Journal of Siberian Federal University. Engineering & Technologies, 2019, 12(4), 409-415
yflK 669-179
Evolution of Phase Composition of Composite Materials at Contact of Titanium-Aluminium Obtained by Welding Explosion
Yelena V. Zakharova*, Ksenya V. Alekseeva and Yelena G. Zhmak
Siberian Federal University 79 Svobodny, Krasnoyarsk, 660041, Russia
Received 26.06.2018, received in revised form 22.09.2018, accepted 22.05.2019
In this work, welding explosion of multiple sample with its further annealing to 300 degrees is used as the method of receiving layered materials. Using this technology allows heating in the air; herewith possibility of oxygen penetration into internal material layers is eliminated. Using this technology allows heating in the air. Furthermore, pressures developed in the process of welding exposure ensure quality contact between the surfaces of plates [1].
Keywords: titanium-aluminium, composite materials, phase transformation, welding explosion, intermetallides.
Citation: Zakharova Ye.V., Alekseeva K.V., Zhmak Ye.G. Evolution of phase composition of composite materials at contact of titanium-aluminium obtained by welding explosion, J. Sib. Fed. Univ. Eng. technol., 2019, 12(4), 409-415. DOI: 10.17516/1999-494X-0145.
Эволюция фазового состава композиционного материала в зоне контакта алюминий-титан, полученного сваркой взрывом
Е.В. Захарова, К.В. Алексеева, Е.Г. Жмак
Сибирский федеральный университет Россия, 660041, Красноярск, пр. Свободный, 79
В данной работе в качестве метода получения слоистых материалов использована сварка взрывом многослойного пакета с последующим его отжигом до 300 градусов. Использование данной технологии позволяет проводить нагрев на воздухе, при этомустраняется возможность попадания кислорода во внутренние слои материала. Кроме того, давления, развиваемые в
© Siberian Federal University. All rights reserved
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Corresponding author E-mail address: [email protected]
*
процессе сварки взрывом, обеспечивают качественный контакт между поверхностями соединяемых пластин [1].
Ключевые слова: титан-алюминий, композиционные материалы, фазовые превращения, сварка взрывом, интерметаллиды.
Introduction
At the moment, one of the most important tasks of machinery manufacturing development is improvement of quality, reliability and lifetime of the components of various machines and mechanisms. For solving this problem complex approach, including creation of new materials, development and learning to use new technologies is needed. The work [2] represents the method of obtaining composite materials on the basis of Ti-Al.
Many papers are concerned with structural transformation in the alloys on the basis of aluminum and titanium. Titanium alloys are characterized by sufficient specific strength, high anticorrosion properties and considerable heat resistance. The advantage of heat-resistant Titanium alloys is small specific weight and small specific stress during operation of the components in centrifugal conditions. These are disks, blades and other components of gas turbines [3]. The studies undertaken earlier showed possible simplifying the technical process of creation of layered intermetallide Ti-Al composite materials in consequence of Ti and Al melt interaction [4].
Introduction of aluminum into technical titanium even in small quantities (up to 13%) allows sharp increasing alloy heat resistance when decreasing its density and cost. This alloy is a perfect construction material. Adding 3-8% of Al increases temperature of a-Ti transformation into P-Ti. Aluminum is basically the only alloying stabilizer of a-Al increasing its strength at stability of properties of plasticity and viscosity of titanium alloy and increasing its heat resistance, creeping strength and elastic modulus. The only disadvantage of titanium is eliminated this way [5].
However, during further annealing this material might have undesirable properties, such as fragility, small strength and plasticity, in consequence of which absolutely major defect - cracks occurs [6, 7].
Purpose of work
Researching of structure and phase composition at contact of AL-Ti material, obtained by welding explosion and further annealing at 300 °C.
Samples and methods of samples obtaining
Studying material was obtained by welding explosion. 12 plates of aluminium and 11 of titanium with thickness 0.5 mm and 1 mm were used for welding explosion. Explosive material is ammonite 6LS. Welding process was made in accordance with method, which described in work [1]. Phase composition of obtained composite (point TiAl3001 in Fig. 1) was studied by X-Ray diffractometer "Bruker". After that sample was heated in high temperature X-ray diffractometer attachment to 300 °C (point TiAl3001 in Fig. 1). After that sample was annealed for 1 hour (point TiAl3002 in Fig. 1). Results of X-ray diffraction analysis at these points are shown in Fig. 1 and Fig. 2, respectively.
0 60 120 180 Fig. 1. Annealing scheme in X-ray diffractometer of the AL-Ti composite at 300 °C
h J
J, u I I, A L A
I—tîahddiI
20 30 40 50 60 Td
90 100 110 12G
Fig 2. Diffractogram of sample of Ti-Al after heating for 1 hour to 300 °C
Results and discussion
Fig. 2 shows the X-ray diffraction pattern of Ti-Al obtained by diffraction analysis method.
As shown in Table 1, phase of solid solution of aluminum with titanium exists. According to work [8] phase reflexes of Al3Ti are displaced phase reflexes of Al2Ti are closer to the values obtained by us.
As shown in Table 2, phase TiO2 appeared. And also a phase based on the fcc lattice of Al, which is equivalent of solid solution of aluminum with titanium, as mentioned earlier.
Welding explosion process is nonequilibrium process, as result of this process atomic displacement occurred. Such displacements were a reason of several phases' formation i.e. nonequilibrium structure, the positions of the atoms in this structure do not exactly correspond to the interatomic distances of equilibrium structures. The estimation of such displacements is given in the modifications column in Table 1.
Table 1. Explanation of the X-ray diffraction pattern shown in Fig. 2
№ Ti cph Al face-centered © d (hkl) 2 © AhTi Pm3m A№ rny Modifications
hkl d(hkl) hkl d(hkl)
1 100 2.56437 17.6 2.5477 35.2 3.80 3.94 +1.3923
2 111 2.34925 19.15 2.3485 38.3 2.196 2.277 -0.0715
3 101 2.24902 20.05 2.2468 40.1 2.714 2.814 +0.5672
4 200 2.03495 22.25 2.0343 44.5 1.9 1.97 -0.0643
5 102 1.73022 26.45 1.7293 52.9 1.696 1.758 +0.0287
6 1.47892 220 1.43858 32.35 1.4395 64.7 1.342 1.392 -0.0475
7 112 1.25098 38.1 1.2484 76.2 1.551 1.608 +0.3596
8 311 1.22657 38.9 1.2267 77.8 1.145 1.187 -0.0397
9 222 1.17432 41 1.1741 82 1.098 1.138 -0.0361
10 400 1.01681 49.25 1.0168 98.5 0.95 0.985 -0.0318
11 331 0.93297 55.65 0.9330 11.3 0.871 0.903 -0.03
12 420 0.90946 58 0.9083 116 0.850 0.881 -0.0273
Fig. 3. Diffractogram of sample of Ti-Al after curing for 1 hour at temperature of 300 °C
As shown in Table 3, new lines № 6, № 8, № 9 appeared, explanations of these lines determined the Al2Ti phase with a hcp lattice at 300 °C.
The explanations showed that Al3Ti coincides within the error limits with the results of work [7, 8]. The detection of the Al2Ti phase coincides with the results presented in works [7] and [9].
Fig. 4 shows transformation way from the bcc lattice to the hcp lattice with insignificant atomic displacements through the fcc phase.
Conclusions
1) Annealing at 300 °C temperature were a reason of titanium oxides elimination from the structure Ti-Al.
Table 2. Explanation of the X-ray diffraction pattern shown in Fig. 3
№ Ti Al © d (hkl) 2 © AhTi A№
hkl d(hkl) hkl d(hkl)
1 100* 2.56295 11.55 3.8476 35.1 3.80 3.94
2 002 2.35004 19.15 2.3485 38.3 1.9 1.97
3 101 2.24952 20 2.2523 40 2.714 2.814
4 200 2.03508 22.3 2.03004 44.6 1.9 1.97
5 102 1.73046 26.45 1.7295 52.9 1.696 1.758
6 110 1.47797 31.55 1.4721 63.1 2.714 2.814
7 220 1.43874 32.4 1.4375 64.8 1.342 1.392
8 112 1.25124 38.1 1.2484 76.2 1.551 1.608
9 201 1.22665 38.9 1.2267 77.8 1.696 1.758
10 1.17427 222 41 1.1662 82 1.098 1.138
11 0.99014 400 1.01675 49.25 1.0168 98.5 0.95 0.985
12 331 0.93301 56.5 0.9241 111.3 0.871 0.903
13 420 0.90941 58.15 0.9069 116.3 0.850 0.881
Table 3. Comparison of Al2Ti phases, based on data of Tables 1 and 2
Al2Ti
№ hkl Table 1 hkl Table 2
1 100 3.94 100* 3.94
2 111 2.277 002 1.97
3 101 2.814 101 2.814
4 200 1.97 200 1.97
5 102 1.758 102 1.758
6 220 1.392 110 2.814
7 112 1.608 220 1.392
8 311 1.187 112 1.608
9 222 1.138 201 1.758
10 400 0.985 222 1.138
11 331 0.903 400 0.985
12 420 0.881 331 0.903
13 420 0.881
2) Shear deformation mechanism of the atomic groups displacement in mesoscopic spaces were suggested.
References
[1] Павлюкова Д.В. Структура и механические свойства слоистых материалов на основе титанаиалюминия,полученных потехнологии сварки взрывом и дополнительной термической обработки: Автореф. дисс. ...канд. техн. наук. Новосибирск: НГТУ, 2011. 19 с. [Pavlyukova D.V. Structure and mechanical properties of laminates on the basis of titanium and aluminum obtained by explosion welding technology and additional heat treatment: the dissertation author's abstract on scientificdegree competitioncanHidate af enaiaeerinaecienсен. NovosibirsO:NSfU. 2011. 19p.(iH Russian)].
[2] Лесков М.Б., Абкарян А.К., Анфилофьев В.В., Шелепова С.Ю., Герт С., Квеглис Л.И. Фазнеыйннятав кямпсзициоеооес мятернааа в зоне тянтеатаплюмснт-титан. еаеняул; Красно яр ск, 2016. С. 81-86 [Leskov M.B., Abkaryan A.K., Anfilofiev V.V., Shelepova S.Yu., Gert S., Kveglis L.I. Phase composition of the composite material in the aluminum-titanium contact zone. Barnaul, 2016. Р. 81-86 (in Russian)].
[3] Коржов В.П., Карпов М.И. Структура и высокотемпературная прочность при изгибе многослойного композиционного материала из интерметаллидов титана с алюминием. Вестник Тамбовского университета, 2013, 18(4-2). [Korzhov V.P., Kar-pov M.I. Structure and high-temperature bending strength of a multi-layer composite of inter-metallic compounds of titanium with aluminum. Bulletin of Tambov University, 2013, 18(4-2) (in Russian)].
[4] Ghosh G., Asta M. First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics. Acta Materialia 2005, 53, 3225-3252.
[5] Зубков Л.Б. Космический металл: Все о титане. Раздел ГРНТИ: Машиностроительные материалы. М.: Наука, 1987. с. 128. [Zubkov L.B. Cosmic metal: All about the titan. Section GRNTI: Machine-building materials. M.: Science, 1987. 128 р. (in Russian)].
[6] Bataev I.A., Bataev A.A., Malib V.I., Pavliukova D.V. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing. Novosibirsk, State Technical University, 2011. 10 с.
[7] Mali V.I., Pavliukova D.V., Bataev I.A., Bataev A.A., Smirnov A.I., Yartsev P.S., Bazarki-na V.V. Formation of the intermetallic layers in Ti-Al multilayer composites. Novosibirsk, State Technical University, 2011. 6 с.
[8] Орлова Ю.А., Джес А.В., Квеглис Л.И. Кластерная самоорганизация при мартенситных превращениях. ВКГУ им С. Аманжолова. Усть-Каменогорск, 2016. С. 202-208. [Orlova Yu.A., Jess
A.V., Quaglis L.I. Cluster self-organization in martensitic transformations. EKSU behalf of S. Aman-zholov. Ust-Kamenogorsk, 2016. Р. 202-208 (in Russian)]. [9] Shuster J.C., Ipser H.Z. Metallfde 1990, 81. 389.