измерительного оборудования, которое можно было бы зафиксировать на образце, а также обоснование методов достоверной интерпретации полученных данных. Испытания проводились на образцах бишофита цилиндрической формы в одноосном режиме с постоянной скоростью нагружения. Уникальность всех проведенных экспериментов была в том, что впервые были определены деформационные свойства образцов бишофита. В статье подробно рассмотрены оборудование и материалы, использованные в экспериментах, а также их результаты. Большое внимание уделено их интерпретации.
Ключевые слова: бишофит, гигроскопичность, деформационные свойства, одноосный режим, постоянная скорость нагружения, методика испытаний, измерительное оборудование, лабораторные испытания, циклическая нагрузка.
Благодарность: Исследование выполнено при финансовой поддержке РФФИ в рамках научно-исследовательского проекта № 20-05-00341 и ООО «Газпром геотехнологии». Для цитирования: Осипов Ю. В., Кошелев А. Е., Вознесенский А. С. Экспериментальные исследования деформационных свойств бишофита // Горный информационно-аналитический бюллетень. - 2020. - № 10. - С. 5-15. DOI: 10.25018/0236-1493-2020-10-0-5-15.
Experimental studies of the bischofite deformation properties
Yu.V. Osipov1, A.E. Koshelev1, A.S. Voznesenskii2
1 LLC «Gasprom geotechnology», Moscow, Russia, e-mail: [email protected]
2 National University of Science and Technology «MISiS», Moscow, Russia
© Ю.В. Осипов, А.Е. Кошелев, А.С. Вознесенский. 2020.
Abstract: Determining rock properties is important for the design and construction of wells, as well as underground gas storages (UGS) in salt deposits. In modern practice, there are no experimental data on the strength and deformation properties of bischofite encountered during their construction. This data is necessary for calculating the stability of the rock mass around these facilities. Bischofite is a super hygroscopic mineral. It absorbs moisture and turns into a fluid state at the slightest contact with the environment. This makes it very difficult to place any measuring instruments on the sample and to obtain reliable data on its properties. Moreover, even with minimal mechanical impact, bischofite exhibits abnormally high plastic properties, and therefore it is difficult to apply the existing methods to determine the mechanical properties. The aim of the research was to develop and test a procedure for determining the bischofite deformation properties, including the development of measuring equipment that could be fixed on the sample, as well as a reliable interpretation of the resulting data. The tests were carried out on cylindrical bischofite samples in uniaxial mode at a constant loading rate. All the experiments were unique for the deformation properties of bischofite samples being determined for the first time. The paper details the equipment and materials used in the experiments paying much attention to interpreting the results of experimental studies.
Key words: bischofite, hygroscopicity, deformation properties, uniaxial mode, constant loading rate, test methods, measuring equipment, laboratory tests, cyclic loading. Acknowledgements: The study was funded by the Russian Foundation for Basic Research, grant 20-05-00341, and «Gazprom Geotechnologies» LLC.
For citation: Osipov Yu. V., Koshelev A. E., Voznesenskii A. S. Experimental studies of the bischofite deformation properties. MIAB. Mining Inf. Anal. Bull. 2020;(10):5-15. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-5-15.
Introduction
Bischofite is a rock-forming mineral, which in some cases composes strata several tens of meters thick. It was found in salt deposits when drilling wells in the areas of the Caspian and Dnieper-Donets depressions [1]. For many decades, bischofite was a rare mineral. It was surprising that the individual layers and interlay-ers were composed of an almost monomineral bischofite rock with a bischofite content of 95-98% [2].
The properties of bischofite are determined by its chemical formula as follows: MgCl2 ■ 6H2O [3]. It has a high dissolution capacity when interacting with the environment and fairly low strength properties. Bischofite formations are the cause of complications in the construction of wells and underground reservoirs. In this regard, one of the important factors during
such mining is to determine the deformation properties of various types of rock [4] including halogen rocks and, in particular, bischofite. They make it possible to predict the long-term stability of the rock mass around the mining sites, which is important for practice.
The experimental studies of the halogen rock deformation properties have been reported in a number of domestic publications [5-9]. These rocks are characterized by large deformations, ductility, the capability to heal cracks and other features that distinguish them into a special group. The study of their properties is still relevant today which is confirmed by a number of recent domestic [10-12] and foreign [1315] publications.
It is worth noting that there are very few studies of the bischofite physical and mechanical properties. They are almost
impossible to find in public sources. Some properties, but not all, can be found in the Mining encyclopedia [16]:
• hardness 1-2;
• density 1,6 g/cm3;
• cleavage — no;
• shell-like to uneven fracture;
• easily deformed even at minimum loads;
• very highly soluble in water and alcohol;
• burning, bitter taste.
Experiments to find the bischofite deformation properties are a very time-consuming and difficult task in view of the heterogeneity of rocks, the difficulty of making samples for the research, and the research itself. Bischofite properties are very different from other rocks. Failure to take these properties into account can cause big problems. The aim of the research was the development and testing of bischofite test methods and determination of its deformation properties in comparison with rock salt. The work included making the measuring equipment that could be fixed on the sample, as well as the justification of methods for reliable interpretation of the resulting data. We have
also held comparative studies on rock salt samples to identify the bischofite deformation features.
Test Sample Preparation
Bischofite samples for research were taken at the Volgograd rock salt deposit from well 5 t from a depth of 1327,01333,8 m, i.e. the layer thickness was 6,8 meters. Chemical analysis of the studied rocks showed the following salt content: MgCl2 from 38 to 50%, NaCl from 25 to 37%. Moisture content of the sample was 19%. The chemical composition of all samples showed complete identity, which justified their testing in a single group. To protect against atmospheric moisture, the samples were waxed at the sampling site. An example of core material is shown in Fig. 1.
Samples were made from core material on lathes. As bischofite is prone to very rapid dissolution in the open room, the entire process of sample preparation took no more than 10 minutes. All samples were tested immediately after making, or were placed in desiccators with calcined calcium chloride. Even this period of time was enough for the sample to become covered
Fig. 1. Core material represented by bischofite before (a) and after (b) waxing
Рис. 1. Керновый материал, представленный бишофитом до (a) и после (б) парафинирования
Объект: Волгоградские ПХГ ¡¡-<я
Скв-Ni 5Т
Глубина: У 33 О 0~ 1Щ. 0 » Ш 00 -1—»
Образец №: ;fr С- Ш ® :Mr m
H — , 2 мм
d = kl-1 мм Ш
m = m,S г л§>
Назначение; ш™
Fig. 2. An example of a bischofite sample Рис. 2. Пример образца бишофита
а)
with «perspiration», i.e. it was possible to observe the process of transition into a fluid state. An example of a prepared bischofite sample is shown in Fig. 2.
A total of eleven cylindrical bischofite samples were made with a height to diameter ratio of 2:1. The weight and geometric dimensions were measured for all samples. The average density value was found to be 1,59 g/cm3.
Equipment and Test Mode
The main features of determining the deformation characteristics of bischofite
6)
Fig. 3. A sensor for measuring longitudinal (a) and transverse (b) deformations of bischofite samples Рис. 3. Датчик измерения продольных (а) и поперечных (б) деформаций образцов бишофита
Fig. 4. Sensors for measuring longitudinal (1) and transverse (2) deformations mounted on a bischofite sample (3)
Рис. 4. Датчики измерения продольных (1) и поперечных (2) деформаций, установленных на образце бишофита (3)
samples are a clear manifestation of the plastic properties even at a slight load, as well as the extreme difficulty of placing measuring sensors on the sample due to its high hygroscopicity. The specificity of the bischofite properties led to the development of a number of additional constructive solutions in comparison with the generally accepted technique of experiment with salt rocks [17].We have designed and made specialized sensors, and developed a technique for fixing them on a sample.
The technique for fixing specialized sensors is described below. Rubber cuffs were put on the top and bottom of the bischofite sample near its end zones. Sensors measuring longitudinal deformation were mounted on them (Fig. 3, a). Special dies with a small depression in the center were pulled using a rubber cuff in the central part of the sample from its diametrically opposite sides. The depression is necessary for accurate installation of the sensor measuring the sample transverse deformation (Fig. 3, b). A photograph of a sample prepared for studying with sensors mounted on it is shown in Fig. 4.
We have evaluated the measurement accuracy of the developed sensors. For this purpose, we used a metal sample with known elastic properties: elastic modulus E = 200 GPa and Poisson's ratio v = 0,25.
u '
The strain gages were glued to a metal sample along with the sensors. The whole structure was pressure-tested on the TP-1-1500 press. The relative accuracy of longitudinal deformations measuring was not more than 0,96%, this one for transverse deformations was not more than 0,65%.
The tests were held on the TP-1-1500 universal hydraulic machine with a maximum load capacity of 100 tons (Fig. 5). The readings were recorded using the ACTest measuring software.
The deformation properties of rock salt were determined in accordance with GOST 28985-91 [17] under uniaxial com-
Fig. 5. General view of the TP-1-1500 test press Рис. 5. Общий вид испытательного пресса ТП-1-1500
pression at a constant loading rate. Sample testing included a series of successive loading and partial unloading cycles, as well as an increase in the maximum load in each subsequent cycle.
Bischofite samples were tested as follows. The tensile strength under uniaxial compression was predetermined before the experiments on the bischofite deformation properties. According to the test results, the average value of the bischofite tensile strength was 5 MPa. The samples were tested under uniaxial compression at a constant loading rate not exceeding 0,2 MPa/s. Longitudinal and transverse deformations were recorded during the experiment. The number of cycles did not exceed four. All loading and unloading cycles ranged from 5 to 50% of the tensile strength under uniaxial compression.
n¡
ce
3
- Гл
ei
\ f\
I л
i' Щ\
У 1 / W
-0,04 -0,03 -0,02
Transverse strain, 83
Axial strain, ei
Fig. 6. Complete deformation diagram of bischofite sample No. 8-3-1 Рис. 6. Полная диаграмма деформирования образца бишофита № 8-3-1
Bischofite Test Results
Eleven samples from well 8 t of the Volgograd region were tested for the bischofite deformation properties.
Diagrams of bischofite sample deformations o1 = /(s1), as well as a graph of s3 = /(s1) were plotted according to the test results. An example complete deformation diagram of bischofite sample No. 8-3-1 is shown in Fig. 6.
Rock Salt Test Results
Twenty six rock salt samples from well 1 t of the Volgograd region were tested for the deformation properties.
An example complete deformation diagram of rock salt sample No. 74-2 is shown in Fig. 7.
Deformation modulus E. was deter-
d
mined at the «loading» sections by ratio Ao/As1 or by dependence o1 = /(s1). Elastic modulus E was determined at the «un-
u
loading» section for each cycle by ratio Ao1 /As1. The sample modulus of elasticity was calculated as the arithmetic average of all «unloading» cycles. Poisson's ratio p was determined at the «unloading» section by ratio As3 /As1 for each cycle. The value of the Poisson's ratio was calculated as the arithmetic average of all «unloading» cycles.
3
0
-0,004
аз Si
/'
Fig. Рис
-0,003 -0,002 -0,001 0,000 0,00'
Transverse strain, S3
7. Complete deformation diagram of rock salt sample No. 74-2 7. Полная диаграмма деформирования образца каменной соли № 74-2
0,002 0,003
Axial strain, ei
The difference in the complete deformation diagrams for bischofite and rock salt is due to the fact that at a slight load applied to the bischofite sample, rheologi-cal processes took place, caused by this effect.
Discussion of the Results
An interesting feature of the bischofite sample deformation was discovered when plotting the longitudinal and transverse deformations vs stress graphs. A comparison of the stress vs longitudinal and transverse deformations graphs for bischofite sample No. 8-3-1 and rock salt sample No. 74-2 is shown in Fig. 6 and Fig. 7, respectively.
The most characteristic «unloading-loading» deformation section of plastic
Table 1
Bischofite sample deformation properties Деформационные свойства образцов бишофита
Table 2
Deformation properties of rock salt of the Volgograd region, well 11 Деформационные свойства каменной соли Волгоградской области, скважина 1 т
Sample No Deformation modulus Ed, MPa Elastic modulus E, MPa u* Poisson's ratio v, unit fractions
6-19-2 694 4482 0,46
6-21-1 674 3504 0,31
7-2-1 313 4237 -
7-2-3 964 4567 0,22
7-14-3 708 3300 0,44
7-14-4 558 3363 0,49
7-15-1 628 4564 0,50
8-2-1 888 4513 0,36
8-3-1 269 2922 0,37
8-4-1 843 4310 0,31
8-6-3 306 2861 0,5
Mean 623 3875 0,40
Standard deviation 240 687 0,09
Variation coefficient, о/ % 39 18 24
Sample No. Deformation modulus Ed, MPa Elastic modulus Eu, MPa Poisson's ratio v, unit fractions
7 4713 26 381 0,18
8-1 3605 28 129 0,19
8-2 3228 29 280 0,18
9-1 2803 21 878 0,27
61-11 2119 29 711 0,28
62-1 3500 28 493 0,24
62-3 2634 28 875 0,27
62-5a 1764 24 267 0,28
63-9 1625 25 431 0,18
120-1a 2575 28 416 0,15
147-1a 2217 22 333 0,19
163-1a 2490 29 217 0,22
171-1a 2523 28 936 0,21
176-1 2403 29 284 0,20
180-1a 1805 29 239 0,22
184-1a 2804 29 174 0,22
187-1a 2323 24 492 0,19
190a 1975 23 997 0,21
192-3 1985 20 162 0,20
197-1 3367 27 234 0,20
201-1a 2864 24 646 0,22
207-1a 2504 24 159 0,21
210-1a 2368 19 994 0,25
214-1a 4142 28 408 0,23
216-1a 2477 22 991 0,27
224a 1878 26 909 0,23
Mean 623 3875 0,40
Standard deviation 240 687 0,09
Variation coefficient, % 39 18 24
rocks is a loop similar to a hysteresis loop. The bischofite «unloading-loading» branches in graphs 6, are shown with solid and dashed lines ellipses. These areas are V-shaped, not typical for rocks at all. This is explained by the fact that even at a slight load, bischofite samples begin to deform. When the sample load decreases («unloading» branch), it still exhibits an increase in axial deformations. Cracks quickly form in crystals and intercrystal-line space, which turn into main fractures. However, bischofite samples are not able to self-heal like other samples of halogen rocks (sylvinites, halites, polygalites and their constituent rocks), and they continue to open, i.e. further deformation takes place. This process also manifests itself in the «unloading» section shown in Fig. 6.
According to GOST 28985-91, elastic properties of rocks, including salt, shall be determined in the sections of «unloading» branches, when the sample can either fully or partially manifest its elastic deformations without significant manifestation of elastoplastic and plastic properties. In the case of bischofite, it is impossible to determine the elastic properties by deformations at the «unloading» branch using this method, since it provides negative values. However, the further branch («loading» to the previously effective maximum value) is straightforward and fully meets all the requirements. Elastic properties were determined at these branches: the elastic modulus and the Poisson's ratio. The deformation modulus was determined according to the method regulated by GOST and described above.
Processing the results of all tested bischofite samples resulted in the data shown in Table 1.
Processing the test results of all rock salt samples resulted in the data shown in Table 2.
Bischofite and rock salt have significantly different properties, as follows from the data of Tables 1 and 2. The average values of the rock salt deformation modulus and elastic modulus are higher than those of bischofite by 4,24 and 6,77, respectively. At the same time, the Poisson's ratio is 1,81 times higher for bischofite. Bischofite interlayers can significantly affect the stress distribution, strength and stability of the rock mass around wells and underground storages in salt deposits, as well as of other underground and mine construction facilities that should be taken into account when designing them.
Conclusions
We can draw the following conclusions analyzing the resulting experimental data for determining the bischofite deformation properties:
1. The deformation modulus, elastic modulus and the Poisson's ratio of bischofite from Volgograd UGS facility were determined in laboratory conditions for the first time.
2. Samples of rock salt and bischofite showed significant differences between the deformation curves and elastic properties due to the rheological and plastic properties of the latter. It required the development of a special test procedure. The average values of the rock salt deformation modulus and elastic modulus are 4,24 and 6,77 times higher than those of bischofite, and the bischofite Poisson's ratio is 1,81 times higher than that of rock salt which should be taken into account when designing wells and underground structures.
СПИСОК ЛИТЕРАТУРЫ
1. Гриценко И. А., Овчинников А. Д. Некоторые вопросы устойчивости бишофита в приствольной зоне скважины /Нефтепромысловая геология и строительство скважин в Прикаспийском регионе: сборник научных трудов. - М.: ИГИРГИ, 1986.
2. Деревягин В. С., Седлецкий В. И., Гребенников Н. П., Ермаков В. А., Свидзин-ский С. А. Бишофиты Нижнего Поволжья. - Ростов-на-Дону: Изд-во РГУ, 1989. - 96 с.
3. Свидзинский С. А., Московский Г. А. Поволжский бишофитоносный бассейн: строение, условия образования, геолого-промышленная оценка. - Саратов: Научная книга, 2004. - 104 с.
4. Ильницкая Е. И., Тедер Р. И., Ватолин Е. С., Кунтыш М. Ф. Свойства горных пород и методы их определения. - М.: Недра, 1969. - 392 с.
5. Осипов Ю. В., Кошелев А. Е. Современные способы определения деформационных свойств горных пород // Горный информационно-аналитический бюллетень. - 2017. -№ 11. - С. 68-75.
6. Тавостин М. Н., Кошелев А. Е., Осипов Ю. В. Исследование физико-механических свойств каменной соли с учетом предварительного всестороннего нагружения // Горный информационно-аналитический бюллетень. - 2015. - № 2. - С. 89-96.
7. Паньков И.Л., Портяная Е. А. Определение прочностных и деформационных свойств соляных пород при сжатии на образцах различного размера // Научные исследования и инновации. - 2011. - Т. 5. - № 4. - С. 47-49.
8. Кравченко О. С., Филимонов Ю.Л. Особенности деформирования каменной соли при повышенных температурах // Горный информационно-аналитический бюллетень. -2019. - № 1. - С. 69-76. DOI: 10.25018/0236-1493-2019-01-0-69-76.
9. Mansouri H., Ajalloeian R. Mechanical behavior of salt rock under uniaxial compression and creep tests. // International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 110. Pp. 19-27.
10. Баклашов И. В., Картозия Б. А. Механика подземных сооружений и конструкции крепей. Учебник для вузов. 3-е изд. - М.: Студент, 2012. - 543 с.
11. Тавостин М. Н., Кошелев А. Е. Оценка влияния вида объемного напряженного состояния на механические свойства каменной соли // Горный информационно-аналитический бюллетень. - 2009. - № 11. - С. 130-135.
12. Кошелев А. Е. Экспериментальное определение модуля деформации каменной соли в сложном напряженном состоянии // Горный журнал. - 2012. - № 9. - С. 56-58.
13. Li H., Yang C., Liu Y., Chen F., Ma H. Experimental study of ultrasonic velocity and acoustic emission properties of salt rock under uniaxial compression load // Yanshilixue Yu Gongcheng Xuebao / Chinese Journal of Rock Mechanics and Engineering, 2014. Vol. 33. No 10. Pp. 2107-2116. DOI: 10.13722/j.cnki.jrme.2014.10.018.
14. Wisetsaen S., Walsri C., Fuenkajorn K. Effects of loading rate and temperature on tensile strength and deformation of rock salt // International Journal of Rock Mechanics and Mining Sciences. 2015. Vol. 73, Pp. 10-14.
15. Jinyang Fan, Deyi Jiang, Wei Liu, Fei Wu, Jie Chen, JJk Daemen Discontinuous fatigue of salt rock with low-stress intervals // International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 115. Pp. 77-86. DOI: 10.1016/j.ijrmms.2019.01.013.
16. Горная энциклопедия: т. 1. / Под ред. Е. А. Козловского. - М.: Советская энциклопедия, 1984.
17. Проскуряков Н. М., Пермяков Р. С., Черников А. К. Физико-механические свойства соляных пород. - Л.: Недра, 1973. - 272 с.
18. ГОСТ 28985-91. Породы горные. Метод определения деформационных характеристик при одноосном сжатии. Комитет стандартизации и метрологии СССР. - М.: Изд-во стандартов. - 1991. - 15 с. итш
REFERENCES
1. Gritsenko I. A., Ovchinnikov A. D. Some questions of bischofite stability in the borehole zone of the well. Neftepromyslovaya geologiya i stroitelstvo skvazhin v Prikaspiyskom regione:
sbornik nauchnykh trudov [Oil-field geology and well construction in the Caspian region: Collection of scientific papers], Moscow, IGIRGI, 1986.
2. Derevyagin V. S., Sedletskiy V. I., Grebennikov N. P., Ermakov V. A., Svidzinskiy S. A. Bishofity Nizhnego Povolzhya [The Lower Volga bischofites], Rostov-on-Don, Izd-vo RGU, 1989, 96 p.
3. Svidzinskiy S. A., Moskovskiy G. A. Povolzhskiy bishofitonosnyy basseyn: stroenie, usloviya obrazovaniya, geologo-promyshlennaya otsenka [The Volga bischofite basin: Structure, formation conditions, commercial geological value], Saratov, Nauchnaya kniga, 2004, 104 p.
4. Il'nitskaya E. I., Teder R. I., Vatolin E. S., Kuntysh M. F. Svoystva gornykh porod i metody ikh opredeleniya [Properties of rocks and determination methods], Moscow, Nedra, 1969, 392 p.
5. Osipov Yu. V., Koshelev A. E. Modern approaches to determining deformation characteristics of rocks. MIAB. Mining Inf. Anal. Bull. 2017, no 11, pp. 68-75. [In Russ].
6. Tavostin M. N., Koshelev A. E., Osipov Yu. V. Study of physico-mechanical properties of rock salt with the tentative comprehensive loading. MIAB. Mining Inf. Anal. Bull. 2015, no 2, pp. 89-96. [In Russ].
7. Pan'kov I. L., Portyanaya E. A. Estimation of strength and deformation characteristics of salt rocks in compression of different size samples. Nauchnye issledovaniya i innovatsii. 2011. Vol. 5, no 4, pp. 47-49. [In Russ].
8. Kravcenko O.S., Filimonov Yu.L. Deformation of rock salt under increased temperature. MIAB. Mining Inf. Anal. Bull. 2019, no 1, pp. 69-76. [In Russ]. DOI: 10.25018/0236-14932019-01-0-69-76.
9. Mansouri H., Ajalloeian R. Mechanical behavior of salt rock under uniaxial compression and creep tests. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 110. Pp. 19-27.
10. Baklashov I. V., Kartoziya B. A. Mekhanika podzemnykh sooruzheniy i konstruktsii krepey. Uchebnik dlya vuzov. 3-e izd. [Mechanics of underground structures and support designs. Textbook for high schools. 3rd edition], Moscow, Student, 2012, 543 p.
11. Tavostin M. N., Koshelev A. E. Influence of the volumetric stress type on the rock salt mechanical properties. MIAB. Mining Inf. Anal. Bull. 2009, no 11, pp. 130-135.
12. Koshelev A. E. Experimental determination of deformation modulus of rock salt in multiaxial stress state. Gornyi Zhurnal. 2012, no 9, pp. 56-58. [In Russ].
13. Li H., Yang C., Liu Y., Chen F., Ma H. Experimental study of ultrasonic velocity and acoustic emission properties of salt rock under uniaxial compression load. Yanshilixue Yu Gongcheng Xuebao / Chinese Journal of Rock Mechanics and Engineering, 2014. Vol. 33. No 10. Pp. 2107-2116. DOI: 10.13722/j.cnki.jrme.2014.10.018.
14. Wisetsaen S., Walsri C., Fuenkajorn K. Effects of loading rate and temperature on tensile strength and deformation of rock salt. International Journal of Rock Mechanics and Mining Sciences. 2015. Vol. 73, Pp. 10-14.
15. Jinyang Fan, Deyi Jiang, Wei Liu, Fei Wu, Jie Chen, JJk Daemen Discontinuous fatigue of salt rock with low-stress intervals. International Journal of Rock Mechanics and Mining Sciences. 2019. Vol. 115. Pp. 77-86. DOI: 10.1016/j.ijrmms.2019.01.013.
16. Gornaya entsiklopediya: t. 1. Pod red. E. A. Kozlovskogo [Mining encyclopedia. vol. 1. Kozlovskiy E. A. (Ed.)], Moscow, Sovetskaya entsiklopediya, 1984.
17. Proskuryakov N. M., Permyakov R. S., Chernikov A. K. Fiziko-mekhanicheskie svoystva solyanykh porod [Physical and mechanical properties of salt rocks], Leningrad, Nedra, 1973, 272 p.
18. Porody gornye. Metod opredeleniya deformatsionnykh kharakteristik pri odnoosnom szhatii. GOST28985-91 [Rocks. Methods to determine deformation characteristics in uniaxial compression. State Standart 28985-91], Moscow, Izd-vo standartov. 1991, 15 p.
ИНФОРМАЦИЯ ОБ АВТОРАХ
Осипов Юханна Владимирович1 — старший научный сотрудник, e-mail: [email protected], Кошелев Александр Евгеньевич1 — канд. техн. наук,
начальник испытательного лабораторного центра, e-mail: [email protected], Вознесенский Александр Сергеевич — д-р техн. наук, профессор, НИТУ «МИСиС», 1 ООО «Газпром геотехнологии». Для контактов: Осипов Ю.В., e-mail: [email protected].
INFORMATION ABOUT THE AUTHORS
Yu.V. Osipov1, Senior Researcher, e-mail: [email protected],
A.E. Koshelev1, Cand. Sci. (Eng.), Head of Testing Laboratory Center,
e-mail: [email protected],
A.S. Voznesenskii, Dr. Sci. (Eng.), Professor,
National University of Science and Technology «MISiS», 119049, Moscow, Russia, 1 Gazprom Geotechnologies Limited Liability Company, 123290, Moscow, Russia. Corresponding author: Yu.V. Osipov, e-mail: [email protected].
Получена редакцией 01.06.2020; получена после рецензии 10.08.2020; принята к печати 20.09.2020.
Received by the editors 01.06.2020; received after the review 10.08.2020; accepted for printing 20.09.2020.
^_
ОТДЕЛЬНЫЕ СТАТЬИ ГОРНОГО ИНФОРМАЦИОННО-АНАЛИТИЧЕСКОГО БЮЛЛЕТЕНЯ
(СПЕЦИАЛЬНЫЙ ВЫПУСК)
ИССЛЕДОВАНИЕ НА ИМИТАЦИОННОЙ МОДЕЛИ ПРОЦЕССОВ РАЗМЫВА И ВСАСЫВАНИЯ ЖЕЛЕЗНОЙ РУДЫ В ОЧИСТНОМ ЗАТОПЛЕННОМ ПРОСТРАНСТВЕ
(2020, № 5, СВ 19, 16 c. DOI: 10.25018/0236-1493-2020-5-19-3-14) Третьяк Александр Александрович1 — докт. техн. наук, доцент, профессор, е-mail: [email protected], Литкевич Юрий Федорович1 — канд. техн. наук, доцент, Гроссу Анна Николаевна1 — старший преподаватель,
1 Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова.
Представлены материалы по разработке имитационной модели и исследованию на модели процессов гидромониторного размыва и всасывания железной руды в очистном затопленном пространстве. Показано, что при гидромониторном размыве руды повышение эффективности процесса гидропереноса возможно за счет использования наклонных разрушающих и транспортирующих гидромониторных струй, а также путем обеспечения непрерывного вращения струй вокруг вертикальной оси пульпопровода. Установлено, что в затопленных очистных пространствах основным фактором, воздействующим на процесс гидропереноса, является поток, формируемый отраженными от стенок камеры гидромониторными струями.
Ключевые слова: имитационная модель, гидромониторы, пульпопровод, гидростатическое давление, железная руда, скорость струй, плотность пульпы, массоперенос руды.
SIMULATION-MODEL INVESTIGATION OF IRON ORE WASHING-OUT AND INTAKING IN THE FLOODED WORKING EXCAVATION
A.A. Tret'yak, Dr. Sci. (Eng.), Associate Professor, Professor, е-mail: [email protected], Yu.F. Litkevich1, Cand. Sci. (Eng.), Associate Professor, A.N. Grossu\ Senior Lector,
1 Platov South Russian state Polytechnic University (NPI), 346428, Novocherkassk, Russia.
This article presents simulation model developing and simulation-model investigationof iron stone washing-out and intaking in the flooded working excavation. We can see that during the iron ore jetting efficiency gains for the hydrotransfer process is possible due to inclined destroying and transporting jettingor continuous jets rotation around the pipeline vertical axis. The article states that the main factorforcing on the hydrotransfer process inthe flooded working excavation is the s the flow formed by the jets reflected from the chamber walls.
Key words: simulation model, jets, pipe line, head of water, iron ore, jets speed, pulp density, iron ore mass-transfer.