УДК 621.235.3
IBRAHEM FARHAN SALMAN ALREFO
College of Ma"an, Al-Balqa Applied University, Jordan
Yu. N. KUZNETSOV
The National Technical University of Ukraine «Kyiv Polytechnic Institute»
EVOLUTION AND GENETIC FORECASTING OF MULTISPINDLE AUTOMATIC
LATHE DEVELOPMENT
Classifications based on various design and technological parameters of multispindle automatic and semiautomatic lathes from various manufacturers are analyzed, as elate evolution of their development base don productivity as defined by spindle RPM, and specific metal consumption as the lathe weight to main drive power capacity ratio. The genetic forecast has been made for new generations of multispindle automatic lathes, their units and mechanisms, including replacement mechanical systems with the electromechanical ones.
Keywords: multispindle automatic lathe, classification, productivity, specific metal consumption, evolution, genetic forecast
АЛЬ РЕФО 1БРАГИМ ФАРХАН САЛМАН
Аль-Балга техшчний ушверситет (¡ордашя)
Ю.М. КУЗНЕЦОВ
НТУУ"Кшвський полтехшчний шститут"
ЕВОЛЮЦ1Я I ГЕНЕТИЧНЕ ПРОГНОЗУВАННЯ РОЗВИТКУ БАГАТОШПИНДЕЛЬНИХ
ТОКАРНИХ АВТОМАТ1В
Проанал1зовано конструктивы i технологiчнi параметри багатошптдельних токарних aemoMamie i наniвавтоматiв ргзних виробниюв.
Визначено шляхи еволюцИ багатошпиндельних токарних верстатiв в основу розвитку яких покладено не швидюсть обертання шпинделю, а металоемтсть по вiдношенню до потужностi приводу. Зроблено генетичний прогноз розвитку нових поколiнь багатошпиндельних токарних автоматiв, 1'х вузлiв i механiзмiв, включаючи замту механiчних систем на електромехатчт i близью до них приводи.
Ключовi слова: багатошпиндельнi токарт автомати , класифжащя, продуктивтсть, металоемтсть, еволюцiя, генетичне прогнозування
АЛЬ РЕФО ИБРАГИМ ФАРХАН САЛМАН
Аль-Балга технический университет (Иордания)
Ю.Н. КУЗНЕЦОВ
НТУУ"Кшвський полтехшчний шститут"
ЭВОЛЮЦИЯ И ГЕНЕТИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ МНОГОШПИНДЕЛЬНЫХ ТОКАРНЫХ АВТОМАТОВ
Проанализированы конструктивные и технологические параметры многошпиндельных токарных автоматов и полуавтоматов различных производителей.
Определены пути эволюции многошпиндельных токарных станков в основу развития которых лежит не скорость вращения шпинделя, а металлоемкость по отношению к мощности привода. Сделано генетический прогноз развития новых поколений многошпиндельных токарных автоматов, их узлов и механизмов, включая замену механических систем на электромеханические и близкие к ним приводы.
Ключевые слова: многошпиндельные токарные автоматы, классификация, производительность, металлоемкость, эволюция, генетический прогноз
Problem statement
The world production tends to flexible automated manufacturing as a result of rapidly changing product range, thus increasing the share of small-batch production. Still, there are such products and individual parts, which are produced in thousands and millions (accessories, fasteners, bearings, plumbing hardware, etc.). Such products and parts are manufactured by means of large-batch and mass production techniques at high-productivity cutting machines, including multispindle automatic (MAL) and semiautomatic lathes (MSAL) processing bar stock, pipe stock, and piece blanks (fig. 1) [2,10 - 13, 17].
Lathe type
< < <
\\W \\i
\\\x x\\\ il
x / / / // III
IV
>
/ V
ЮЮ
Ю'
Ю2
Ю3
Ю4
Ю5
Ю'
Batch, pcs.
Fig. 1. Applicationareasfordifferentlathesandpartbatches: 1 -drum (rotary) automatic lathe; 2 -multispindleautomaticlathe; 3 -single-spindle automatic lathe; 4 -turret lathe; 5 -CNC lathe
Analysis of the previous researches and publications
The first bar-fed MAL ever with rotary spindle carrier (SC) was developed by NationalAcmeCo., Cleveland, USbased on patentNo. 530180 in 1894 [12,16].
Acme system has been adopted by Gilde meister&Co. andA. Schuette for their MALs. The next one was Gridley system with four-spindle automatic machine produced by K. Hasse&Wrede (Berlin), then thefive-spindles Davenport system, the six-spindle New-Britain system, and the three-spindle Lister system (by Davies Saving &Co., Dayton, US) followed. Prent is system MSAL swere two-sided (Prentis&Co., New Haven, US) and one-sided (K. Hasse&Wrede, New-Britain). Wan near system differs significantly from the others in its vertical configuration and has 8 spindles located around the column (this MAL appeared first at Brussels World Exhibition, but has never been seen again since then). The same principle was employed in Bullard system MSALs for machining large parts.
Main material
There are several classifications for MAL sand MSALs [2, 10-13, 16-18]. Taking into account the accumulated experience and information, work piece types, drives, mechanisms, and machining techniques used, the most comprehensive of the mist he one proposed by Prof. G. Spur [10, 17] (fig. 2), in which all MALs and MSALs are classified based on the main design feature—application of the SC.
MAL and MSAL
W/o SC
With SC
Horizontal axis
Bar-fed
Chuck-type
I
1
Vertical axis
X
Rotating workpiece
Chuck-type
Bar-fed
Chuck-type
Horizontal axis
Lathe bed Portal design
Chuck-type
Cantilever
design
Rotating cutting tool
Vertical axis 1-
Workpice below -
Chuck-type
Workpiece above -1
Bar-fed
Chuck-typ э
Horizontal axis
One-sided • workpiece feeding
Portal design
One-sided approach of cutting tool
Rotating workpiece and cutting tool
One- and multi-sided
Specilized
Two- and multi-sided approach of instrument
Fig. 2. Classification of MALs and MSALs based on design features [14]
However, this classification does not include MALs and MSAL switch inclined axis, bar-fed-chuck-type, cantilever-type, and others, which emerged with the introduction of CNC [3, 4 ,6]. Hereinafter, MAL also assumes MSAL.
The main technical and cost parameter for MAL determining its development level is its machining productivity, which is greatly influenced by the main drive - spindle RPM. DevelopmentofMALsbythiscriterionhadbeenforecastwithsomecredibilityuntil 2000 by R. A. Sklyarovunder the supervision of the author of [5], using patent data available at that timein Special Design Bureau for Multispindle Automatic Lathes (SKBMA) at Kyiv Machine Tool Plant.
Anothertechnicalandcostparameterformachiningequipmentandothermachinesofvariouspurposesistherati oofitsweightGtopowercapacityNofthemaindrivesourcecharacterizing its specific metal consumption, which also is an indication of progressive development, particularly, taking into account the advancing metal deficit
(mineral resources are being drastically exhausted) :Af = —.
N
A sofmid - 20th century, according to the in formation in[2], this parameter for six-spindle MALwith cyclic control by camshaft was at 400-800 kg\kW (fig. 3).
N4. kg /
400 _
200
Ф44 Ф40
Ф36 Ф40 У Ш ///
V/ У щ
V/ Щ:
1
2
3
5 М
Model MAL
Fig. 3. Comparis on of metalconsumption efficiency for various models of MALs: 1—123; 2—1240-6;
3—Wickman; 4—Gildermeister; 5—KOH
By late-1970s the parameter M for Ukrainian MAL swith cam shaft control [11] decreased slightly and was 387-769 kg/kW (fig. 4).
M, kg / kW
600
400
\ \
Щ
The numbers of spindles
z =4
z„m=6
z „ш=0
Fig. 4. Diagram of metal consumption efficiency for Ukrainian MAL switchy clic camshaft control for
different numbers of spindles
It should be noticed, that according to [2, 11], for light and medium Ukrainian MAL spower lossatidle pass was 5.7-10.8 kW with cutting power of 15-42 kW, main drive power efficiency be in gat 0.6-0.8 and eventless (in some cases as little as 0.3), because of long driving trains (due to gearandbelttrains).
When bought Kyiv-made MALs, Japanese companies (according to SKBM Areports) used them at full capacity in creasing cutting (feed) speed and decreasing the duration of idle passes by increasing camshaft RPM. Upon decommissioningtheymadethreemachinesusingthemetalobtainedfromrecyclingtwoMALs.Later, with the gradual introduction of CNC systems and high-speed spindle units along with short driving trains, Japanese companies managed to make two MALs using one recycled Kyiv-made MAL. That means the specific metal consumption lowered first 1.5-fold (258-513 kg/kW), and later was halved (193-385 kg/kW). Thistendencyofloweringmetalconsumptioncanbeobservedinothercompaniesaswelldue to the utilization of modern CNC systems and short driving trains eliminating mechanical transmission and employing high-speed spindle units with CNC and continuous control in the form of motor-spindles [3, 4, 6, 19]. Examples include Multi swiss series CNC MAL [22] by Swiss company Torno with six work spindles and one counter-spindle, which had a specific metal consumption of 208 kg/kW.Other European and Asian companies have also reached this level with some accuracy. Along with adopting
amodulardesigninMALdevelopment,theyalsoproviderepairandmaintenanceservices.
Thevaluesachievedarenotfinalandcanbeloweredmorebyintroducingelectromechanicalsystems, mechatronics, new load-bearing systems, and non-metallic materials, particularly, composites.
Forthepurposeofsolvingtheproblemsofproductivitygrowthandmetalconsumptionreduction, it is reasonable to use the approaches from evolutional and genetic synthesis theories [1, 7, 8 ,14, 15, 19], which are based on the laws of evolution and interdisciplinary sciences. Another representative of this group is genetics — an interdisciplinary knowledge do main studying the laws inheritance and structural changes in natural and anthropogenic systems developing in time.
With theintroductionofCNCinMALs,thedrivingtrainshavechangedfundamentally, electromechanical replaced mechanical, which initiated count for new MAL generations accounting for the evolution of main driving source (fig. 5) and SC rotation and fixing mechanisms (fig. 6). Abandonment of SC, the axis of which is the geometric axis of the lathe [3, 13], allows the most efficient implementation of modular design principle [4] and creating a number of CNC-equipped MALs with the help of systematic morphologic approach [6], increasing the number of spindles in order to raise the productivity.
Fig. 5. Evolution of main drive development in MAL with rotary spindle carrier: a—1st generation with mechanical transforming motor; b—2ndgenerationwithoutmechanicaltrainswithindividualmotorsforeachspindle; c—3rd generation with motor-spindles; d—4 th generation with motor-spindles and common stator (genetic forecast)
Fig. 6. Evolution of spindle carrier rotation and fixing mechanisms with cyclic control from camshaft with mechanical trains (a) and electromechanically systems and CNC—genetic for ecast (b, c): SC— spindlecarrier; CS—camshaft; F—fixator; EM—electromagnet; S—stator; R—rotor; SB—sleeve
bearing; OR—rolling bearing
Conclusion
Based on the analysis of MAL evolution, 2 directions of enhancing them can forecast:
1. With SC and electromechanical systems of main drive, tool turret feed drive, chuck drive with geometric locking in loading-unloading position, bar feeding and fixing drive, rotation and fixing mechanisms of spindle carrier.
2. Without SC and with electromechanical systems of the main drive as a single module incorporating a motor-spindle and automatic chuck, tool turret feed drive, bar feeding and fixing drive.
In both cases hybrid driving systems for mechanisms and units will be utilized, as well as framework load-bearing systems widely employing non-metallic materials. The second direction with out rotary SC is the most promising, it implements parallel and parallel-serial machining techniques providing high productivity and machining quality along with maximum employment of modular principle and minimum consumption of materials and energy.
References
1. E. P. Balashov,Evolutional system synthesis: monograph, Moscow, Radio and communications publishers, 1985, 328 p.
2. B. L. Boguslavsiy, Automatic lathes. Basics of calculations, design, and operation: monograph, Moscow, Mechanical engineering state publishers, 1958, 595 p.
3. Yu. N. Kuznetsov, L. N. Sribniy, Increasingautomaticlatheefficiency: monograph, Kyiv, Technica publishers, 1989, 168 p.
4. Yu. N. Kuznetsov, Increasingmultispindle automaticlatheefficiency, Machines and tools journal, Iss. 2, 1988, pp. 4-6.
5. Yu. N. Kuznetsov, R. A. Sklyarov, Forecasting the development of technical systems: Textbook, Kyiv, ZMOK LLC - GNOZIS, 2004, 323 p.
6. Yu. N. Kuznetsov, D. O. Dmytriyev, G. Yu. Dinevich, Configuringmachiningequipmentwithparallelstructuremechanisms: monograph, Kherson, V. S. Vyshemyrskyprivatecompany, 2009, 456 p.
7. Yu. N. Kuznetsov, Zh. A. Gerra, T. O. Khamuyela, Kyiv, GNOZISLLC, 2012, 286 p.
8. Yu. N. Kuznetsov, V. F. Shynkarenko, Geneticapproach-akeytocratingcomplexmechanicalsystems, Processingcomplexesjournal, Iss. 1, 2 (5, 6), Lutsk, 2013, pp. 15-27.
9. Yu. N. Kuznetsov, Current status and prospective of development and production of metal-cuttingequipmentinUkraine, News of Engineering Academy of Ukraine, Iss. 1(44), 2011, pp. 210.
10. Materialscuttinghandbook. EditedbyG. SpurandT. Steffle. Volume 1. TranslationfromGermaneditedbyYu. M. Soloventsev, Moscow, Mashinostroyeniye publishers, 1985, 616 p.
11. V. I. Chergikalo, O. I. Gurov, B. P. Davydovich, etal., Multi-spindleautomaticlathes: monograph, Moscow, Mashinostroyeniyepublishers, 1978, 309 p.
12. F. Kelle, Automaticmachines. Translation from German by I. I. Kostarev, Moscow, Chief editorial board for mechanical engineering and metal processing.
13. G. A. Shaumyan, Atimaticmachines and lines: monograph, 3rd edition, Moscow, Mechanical engineering state publishers, 1961, 552 p.
14. V. F. Shynkarenko, Basics of electromechanical systems evolutional theory, Kyiv, Naukovadumka publishers, 2002, 288 p.
15. V. F. Shynkarenko, Geneticforecastasa systematic base in management strategy for innovations in technical systems, Proceedings of Tavria State Agrotechnological University, Iss. 11, Vol. 4, 2011, pp. 3-19.
16. G. Schlesinger, Metal-cuttingmachines. Calculationsanddesign. Textbook. Translation from German by N. S. Acherkan and B. L. Boguslavskiy (two parts with separate drawing album). Part.1, Kyiv, Defense literature state publishers, 1938, 618 p.
17. Spur G. Mehrspindel - Drehautomatem. Carl Haser Verlag, Müchen, 1970
18. Spur G. Greschichtlicher Rückblick anf die konstruktive Entwicklung der Mehrspindel -Drehantometen. Werkstatt and betrib, 100 (1967). 3, S. 202-210.
19. ShynkarenkoVasyl, Kuznetsov Yuriy. An interdisciplinary approach to modeling and synthesis of difficult technical systems // Journal of the Technical University Gabrovo, Vol. 52, 2016. - p.p. 24-28.
20. http:// newsland.com/news/detail/id/1404560/. Airplanesare now subject to laws of evolution.
21. http:// podrobnosti.ua/tech/2014/07/23/985989.htm/. Americans applied laws of evolution to civil aviation.
22. http:// www.tajmac-zps.cz/ru/node/542. Multispindle automatic lathes.