Научная статья на тему 'Evolution of multiple-access networks - cellular and non-cellular - in historical perspective. Part 4'

Evolution of multiple-access networks - cellular and non-cellular - in historical perspective. Part 4 Текст научной статьи по специальности «Медицинские технологии»

CC BY
118
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
NETWORK CAPACITY / LTE RELEASES / MULTIPLE-INPUT-MULTIPLE-OUTPUT / MIMO / MULTIPLE USER / MU / SINGLE-INPUT-SINGLEOUTPUT / SISO / SINGLE-INPUT-MULTIPLE-OUTPUT / SIMO / SINGLE CARRIER / SC / SINGLE USER / SU / SPECTRAL EFFICIENCY / USER EQUIPMENT / UE / WIRELESS FIDELITY NETWORK / WI-FI / WIRELESS METROPOLITAN AREA NETWORK / WIMAX / ЕМКОСТЬ СЕТИ / РЕЛИЗЫ СЕТИ LTE / МНОЖЕСТВЕННЫЙ ВХОД-МНОЖЕСТВЕННЫЙ ВЫХОД (MIMO) / МНОГОПОЛЬЗОВАТЕЛЬСКИЙ (MU) / ОДИНОЧНЫЙ ВХОД-ОДИНОЧНЫЙ ВЫХОД (SISO) / ОДИНОЧНЫЙ

Аннотация научной статьи по медицинским технологиям, автор научной работы — Sergeev A.M., Blaunstein N.Sh.

Introduction: The goal of this issue is the analysis of evolution of the current and novel wireless networks, from second generation (2G) to fifth generation (5G), as well as changes in technologies and their corresponding theoretical background and protocols from Bluetooth, WLAN, WiFi and WiMAX to LTE, OFDM/OFDMA, MIMO and LTE/MIMO advanced technologies with new hierarchy of cellular maps design femto/pico/micro/macro. Methods: We use new theoretical frameworks for description of the advanced technologies, such as multicarrier diversity technique, OFDM and OFDM novel approach, MIMO aspects description based on multi-beam antennas approach, various cellular maps design based on a new algorithms of femto/pico/micro/macrocell deployment, and a new methodology of a new MIMO/LTE system integration based on multi-beam antennas. Results: We have created a new methodology of multi-carrier diversity description for novel multiple-access networks, of usage of OFDM/OFDMA modulation to obey inter-user and inter-symbol interference in multiple-access networks, of how to obey the multiplicative noises occurring in the multiple-access wireless networks, caused by multi-ray phenomena, and finally, of how to overcome propagation effects occurring in the terrestrial communication links by use combination of MIMO and LTE technologies based on multi-beam antennas. For these purposes we present new stochastic approach that accounts for the terrain features, such as buildings’ overlay profile, buildings’ density around the base station and each user antennas, and so forth. These parameters allow us to estimate for each situation occurs at the built-up terrain area the effects of fading, as a source of multiplicative noise. Practical relevance: New methodology of how to estimate effects of multiplicative noise, inter-user and inter-symbol interference, occurring in the terrestrial wireless networks, allows us to predict a-priory practical aspects of the current and new multiple-access wireless communication networks, such as: the users' capacity and user's links spectral efficiency for various configurations of cells deployment femto, pico, micro, and macro, as well as the novel MIMO/LTE system configuration for future networks of 4th and 5th generation deployment.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Эволюция многопроцессорных систем связи - сотовых и несотовых - в исторической перспективе. Часть 4

Постановка проблемы: целью данного обзора является анализ эволюции систем беспроводной связи от второй генерации (2G) до пятой генерации (5G), а также изменения технологий и их существующих теоретических основ и протоколов от Bluetooth, WLAN, WiFi и WiMAX до LTE, OFDM/OFDMA, MIMO и LTE/MIMO продвинутых технологий с новой иерархической структурой дизайна сотовых карт фемто/пико/микро/макро. Методы: использованы новые теоретические подходы для описания продвинутых технологий, таких как многопользовательская техника разделения пользователей, OFDM и OFDM новейший подход, новые аспекты описания MIMO-систем на базе использования многолучевых антенн, дизайн различных сотовых карт на основе новых алгоритмов построения фемто/пико/микро/макро сот, а также новой методологии интегрирования новой MIMO/LTE-системы с помощью многолучевых антенн. Результаты: создана новая методология описания многопользовательского разделения, использования комбинированной OFDM/OFDMA-модуляции для обхождения интерференции между пользователями и между символами в новых многопроцессорных системах, мультипликативных шумов, имеющих место в беспроводных многопроцессорных системах связи, вызванных явлениями многолучевости. В итоге предложено, как обойти эффекты распространения, имеющие место в наземных каналах связи, используя комбинацию MIMOи LTE-технологий, основанных на применении многолучевых антенн. Для этих целей разработан новый стохастический подход к проблеме, учитывающий особенности застройки земной поверхности, такие как профиль застройки домов, плотность застройки домов вокруг антенн базовой станции и пользователей и т. д. Эти характеристики позволяют в итоге оценить эффекты фединга как источника мультипликативного шума. Практическая значимость: новая методология оценки эффектов, созданных мультипликативным шумом, интерференцией между пользователями и между символами, имеющими место в наземных системах беспроводной связи, позволяет прогнозировать практические аспекты существующих и новых многопроцессорных беспроводных систем связи, такие как емкость (количество) пользователей и спектральная эффективность каналов пользователей для различных конфигураций построения сот фемто/пико/микро/макро, а также новейших конфигураций систем MIMO/LTE для построения будущих систем 4-го и 5-го поколений.

Текст научной работы на тему «Evolution of multiple-access networks - cellular and non-cellular - in historical perspective. Part 4»

\ ИНФОРМАЦИОННЫЕ КАНАЛЫ И СРЕДЫ

UDC 621.371 Surveys

doi:10.31799/1684-8853-2019-1-65-75

Evolution of multiple-access networks -

cellular and non-cellular - in historical perspective. Part 4

A. M. Sergeeva, Senior Lecturer, orcid.org/0000-0002-4788-9869 N. Sh. Blaunsteinb, Dr. Sc., Phys.-Math., Professor, nathan.blaunstein@hotmail.com aSaint-Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, Saint-Petersburg, Russian Federation

bBen-Gurion University of the Negev, P.O.B. 653, 1, Ben-Gurion St., Beer-Sheva, 84105, Israel

Introduction: The goal of this issue is the analysis of evolution of the current and novel wireless networks, from second generation (2G) to fifth generation (5G), as well as changes in technologies and their corresponding theoretical background and protocols — from Bluetooth, WLAN, WiFi and WiMAX to LTE, OFDM/OFDMA, MIMO and LTE/MIMO advanced technologies with new hierarchy of cellular maps design — femto/pico/micro/macro. Methods: We use new theoretical frameworks for description of the advanced technologies, such as multicarrier diversity technique, OFDM and OFDM novel approach, MIMO aspects description based on multi-beam antennas approach, various cellular maps design based on a new algorithms of femto/pico/micro/macrocell deployment, and a new methodology of a new MIMO/LTE system integration based on multi-beam antennas. Results: We have created a new methodology of multi-carrier diversity description for novel multiple-access networks, of usage of OFDM/OFDMA modulation to obey inter-user and inter-symbol interference in multiple-access networks, of how to obey the multiplicative noises occurring in the multiple-access wireless networks, caused by multi-ray phenomena, and finally, of how to overcome propagation effects occurring in the terrestrial communication links by use combination of MIMO and LTE technologies based on multi-beam antennas. For these purposes we present new stochastic approach that accounts for the terrain features, such as buildings' overlay profile, buildings' density around the base station and each user antennas, and so forth. These parameters allow us to estimate for each situation occurs at the built-up terrain area the effects of fading, as a source of multiplicative noise. Practical relevance: New methodology of how to estimate effects of multiplicative noise, inter-user and inter-symbol interference, occurring in the terrestrial wireless networks, allows us to predict a-priory practical aspects of the current and new multiple-access wireless communication networks, such as: the users' capacity and user's links spectral efficiency for various configurations of cells deployment — femto, pico, micro, and macro, as well as the novel MIMO/LTE system configuration for future networks of 4th and 5th generation deployment.

Keywords — network capacity, LTE releases, multiple-input-multiple-output, MIMO, multiple user, MU, single-input-single-output, SISO, single-input-multiple-output, SIMO, single carrier, SC, single user, SU, spectral efficiency, user equipment, UE, wireless fidelity network, WiFi, wireless metropolitan area network, WiMAX.

For citation: Sergeev A. M., Blaunstein N. Sh. Evolution of multiple-access networks — cellular and non-cellular — in historical perspective. Part 4. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2019, no. 1, pp. 65-75. doi:10. 31799/1684-8853-2019-1-65-75

Ending.

Start in Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2018, no. 4, pp. 86-104, doi:10.31799/1684-8853-2018-4-86-104; 2018, no. 5, pp. 94-103, doi:10.31799/1684-8853-2018-5-94-103; 2018, no. 6, pp. 82-94, doi:10.31799/1684-8853-2018-6-82-94

SU/MU MIMO technology embedded into LTE network

However, even using a single-carrier (SC) or single-user (SU) FDMA modulation technique for uplink transmission and a SC-OFDMA technique for downlink transmissions (see definitions in [147]), it is difficult to provide a wide range of spectra allocations of different sizes for each subscriber located in various terrestrial conditions, as well as a significant increase in spectrum efficiency compared to previous 2G and 3G cellular networks. This can be achieved only by combining Advanced FDMA and OFDMA technologies with MIMO systems performed on the basis of multi-beam or phased-array antennas [135-143]. The LTE Release 8 was recently expanded from two to 4 antennas in downlink spatial multiplexing from a BS, as shown in Fig. 26

(called also SIMO (single-input-multiple-output)-LTE system).

Here, the layers can be defined as simultaneously transmitted streams of data to multiple UEs using the same time-frequency resource. In such a manner, any transmission of separate data streams is distributed among desired layers. The pre-coder matrix indicator (or selection suggestion matrix) is needed to transfer the selected data for each desired user (see details in reference [143]). The LTE Release 9, as a new dual-layer transmission mode, also was performed for supporting of up to 4 transmitted antennas at the BS in downlink channel.

Now we postulate the following question: if both LTE Releases 8 and 9 could be integrated with MIMO, can such a combined LTE-MIMO system satisfy the International Mobile Telephony (IMT) requirements. Table 2 presents a comparative anal-

V7 К? S7

SU-MIMO

у

MU-MIMO

■ Fig. 26. Geometrical configuration of SU-MIMO and MU (multiple user)-MIMO in integrated LTE-MIMO system

■ Table 2. Requirements of IMT-Advanced (LTE Release 10) vs. LTE Release 8 system (extracted from Internet)

IMT-Advanced requirement LTE Release 8

Transmission bandwidth, MHz — At least 40 Up to 20

Peak spectral efficiency, bps/Hz DL 15 16

UL 6.75 4

Latency, ms Control plane Less than 100 50

User plane Less than 10 4.9

ysis of these requirements with respect to those that satisfy the deployments of LTE Release 8 system. It is clear seen that, even giving better latency for each UE, but using twice-narrower bandwidth, Release 8 cannot support high-rate transmission of data streams for each individual user. A fully-adaptive MU-MIMO transmission mode cannot be realized in cooperation with LTE Release 8 and LTE Release 9 [132, 133, 142, 144].

Recently, a new MU-MIMO antenna system was introduced called the Advanced LTE (A-LTE) or, simply, LTE Release 10 [140-142]. We will introduce this advanced technology since, as was mentioned in references [145], it is better equipped to meet the requirements of the modern 4th generation of wireless networks.

As seen in Fig. 27, the LTE Release 10, or A-LTE, can use at BS with at least 8 separate antennas for downlink MU connections, whereas for uplink, up to 4 UE antennas can be utilized. Here, a layer mapping supports the transfer of individual codes from 2 codebooks to each pre-decoding layer.

At the MU terminals, a de-mapping layer is used for transporting to each individual user its desired data codes. The use of a MIMO system at both end terminals allows for:

— fast user channel estimation, selecting and equalization;

— reliable cancellation of MU interference;

— simplification of complexity of the interference-aware receiver;

— reduction of the system's detection complexity;

— fitting of each single antenna of UEs in MIMO configuration;

— better implementation in the existing hardware, and so on.

In works [134, 143, 145] were introduced the scheduling algorithms, based on the geometrical alignment at the BS, which can minimize the IUI seen by each UE. In such a configuration, the proposed interference-aware receiver was found as a

^ ИНФБРМАЛЙБННЫЕКАНАЛЫЙ'СРЕДЫ V

good candidate for the practical implementation in MU-MIMO LTE Release 10 combined system.

To show the difference between the SU-SISO (single user single-input-single-output), MU-MIMO systems and the latter based on multi-beam antennas, we schematically presented them in Fig. 28. The first system is based on point-to-point single BS and single UE antennas, whereas the second one is based on multiple antennas from both side terminals [146].

To show the efficiency of usage of combination of MIMO/LTE network based on multi-beam antennas with respect to SISO network, we present the computations of a normalized maximum sum rate I [in bits/s/Hz] of downlink based on the mathematical algorithm fully described in [146]. In simulations, we account for a SU-SISO (that is, for M = 1, N = 1), for a SU-SIMO (single user single-input-multiple-output) (that is, for M = 1, N = 4), and for a MU-MIMO (that is, for M = 4, N = 4) integrated schemes (in the case of antenna correlated elements). The results of the numerical experiment are shown in Fig. 29.

It is clear seen from the presented illustrations that using the MU-MIMO system of various input-output antenna elements integrated as an example, with an Advanced LTE technology, it

is possible to increase the spectral efficiency and the data rate in such an integrated MU-MIMO network. Moreover, both SU-SIMO (or MISO) LTE and MU-MIMO LTE integrated systems, with a high correlation between transmitter and receiver multi-beam antennas (Fig. 30), show better performance in spectral efficiency and data stream rate [146]. Thus, it can be seen that the LTE-SU Rx gives low spectral efficiency and data rate with respect to the MU-MIMO A-LTE system. The later has a tendency to increase spectral efficiency and data rate per several times with respect to the previous systems and this tendency increases with an increase in SNR. With increase of amount of UE antennas and BS antennas this difference becomes more significant.

Finishing this paragraph, we should outline that by controlling of number of elements of multi-beam antennas at the both end terminals, BS and UEs, and a priory accounting for the real responses of each channel on multipath fading phenomena (by prediction of the real K-factor of fading) [148], we show the same effects, as were obtained in [140, 142-145], where a set of precoding codebooks (from one to several) was introduces for extension of the LTE Releases 8 to 10, using MIMO configurations with 2 or 4 transmitting antennas, or a dual-code-

Adaptive transnitter TX

Single user MIMO Propagation channel

MU-MIMO Propagation channel 1

Propagation channel 2

► ►

Adaptive receiver Rx

► ►

Adaptive receiver Rx

■ Fig. 28. Single user SISO network (top panel) and multiple user MIMO network (bottom panel)

QAM64

ODH SU-LTE-SISO (M = N = 1) system <^00 SU-LTE-SIMO (M = 4, N = 1) system -H-t MU-LTE-MIMO (M = 4, N = 4) system

■ Fig. 29. Spectral efficiency (extracted from [146] with the same notations, as done in [134])

■ Fig. 30. The proposed implementation of cellular, LTE and SU/MU-MIMO systems into the integrated configuration of future 4th generation network

book deployment [134] for MIMO configuration with 8 transmitting antennas at the BS terminal. What is important to notice is that the main limiting factors that can decrease efficiency of the proposed MIMO system integrated, for example, with the Advanced LTE Releases from 8 to 10, observed during numerical computations based on the real experiment carried in built-up area, are the ^-factor of fading, as a response of each individual communication channel on data transmission, and number of antenna beams within each terminal of the system, BS and UE.

Despite the fact that the approaches, proposed in [134, 140, 142-145] can significantly reduce a total LTE/MIMO system structure yielding a low-complexity of signal processing against inter-user in-

■ Fig. 31. LTE-MIMO network configuration based on multi-beam antennas

terference, as was shown in [146], without accounting for derivation of the ^-factor based on various topographic scenarios of the built-up areas of service, as well as for the effective configuration of MIMO system based on multi-beam antennas [146], it is impossible a priory predict data stream parameters and efficiency of each specific propagation channel "hidden" in the whole system, based on strict analysis of the channel response, and, finally, increase efficiency of the proposed Advanced LTE/ MIMO-R10 network by managing and control of its GoS and QoS.

Finally, following results obtained in references [135-146], as well as the recommendations stated there, we present the reader the following configuration of the SU-MIMO and MU-MIMO integrated with Advanced LTE, "hidden" into the conventional cellular-map scheme, as is shown in Fig. 31.

Such configurations can be extended for the combined femtocell/picocell/microcell/macrocell planning tool design (see Fig. 31).

These schemes can be considered as a best candidate of the convenient configurations that satisfied requirements of the 4th and 5th generation networks.

Summary

In Section 1, we introduced the reader into the conventional and current techniques, technologies and systems adapted for 2nd (2G) and 3rd (3G) generations of wireless networks, as well as the advanced technologies and their corresponding protocols used to utilize modern networks beyond 3G, such as 4th and 5th generations. A new generations, called 4th (4G) and 5th (5G), were introduced, which are ex-

■ Table 3. IMT requirements for 4th generation vs. the last LTE Releases and WiMAX 1st and 2nd generations of networks

IMT-Advanced requirement LTE Release 8 LTE Release 10 Wimax 1.0 Wimax 2.0

Transmission Bandwidth, MHz — At least 40 Up to 20 Up to 100 Up to 10 Up to 40

Peak spectral Efficiency, bps/Hz DL 15 16 16 6.4 15

UL 6.75 4 8.1 2.8 6.75

Latency, ms Control plane < 100 50 50 50 30

User plane < 10 4.9 4.9 20 10

pected to be capable of providing wider bandwidth, higher data stream rates, greater interoperability accords various communication protocols, without any collusion between them, user's security and non-collision communications between users, that is, to provide significant increase in GoS and QoS.

Thus, typical 2G standards as GSM (Global System for Mobile Communications) operated at 900 to 1900 MHz frequency band, which used TDMA/FDMA separate or combined digital modulation techniques, have not satisfied the high-data communication requirement. The Universal Mobile Telecommunications Systems (UMTS) standards that were related to 2.5G and 3G mobile systems, dealt with higher voice capacity and higher-speed digital data. The same parameters were expected for 3G communication networks such as WPAN (or Bluetooth), WiFi (or WLAN), WiMAX; all described briefly above. Unfortunately, even integrating and combined the existing 2G and 3G networks, technologies and protocols, was problematic to achieve 200 Mbps-1 Gbps data rate, multimedia (video and audio) applications, as well as terminal's heterogeneity related to significant decrease of the network costs, greater mobile signal availability in a "jungle of noises" caused by multipath fading.

For these reasons in the 4th and 5th generations, a physical layer was significantly broadened by serving a wide range of frequency bands (see Sections 2 and 3).

In our opinion, recently performed modern LTE and LTE-A networks integrated with MIMO systems based on multi-antenna (multi-beam or phased-ar-ray) technology, briefly described in Sections 4, can substantially improve 4G network spectrum efficiency providing three kind of advantages with respect to single antenna LTE system:

— transmit time diversity;

— beamforming;

— spatial multiplexing.

All these advantages are shown in Table 3. Moreover, using spatial multiplexing, the number of simultaneously transmitted data streams, as well as the beam pattern for each transmitted data stream, can be managed and controlled by the corresponding protocol to optimize the 4th and 5th networks' capacity.

Therefore, such integration of a MIMO system with LTE-A technology allows us to avoid, in practice, all the drawbacks related to the previous generations described above. It also allows designers of modern 4th generation of wireless networks improve their GoS and QoS, protecting against ISI and ICI caused by multipath fading phenomena, mentioned in Section 1, increase their frequency spectral allocation, and finally, minimize bit error rate and packet error rate. All these aspects fully correspond to the main aim of the authors of this book, that is, show the reader on how should be completely integrated all basic components of the wireless network:

— the physical layer, based on multipath fading phenomena;

— signal processing, based on modulation techniques;

— protocols and accesses of multiuser servicing;

— antenna design layer, based on performance of multi-beam and phased-array antennas, and so on.

Of course, there are other components of each wireless network — the architecture and electronic circuits, based on different elements of the system hardware, such as RAKE detector, correlators, filters, and so on. These aspects are out of scope of this special issue, and we refer the reader to the excellent books and articles presented below in bibliography [4-9, 11-20].

1. Jakes W. C. Microwave Mobile Communications. Wiley, New York, 1974.

2. Lee S. C. Y. Mobile Cellular Telecommunication Systems. McGraw-Hill, New York, 1989.

3. Steele R. Mobile Radio Communication. IEEE Press, 1992.

4. Proakis J. G. Digital Communications (3d ed.). McGraw-Hill, New York, 1995.

5. Stuber G. L. Principles of Mobile Communications. Kluwer Academic Publishers, Boston, 1996.

6. Peterson R. L., Ziemer R. E., and Borth D. E. Introduction to Spread Spectrum Communications. Prentice Hall PTR, New Jersey, 1995.

7. Rappaport T. S. Wireless Communications: Principles and Practice. Prentice Hall PTR, New Jersey, 1996 (2nd ed. in 2001).

8. Steele R., and Hanzo L. Mobile Communications. 2nd ed. John Wiley & Sons, Chickester, 1999.

9. Li J. S., and Miller L. E. CDMA Systems Engineering Handbook. Artech House, Boston-London, 1998.

10. Saunders S. R. Antennas and Propagation for Wireless Communication Systems. John Wiley& Sons, Chickester, 2001.

11. Burr A. Modulation and Coding for Wireless Communications. Prentice Hall PTR, New Jersey, 2001.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Molisch A. F. (Ed.). Wideband Wireless Digital Communications. Prentice Hall PTR, New Jersey, 2000.

13. Paetzold M. Mobile Fading Channels: Modeling, Analysis, and Simulation. John Wiley & Sons, Chickester, 2002.

14. Simon M. K., Omura J. K., Scholtz R. A., Levitt B. K.

Spread Spectrum Communications Handbook. McGraw-Hill, New York, 1994.

15. Glisic S. and Vucetic B. Spread Spectrum CDMA Systems for Wireless Communications. Artech House, Boston-London, 1997.

16. Dixon R. C. Spread Spectrum Systems with Commercial Applications. John Wiley & Sons, Chickester, 1994.

17. Viterbi A. J. CDMA: Principles of Spread Spectrum Communication. Addison-Wesley Wireless Communications Series, 1995.

18. Goodman D. J. Wireless Personal Communication Systems. Addison-Wesley, Reading, Massachusetts, 1997.

19. Schiller J. Mobile Communications. 2nd ed. Addi-son-Wesley Wireless Communications Series, 2003.

20. Molisch A. F. Wireless Communications. John Wiley & Sons, Chickester, 2007.

21. Blaunstein N. and Christodoulou C. Radio Propagation and Adaptive Antennas for Wireless Communication Links. 1st ed. Wiley & Sons, New Jersey, 2007.

22. Blaunstein N. and Christodoulou C. Radio Propagation and Adaptive Antennas for Wireless Communication Networks — Terrestrial, Atmospheric and Ionospheric. 2nd ed. Wiley & Sons, New Jersey, 2014.

23. Hadar O., Bronfman I., and Blaunstein N. S. Optimization of Error Concealment Based on Analysis of Fading Types. Part 1. Statistical Description of a Wireless Video Channel, Models of BER Determination and Error Concealment of Video Signals. Infor-matsionno-upravliaiushchie sistemy [Information and Control Systems], 2017, no. 1, pp. 72-82. doi:10. 15217/issn1684-8853.2017.1.72

24. Hadar O., Bronfman I., and Blaunstein N. S. Optimization of Error Concealment Based on Analysis of Fading Types. Part 2. Modified and New Models of Video Signal Error Concealment. Practical Simulations and their Results. Informatsionno-upravliai-ushchie sistemy [Information and Control Systems], 2017, no. 2, pp. 67-76. doi:10.15217/issn1684-8853. 2017.2.67

25. Vostrikov A., Kurtyanik D., Sergeev A. Choosing Embedded WI-FI Module for Mobile Optic-Information Systems. Vestnik, 2018, no. 4, pp. 26-29 (In Russian).

26. Vostrikov A., Balonin Yu., Kurtyanik D., Sergeev A., Sinitsyna O. On Hybrid Method of Video Data Protection in IP-networks. Telekommunikatsii [Telecommunications], 2018, no. 2, pp. 34-39 (In Russian).

27. Erosh I., Sergeev A., Filatov G. Protection of Images During Transfer via Communication Channels. Infor-matsionno-upravliaiushchie sistemy [Information and Control Systems], 2007, no. 5, pp. 20-22 (In Russian).

28. Sergeev A. Generalized Mersenne Matrices and Balo-nin's Conjecture. Automatic Control and Computer Sciences, 2014, vol. 48, no. 4, pp. 214-220.

29. Sergeev A. M., Blaunstein N. S. Orthogonal Matrices with Symmetrical Structures for Image Processing. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2017, no. 6, pp. 2-8 (In Russian). doi:10.15217/issn1684-8853.2017.6.2

30. Modulation and Coding Techniques in Wireless Communications. Ed. by E. Krouk, and S. Semenov. John Wiley & Sons, Chichester, United Kindom, 2011.

31. Specification of the Bluetooth System. Dec. 1, 1999. Available at: www.bluetooth.com. (accessed 15 August 2017).

32. Junaid M., Mufti M., and Ilyas M. U. Vulnerabilities of IEEE 802.11i Wireless LAN. Trans. Eng., Comput. and Technol., Feb. 2006, vol. 11, pp. 228-233.

33. IEEE 802.11 Working Group. Available at: http:// grouper.ieee.org/groups/802/11/index.html (accessed 15 August 2017).

34. Wireless Ethernet Compatibility Alliance. Available at: http://www.wirelessethernet.org/index.html (accessed 15 August 2017).

35. Sharon O., and Altman E. An Efficient Polling MAC for Wireless LANs. IEEE/ACM Trans, on WiMAX Systems Evaluation Methodology V2.1etworking, 2001, vol. 9, no. 4, pp. 439-451.

36. IEEE std. 802.11-1999: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHL) Specifications, 1999.

37. Qainkhani I. A., and Hossain E. A Novel QoS-aware MAC Protocol for Voice Services over IEEE 802.11-based WLANs. J. Wireless Communic. and Mobile Comput., 2009, vol. 9, pp. 71-84.

38. Wireless LAN Medium Access Control and Physical Layer Specification. IEEE Press, 1999, Jan. 14.

39. Zyren J. Reliability of IEEE 802.11 High Rate DSSS WLANs in a High Density Bluetooth Environment; 802.11 section, 8-6, 1999.

40. Perahia E. IEEE 802.11n Development: History, Process, and Technology. IEEE Communic. Magazine, 2008, vol. 46, pp. 46-55.

41. Ni Q., Romshani L., and Turletti T. A Survey of QoS Enhancements for IEEE 802.11 Wireless LAN. J. Wireless Communic. and Mobile Comput, 2004, vol. 4, no. 5, pp. 547-566.

42. Wang W., Liew S. C., and Li V. O. K. Solutions to Performance Problems in VoIP over 802.11 Wireless LAN. IEEE Trans. Veh. Tech., 2005, vol. 54, no. 1, pp. 366-384.

43. Robinson J. W., and Randhawa T. S. Saturation Throughput Analysis of IEEE 802.11e Enhanced Distributed Coordination Function. IEEE J. Select. Areas of Communic., 2004, vol. 22, no. 5, pp. 917-928.

44. Wang P., Jiang H., and Zhuang W. 802.11e Enhancement for Voice Service. IEEE Wireless Communic., 2006, vol. 13, no. 1, pp. 30-35.

45. Perez-Costa X., and Camps-Mur D. IEEE 802.11e QoS and Power Saving Features Overview and Analysis of Combined Performances. IEEE Wireless Communic., 2010, vol. 17, no. 2, pp. 88-96.

46. Kopsel A., and Wolisz A. Voice Ptransmission in an IEEE 802.11 WLAN Based Access Network. Proc. of 4th ACM Int. Workshop on Wireless Mobile Multimedia (WoWMoM), Rome, Italy, 2001, pp. 24-33.

47. Veeraraghavan M., Chocker N., and Moors T. Support of Voice Services in IEEE 802.11 Wireles LANs. Proc. of IEEE INFOCOM'Ol, 2001, vol. 1, pp. 488-497.

48. Kim Y.-J., and Suh Y.-J. Adaptive Polling MAC Schemes for IEEE 802.11 Wireless LANs Supporting Voice-over-IP (VoIP) Services. J. Wireless Communic. and Mob. Comput., 2004, vol. 4, pp. 903-916.

49. Andersen J. B. Array Gain and Capacity of Known Random Channels with Multiple Element Arrays at Both Ends. IEEE J. Selected Areas in Coomun., 2000, vol. 18, pp. 2172-2178.

50. Blaunstein N., and Yarkoni N. Capacity and Spectral Efficiency of MIMO Wireless Systems in Multipath Urban Environment with Fading. Proc. of the European Conf. on Antennas and Propagation, EuCAP-2006, Nice, France, 2006, pp. 111-115.

51. Tsalolihin E., Bilik I., and Blaunstein N. MIMO Capacity in Space and Time Domain for Various Urban Environments. Proc. of 5th European Conf. on Antennas and Propagation, EuCAP, Rome, Italy, 1115 April, 2011, pp. 2321-2325.

52. Chizhik D., Farrokhi F., Ling J., and Lozano A. Effect of Antenna Separation on Capacity of BLAST in

Correlated Channels. IEEE Commun. Letters, 2000, vol. 4, no. 11.

53. Gesbert D., Shafi M., Shiu D., Smith P., and Naguib A.

From Theory to Practice: An Overview of MIMO SpaceTime Coded Wireless Systems. IEEE Journal on Selected Areas in Comm., 2003, vol. 21, no. 3, pp. 281-302.

54. Radioplan. RPS user Manual 5.4. Available at: http:// www.actix.com (accessed 15 August 2017).

55. Philippe J., Schumacher L., Pedersen K., Mogensen P., and Frederiksen F. A Stochastic MIMO Radio Channel Model with Experimental Validation. IEEE J. Selected Areas in Commun., 2002, vol. 20, no. 6, pp. 1211-1226.

56. Gesbert D., Boleskei H., Gore D. A., and Paulraj A. J. Outdoor MIMO Wireless Channels: Models and Performance Prediction. IEEE Trans. Commun., 2002, vol. 50, no. 6, pp. 1926-1934.

57. Boleskei H., Borgmann M., and Paulraj A. J. On the Capacity of OFDM-based Spatial Multiplexing Systems. IEEE Trans. Commun., 2002, vol. 50, no. 1, pp. 225-234.

58. Boleskei H., Borgmann M., and Paulraj A. J. Impact of the Propagation Environment on the Performance of Space-Frequency Coded MIMO-OFDM. IEEE J. Select. Areas Commun., 2003, vol. 21, no. 2, pp. 427-439.

59. Chizik D., Ling J., Wolniansky P. W., Valenzuela R. A., Costa N., and Huber K. Multiple-imput-multiple-out-put Measurements and Modeling in Manhattan. IEEE J. on Selected Areas in Comm., 2003, vol. 23, no. 2, pp. 321-331.

60. Oyman O., Nabar R. U., Boleskei H., and Paulraj A. J.

Characterizing the Statistical Properties of Mutual Information in MIMO Channels. IEEE Trans. Signal Processing, 2003, vol. 51, pp. 2784-2795.

61. Paulraj A. J., Gore D. A., Nabar R. U., and Boleskei H. An Overview of MIMO Communications — A Key to Gigabit Wireless. Proc. of IEEE, 2004, vol. 92, no. 2, pp. 198-218.

62. Forenza A., et al. Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels. IEEE Trans. Vehic. Technol, 2007, vol. 56, no. 2, pp. 619-630.

63. Foschini G. J., and Gans M. J. On Limits of Wireless Communications in a Fading Environment when using Multiple Antennas. Wireless Person. Communic., 1998, vol. 6, no. 3, pp. 311-335.

64. Proakis J. G. Digital Communications. 4th ed. McGraw-Hill, New York, 2001.

65. Paulraj A. J., and Kailath T. Increasing Capacity in Wireless Broadcast Systems using Distributed Transmission/Directional Reception (DTDR). US patent 5,345,599, Sept. 6, 1994.

66. Foschini G. J. Layered Space-time Architecture for Wireless Communication in a Fading Environment when using Multiple Antennas. Bell Labs. Tech. J., 1996, vol. 1, no. 2, pp. 41-59.

67. Golden G. D., Foschini G. J., Valenzula R. A., and Wolniansky P. W. Direction Algorithm and Initial

Laboratory Results using the V-BLAST Space-time Communication Architecture. Electron. Lett., 1999, vol. 35, no. 1, pp. 14-15.

68. Nabar R. U., Bolcskei H., Erceg V., Gesbert D., and Paulraj A. J. Performance of Multiantenna Signaling Techniques in the Presence of Polarization Diversity. IEEE Trans. Signal Process., 2002, vol. 50, no. 10, pp. 2553-2562.

69. Zheng L., and Tse D. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels. IEEE Trans. Inform. Theory, 2003, vol. 49, no. 5, pp. 1073-1096.

70. Varadarajan B., and Barry J. R. The Rate-diversity Trade-off for Linear Space-time Codes. Proc. IEEE Vehicular Tech. Conf., 2002, vol. 1, pp. 67-71.

71. Godovarti M, and Nero A. O. Diversity and Degrees of Freedom in Wireless Communications. Proc. ICASSP, May 2002, vol. 3, pp. 2861-2864.

72. Raleigh G. G., and Cioffi J. M. Spatio-temporal Coding for Wireless Communication. IEEE Trans. Com-munic., 1998, vol. 46, no. 3, pp. 357-366.

73. Wittniben A. Base Station Modulation Diversity for Digital Simulcast. Proc. IEEE Vehicular Tech. Conf., May 1991, pp. 848-853.

74. Seshadri N., and Winters J. H. Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems using Transmitter Antenna Diversity. Int. J. Wireless Inform. Networks, 1994, vol. 1, no. 1, pp. 49-60.

75. Alamouti S. M. A Simple Transmit Diversity Technique for Wireless Communications. IEEE J. Select. Areas Communic., 1998, vol. 16, no. 8, pp. 1451-1458.

76. Tarokh V., Seshandri N., and Calderbank A. R. Space-time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction. IEEE Trans. Inform. Theory, 1999, vol. 45, no. 5, pp. 1456-1467.

77. Ganesan G., and Stoica P. Space-time Block Codes: A Maximum SNR Approach. IEEE Trans. Inform. Theory, 2001, vol. 47, no. 4, pp. 1650-1656.

78. Hassibi B., and Hochwald B. M. High-rate Codes that are Linear in Space and Time. IEEE Trans. Inform. Theory, 2002, vol. 48, no. 7, pp. 1804-1824.

79. Health Jr., R. W., and Paulraj A. J. Linear Dispersion Codes for MIMO Systems based on Frame Theory. IEEE Trans. Signal Process., 2002, vol. 50, no. 10, pp. 2429-2441.

80. Winters J. H. The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading. IEEE Trans. Veh. Technol, 1998, vol. 47, no. 1, pp. 119-123.

81. Bjerke B. A., and Proakis J. G. Multiple-antenna Diversity Techniques for Transmission over Fading Channels. Proc. Wireless Communic. and Networking Conf., Sept. 1999, vol. 3, pp. 1038-1042.

82. Heath Jr., R. W., and Paulraj A. J. Switching between Diversity and Multiplexing in MIMO Systems. IEEE Trans. Communic., 2005, vol. 53, no. 6, pp. 962-968.

83. Chandrasekhar V., Andrews J. G., and Gatherer A.

Femtocell Networks: A Survey. IEEE Commun. Magazine, 2003, vol. 46, no. 9, pp. 59-67.

84. Shannon C. E. A Mathematical Theory of Communication. Bell System Tech. J., July and October 1948, vol. 27, pp. 379-423 and pp. 623-656.

85. Yeh S.-P., Talwar S., Lee S.-C., and Kim H. WiMAX Femtocells: A Perpective on Network Architecture, Capacity, and Coverage. IEEE Commun. Magazine,

2008, vol. 46, no. 10, pp. 58-65.

86. Knisely D. N., Yoshizawa T., and Favichia F. Standardization of Femtocells in 3GPP. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 68-75.

87. Knisely D. N., and Favichia F. Standardization of Femtocells in 3GPP2. IEEE Commun. Magazine,

2009, vol. 47, no. 9, pp. 76-82.

88. Chandrasekhar V., and Andrews J. G. Uplink Capacity and Interference Avoidance for Two-tier Femtocell Networks. IEEE Trans. Wireless Commun., 2009, vol. 8, no. 7, pp. 3498-3509.

89. Calin D., Claussen H., and Uzunalioglu H. On Femto Deployment Architectures and Macrocell Offloading Benefits in Joint Macro-femto Deployments. IEEE Commun. Magazine, 2010, vol. 48, no. 1, pp. 26-32.

90. Kim R. Y., Kwak J. S., and Etemad K. WiMAX Femtocell: Requirements, Challenges, and Solutions. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 84-91.

91. Lopez-Perez D., Valcarce A., de la Roche G., and Zhang J. OFDMA Femtocells: A Roadmap on Interference Avoidance. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 41-48.

92. Chandrasekhar V., Andrews J. G., Muharemovic T., Shen Z., and Gatherer A. Power Control in Two-tier Femtocell Networks. IEEE Trans. Wireless Commun., 2009, vol. 8, no. 8, pp. 4316-4328.

93. Yavuz M., Meshkati F., Nanda S., et al. Interference Management and Performance Analysis of UMTS/ HSPA+Femtocells. IEEE Commun. Magazine, 2009, vol. 47, no. 9, pp. 102-109.

94. Femto Forum. Available at: http://www.femtoforum. org/femto/ (accessed 15 August 2017).

95. Blaunstein N. S., and Sergeev M. B. Channel Capacity Prediction for Femtocell-Macrocell Deployment Strategies in the Urban Environments with Congested Layout of Users. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2012, no. 3, pp. 54-62 (In Russian).

96. Tsalolihin E., Bilik I., Blaunstein N., and Babich Y. Channel Capacity in Mobile Broadband Heterogeneous Networks based on Femtocells. Proc. of Eu-CAP-2012 Int. Conf., Prague, Czech Republic, March 26-30, 2012, pp. 1-5.

97. Blaunstein N., and Levin M. VHF/UHF Wave Attenuation in a City with Regularly Spaced Buildings. Radio Science, 1996, vol. 31, no. 2, pp. 313-323.

98. Blaunstein N. Prediction of Cellular Characteristics for Various Urban Environments. J. Anten. and Prop-agatat. Magazine, 1999, vol. 41, no. 6, pp. 135-145.

99. Blaunstein N. Average Field Attenuation in the Non-regular Impedance Street Waveguide. IEEE Trans, on Anten. and Propagat, 1998, vol. 46, no. 12, pp. 17821789.

100. Blaunstein N., Katz D., Censor D., et al. Prediction of Loss Characteristics in Built-up Areas with Various Buildings' Overlay Profiles. J. Anten. and Propagat. Magazine, 2002, vol. 44, no. 1, pp. 181-192.

101. Yarkoni N., Blaunstein N., and Katz D. Link Budget and Radio Coverage Design for Various Multipath Urban Communication Links. Radio Science, 2007, vol. 42, no. 2, pp. 412-427.

102. Katz D., Blaunstein N., Hayakawa M., and Kishiki Y. S. Radio Maps Design in Tokyo City based on Stochastic Multi-parametric and Deterministic Ray Tracing Approaches. J. Anten. and Propag. Magazine, 2009, vol. 51, no. 5, pp. 200-208.

103. Okumura Y., Ohmori E., Kawano T., and Fukuda K. Field Strength and its Variability in the VHF and UHF Land Mobile Radio Service. Review Elect. Communic. Lab., 1968, vol. 16, no. 9-10, pp. 825-843,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

104. Wells P. J. The Attenuation of UHF Radio Signal by Houses. IEEE Trans. Veh. Technol, 1977, vol. 26, no. 4, pp. 358-362.

105. Bertoni H. L. Radio Propagation for Modern Wireless Systems. Prentice Hall PTR, New Jersey, 2000.

106. Seidel S. Y., and Rappaport T. S. 914 MHz Path Loss Prediction Models for Indoor Wireless Communications in Multifloored Buildings. IEEE Trans. Anten. Propagat., 1992, vol. 40, no. 2, pp. 200-217.

107. Yarkoni N., and Blaunstein N. Prediction of Propagation Characteristics in Indoor Radio Communication Environments. J. Electromagnetic Waves and Applications: Progress in Electromag. Research, PIER, 2006, vol. 59, pp. 151-174.

108. Yu W., Ginis G., and Cioffi J. M. Distributed Multiuser Power Control for Digital Subscriber Lines. IEEE J. Select. Areas in Communic., 2002, vol. 20, no. 5, pp. 1105-1115.

109. Scutari G., and Barbarossa D. P. P. Optimal Linear Precoding Strategies for Wideband non-cooperative Systems Based on Game Theory. Part II. Algorithms. IEEE Trans. Signal Processing, 2008, vol. 56, no. 3, pp. 1250-1267.

110. Scutari G., Palomar D. P., and Barbarossa S. Asynchronous Iterative Water-filling for Gaussian Frequency-selective Interface Channels. IEEE Trans. Information Theory, 2008, vol. 54, no. 7, pp. 28682878.

111. WiMAX Forum. WiMAX System Evaluation Methodology, V2-1, 2008. 230 p.

112. Eklund K., Marks R. B., Kenneth L., Wang S. and IEEE standard 802.16: A Technical Overview on the WirelessMANTM Air Interface for Broadband Wireless Access. IEEE Communic. Magazine, 2002, vol. 40, pp. 98-107.

113. Ohseki T., Morita M., and Inoue. Burst Constructions and Packet Mapping Scheme for OFDMA Down-

link in IEEE 802.16 Systems. Proc. IEEE Global Tele-communic. Conf., Washington, DC, 2007, pp. 43074311.

114. Sengupta S., Chatterjee M., and Ganguly S. Imrov-ing Quality of VoIP Streams over WiMAX. IEEE Trans. Comput., 2008, vol. 57, pp. 145-156.

115. So-In Chakchai, Raj Jain, and Abdel-Karim Tami-mi. Scheduling in IEEE 802.16e Mobile WiMAX Networks: Key Issues and a Survey. IEEE J. Select. Areas of Communicat, 2009, vol. 27, no. 2, pp. 156-171.

116. Niyato D., and Hossain E. Queue-aware Uplink Bandwidth Allocation and Rate Control for Polling Service in IEEE 802.16 Broadband Wireless Networks. IEEE Trans. on Mobile Comput., 2006, vol. 5, no. 6, pp. 668-679.

117. Cicconetti C., Erta A., Lenzini L., and Mingozzi E. Performance Evaluation of the IEEE 802.16 MAC for QoS Support. IEEE Trans. on Mobile Comput., 2007, vol. 6, no. 1, pp. 26-38.

118. Taahol P., Salkintzis A. K., and Iyer J. Seamless Integration of Mobile WiMAX in 3GPP Networks. IEEE Communic. Magazine, Oct. 2008, pp. 74-85.

119. Etemad K. Overvew of Mobile WiMAX Technology and Evolution. IEEE Communic. Magazine, 2008, vol. 46, pp. 31-40.

120. Niyato D., and Hossain E. Integration of WiMAX and WiFi: Optimal Princing for Bandwidth Sharing. IEEE Communic. Magazine, 2007, vol. 45, no. 5, pp. 140-146.

121. Nie J., Wen J., Dong O., and Zhou Z. A Seamless Handoff in IEEE 802.16a and IEEE 802.11 Hybrid Networks. Proc. Intern. Conf. on Convergence Inform. Technol., 2007, pp. 24-29.

122. Nie J., He X., Zhou Z., and Zhou C. Communication with Bandwidth Optimization in IEEE 802.16 and IEEE 802.11 Hybrid Networks. Proc. Intern. Symp. on Communic. and Inform. Technol., 2005, pp. 26-29.

123. Kinoshita K., Yoshimoto M., Murakami K., and Kawano K. An Effective Spectrum Sharing Method for WiFi/WiMAX Interworking Mesh Network. Proc. of IEEE Conf. WCNC, 2010, pp. 986-990.

124. Kinoshita K., Kanamori Y., Kawano K., and Murakami K. A Dynamic Spectrum Assignment Method based on Call Blocking Probability Prediction in WiFi/'WiMAX Integrated Networks. Proc. of IEEE Conf. WCNC, 2010, pp. 991-995.

125. Yang W.-H., Wang Y.-Ch., Tseng Yu-Ch., and Lin B.-Sh. P. An Energy-Efficient Handover Scheme with Geographic Mobility Awareness in WiMAX-WiFi Integrated Networks. Proc. of IEEE Conf. WCNC, 2010, pp. 996-1001.

126. 3GPP. UTRA-UTRAN Long Term Evolution (LTE) and 3GPP System Architecture. 2005. Available at: http://www.3gpp.org/article/lte (accessed 15 August 2017).

127. Zyren J., and McCoy W. Overview of the 3GPP Long Term Evolution Physical Layer. 3G Americas White Paper, Doc. Number: 3GPPEVOLUTIONWP, July, 2007.

128. 3GPP. TR 36.912. Feasibility Study for Further Advancements of E-UTRA (LTE-Advanced). 2009. Available at: http://www.3gpp.org/article/lte-ad-vanced (accessed 5 August 2013).

129. 3GPP. TR 36.913. Requirements for Further Advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced). 2010. Available at: http://www.3gpp.org/article/lte-advanced (accessed 5 August 2013).

130. Ghosh A., Ratasuk R., Mondal B., et al. LTE-ad-vanced: Next Generation Wireless Broadband Technology. IEEE Wireless Communic., 2010, vol. 17, no. 3, pp. 10-22.

131. Parkvall S., Furuskar A., Dahlman E., and Research E. Evolution of LTE Toward IMT-advanced. IEEE Communic. Magazine, 2011, vol. 50, no. 5, pp. 84-91.

132. Astey D., Dahlman E., Furuskar A., et al. LTE: The Evolution of Mobile Broadband. IEEE Communic. Magazine, 2009, vol. 47, no. 2, pp. 44-51.

133. 3GPP Technical Specification Group Radio Access Network. Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Layer Procedures (Release 9). 3GPP TS36.213 V9.3.0, June 2010.

134. 3GPP Technical Specification Group Radio Access Network. Evolved Universal Terrestrial Radio Access (E-UTRA), Further Advancements for E-UTRA Physical Layer Aspects (Release 9). 3GPPTS36.814V9.0.0, March 2010.

135. Ghaffar R., and Knopp R. Interference-aware Receiver Structure for Multi-user MIMO and LTE. EURASIP Journal on Wireless Communications and Networking, 2011, vol. 40, 24 p.

136. Li Q., Li G., Lee W., et al. MIMO Techniques in WiMAX and LTE: A Future Survey. IEEE Commu-nic. Magazine, 2010, vol. 48, no. 5, pp. 86-92.

137. Kusume K., et al. System Level Performance of Downlink MU-MIMO Transmission for 3GPP LTE-ad-vanced. Proc. of the IEEE Vehicular Technol. Conf.-Spring (VTC '05), Ottawa, Canada, Sept. 2010, 5 p.

138. Covavacs I. Z., Ordonez L. G., Navarro M., et al. Toward a Reconfigurable MIMO Downlink Air Interface and Radio Resource Management: The SURFACE Concept. IEEE Communic. Magazine, 2010, vol. 48, no. 6, pp. 22-29.

139. EU FP7 Project SAMURAI — Spectrum Aggression and Multi-User MIMO: Real-World Impact. Available

at: http://www.ict-samurai.eu/page1001.en.htm (accessed 15 August 2017).

140. 3GPP TSG RAN WG1 #62. Way Forward on Transmission Mode and DCI Design for Rel-10 Enhanced Multiple Antenna Transmission. R1-105057, Madrid, Spain, August 2010.

141. 3GPP TSG RAN WG1 #62. Way Forward on 8 Tx Codebook for Release 10 DL MIMO. R1-105011, Madrid, Spain, August 2010.

142. 3GPP TR 36.942 V10.3.0 (2012-06). 3rd Generation Partnership Project, Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) System Scenarios (Release 10). June 2012.

143. 3G Americas white paper. 3GPP Mobile Broadband Innovation Path to 4G: Release 9, Release 10 and Beyond: HSPA+, SAE/LTE and LTE-advanced, 2010. Available at: ttp://www.4gamericas.org/documents/ 3GPP_Rel-9_Beyond%20Feb%202010.pdf (accessed 15 August 2017).

144. Duplicy J., Badic B., Balraj R., et al. MU-MIMO in LTE Systems. EURASIP J. on Wireless Communic. and Networking, 2011, Article ID 496763, 13 p. doi:10.1155/2011/496763

145. 3GPP TR 36.942 V8.4.0 (2012-06). 3rd Generation Partnership Project. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) System Scenarios (Release 8). June, 2012.

146. Zhang H., Prasad N., and Rangarajan S. MIMO Downlink Scheduling in LTE and LTE-advanced Systems. Tech. Report, NEC Labs America, June 2011. Available at: http://www.nec-labs.com/~honghai/ TR/lte-scheduling.pdf (accessed 15 August 2017).

147. Sergeev A. M., Blaunstein N. Sh. Evolution of Multiple-access Networks — Cellular and Non-cellular — in Historical Perspective. Part 1. Informatsionno-up-ravliaiushchie sistemy [Information and Control Systems], 2018, no. 4, pp. 86-104. doi:10.31799/1684-8853-2018-4-86-104

148. Lyandres V. Z. On a Model of the Deep Fading. Infor-matsionno-upravliaiushchie sistemy [Information and Control System], 2018, no. 1, pp. 123-127. doi:10.15217/issn1684-8853.2018.1.123

УДК 621.371

doi:10.31799/1684-8853-2019-1-65-75

Эволюция многопроцессорных систем связи — сотовых и несотовых — в исторической перспективе. Часть 4

А. М. Сергеева, старший преподаватель, orcid.org/0000-0002-4788-9869

Н. Ш. Блаунштейн6, доктор физ.-мат. наук, профессор, nathan.blaunstein@hotmail.com

аСанкт-Петербургский государственный университет аэрокосмического приборостроения, Б. Морская ул., 67, Санкт-Петербург, 190000, РФ

6Негевский университет им. Бен-Гуриона, П.О.Б. 653, Бен-Гуриона ул., 1, Беэр-Шева, 74105, Израиль

Постановка проблемы: целью данного обзора является анализ эволюции систем беспроводной связи от второй генерации (2G) до пятой генерации (5G), а также изменения технологий и их существующих теоретических основ и протоколов — от Bluetooth, WLAN, WiFi и WiMAX до LTE, OFDM/OFDMA, MIMO и LTE/MIMO — продвинутых технологий с новой иерархической структурой дизайна сотовых карт фемто/пико/микро/макро. Методы: использованы новые теоретические подходы для описания продвинутых технологий, таких как многопользовательская техника разделения пользователей, OFDM и OFDM новейший подход, новые аспекты описания MIMO-систем на базе использования многолучевых антенн, дизайн различных сотовых карт на основе новых алгоритмов построения фемто/пико/микро/макро сот, а также новой методологии интегрирования новой MIMO/LTE-системы с помощью многолучевых антенн. Результаты: создана новая методология описания многопользовательского разделения, использования комбинированной OFDM/OFDMA-модуляции для обхождения интерференции между пользователями и между символами в новых многопроцессорных системах, мультипликативных шумов, имеющих место в беспроводных многопроцессорных системах связи, вызванных явлениями многолучевости. В итоге предложено, как обойти эффекты распространения, имеющие место в наземных каналах связи, используя комбинацию MIMO- и LTE-технологий, основанных на применении многолучевых антенн. Для этих целей разработан новый стохастический подход к проблеме, учитывающий особенности застройки земной поверхности, такие как профиль застройки домов, плотность застройки домов вокруг антенн базовой станции и пользователей и т. д. Эти характеристики позволяют в итоге оценить эффекты фединга как источника мультипликативного шума. Практическая значимость: новая методология оценки эффектов, созданных мультипликативным шумом, интерференцией между пользователями и между символами, имеющими место в наземных системах беспроводной связи, позволяет прогнозировать практические аспекты существующих и новых многопроцессорных беспроводных систем связи, такие как емкость (количество) пользователей и спектральная эффективность каналов пользователей для различных конфигураций построения сот — фемто/пико/микро/макро, а также новейших конфигураций систем MIMO/LTE для построения будущих систем 4-го и 5-го поколений.

Ключевые слова — емкость сети, релизы сети LTE, множественный вход-множественный выход (MIMO), многопользовательский (MU), одиночный вход-одиночный выход (SISO), одиночный вход-множественный выход (SIMO), единственная несущая частота (SC), единственный пользователь (SU), пользовательское оборудование (UE), беспроводная сеть WiFi, городская беспроводная сеть WiMAX.

Для цитирования: Sergeev A. M., Blaunstein N. Sh. Evolution of multiple-access networks — cellular and non-cellular — in historical perspective. Part 4. Информационно-управляющие системы, 2019, no. 1, pp. 65-75. doi:10.31799/1684-8853-2019-1-65-75 For citation: Sergeev A. M., Blaunstein N. Sh. Evolution of multiple-access networks — cellular and non-cellular — in historical perspective. Part 4. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2019, no. 1, pp. 65-75. doi:10. 31799/1684-8853-2019-1-65-75

i Надоели баннеры? Вы всегда можете отключить рекламу.