Научная статья на тему 'EVALUATION OF THE TIME-SPACE DISTRIBUTION OF ATMOSPHERIC PRECIPITATION IN THE KUR-ARAS PLAIN IN THE AZERBAIJAN REPUBLIC'

EVALUATION OF THE TIME-SPACE DISTRIBUTION OF ATMOSPHERIC PRECIPITATION IN THE KUR-ARAS PLAIN IN THE AZERBAIJAN REPUBLIC Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
amount of precipitation / climate change / precipitation limits / oscillation / trend curve / variation integral / количество осадков / изменения климата / ArcGIS / пороги осадков / колебания / кривая тренда / интеграл разности

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — N.Sh. Huseynov, J.S. Huseynov, A.Kh. Hajiyev

Characteristics of the space and time changes in the amount of precipitation in the Kura-Aras lowland were studied in the research paper. The precipitation data of the hydrometeorological station covering a decade from 1992 to 2022 was utilized in the analyses. To conduct research, the mathematical-statistical and cartographic methods were used. According to the conducted research, the amount of precipitation in the Kura-Aras lowland is 310 mm. 40% of the total amount of precipitation rains during the warm semi-period, while 60% falls in the cold semi-period in the lowland. The amount of precipitation decreases from the coastal areas to the plains during the cold, while in the warm period, this process occurs oppositely. It was determined that atmospheric precipitation decreased in January, March, April, May, June, August, October, November and December, and this indicator increased in February, July and September. The annual indicator of the amount of precipitation in the plain decreased by 10% during the years 1991-2022 compared to the base quantity (1961-1990). 18% of the total precipitation was in the range of 10-19 mm, and 16% was in the range of 20-29 mm. Compared to the norm, in the period 1991-2022, in the KuraAras lowland, a 19% decrease was recorded in monthly recurrences of precipitation above 50 and 60 mm, and a 15% decrease in precipitation above 70 mm. The research results can be used in the establishment of novel economic areas in the lowland, in the development of maps, economic assessment and mitigation measures against climate change.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ОЦЕНКА ВРЕМЕННО-ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ АТМОСФЕРНЫХ ОСАДКОВ НА КУРА-АРАКСИНСКОЙ НИЗМЕННОСТИ В АЗЕРБАЙДЖАНСКОЙ РЕСПУБЛИКЕ

В статье рассмотрены особенности пространственно–временных изменений атмосферных осадков на Кура-Араксинской низменности. При анализе использовались данные об осадках с 10 гидрометеорологических станций района за период 1992...2022 гг. Исследования проводились математико-статистическими и картографическими методами. Анализ показывает, что среднегодовое количество осадков на Кура-Араксинской низменности составляет 310 мм. Здесь 40% осадков выпадает в теплый и 60% в холодный полупериод. В холодное время года количество осадков уменьшается от прибрежных районов к равнинам, а в теплое – наоборот. Атмосферные осадки уменьшились в январе, марте, апреле, мае, июне, августе, октябре, ноябре и декабре и увеличились в феврале, июле и сентябре. Годовой показатель количества осадков на равнине снизился на 10% за 1991...2022 годы по сравнению с базовой суммой. 18% общего количества осадков находилось в пределах 10...19 мм, а 16% 20...29 мм. На Кура-Араксинской низменности зафиксировано снижение месячной выпадения осадков свыше 50 и 60 мм на 19%, а количество осадков свыше 70 мм на 15%. Результаты исследований могут быть использованы при создании новых сфер экономики.

Текст научной работы на тему «EVALUATION OF THE TIME-SPACE DISTRIBUTION OF ATMOSPHERIC PRECIPITATION IN THE KUR-ARAS PLAIN IN THE AZERBAIJAN REPUBLIC»

1

Hydrometeorology and ecology №1 2024

UDC 551.509.324 IRSTI 37.21.39

EVALUATION OF THE TIME-SPACE DISTRIBUTION OF ATMOSPHERIC

PRECIPITATION IN THE KUR-ARAS PLAIN IN THE AZERBAIJAN REPUBLIC

N.Sh. Huseynov1 Professor, J.S. Huseynov2* PhD, A.Kh. Hajiyev1

1National Aviation Academy, Baku, Azerbaijan

2“Azeraeronavigation” Air Traffic Control, Baku, Azerbaijan

E-mail: camal_huseynov_88@mail.ru

Characteristics of the space and time changes in the amount of precipitation in the Kura-Aras

lowland were studied in the research paper. The precipitation data of the hydrometeorological

station covering a decade from 1992 to 2022 was utilized in the analyses. To conduct

research, the mathematical-statistical and cartographic methods were used. According to

the conducted research, the amount of precipitation in the Kura-Aras lowland is 310 mm.

40% of the total amount of precipitation rains during the warm semi-period, while 60%

falls in the cold semi-period in the lowland. The amount of precipitation decreases from

the coastal areas to the plains during the cold, while in the warm period, this process occurs

oppositely. It was determined that atmospheric precipitation decreased in January, March,

April, May, June, August, October, November and December, and this indicator increased

in February, July and September. The annual indicator of the amount of precipitation in

the plain decreased by 10% during the years 1991-2022 compared to the base quantity

(1961-1990). 18% of the total precipitation was in the range of 10-19 mm, and 16% was

in the range of 20-29 mm. Compared to the norm, in the period 1991-2022, in the Kura-

Aras lowland, a 19% decrease was recorded in monthly recurrences of precipitation

above 50 and 60 mm, and a 15% decrease in precipitation above 70 mm. The research

results can be used in the establishment of novel economic areas in the lowland, in the

development of maps, economic assessment and mitigation measures against climate change.

Keywords: amount of precipitation, climate change, precipitation limits, oscillation, trend curve, variation

integral

Accepted: 5.01.24

DOI: 10.54668/2789-6323-2024-112-1-79-88

INTRODUCTION areas causes to the acceleration of evaporation

Atmospheric precipitation, which is and the formation of vertical movements towards

considered one of the main climate-forming higher altitudes. The temperature of the air

factors on Earth, is the main link of the water particles rising towards the highlands decreases

cycle in nature (Pierrehumbert, 2007). Falling of and begins to saturate, and clouds and associated

precipitation in case of solid and liquid directly precipitation are formed (Huseynov, 2011; Otto,

depends on air temperature (Mammadov, 2015). 2023). It is already known to everyone that

In the territory of Azerbaijan, precipitation modern warming has been rapidly expanding

decreases from the plains to the highlands, but its effects over the past 30 years on Earth. The

on the northeastern slopes of the Great Caucasus increase in global temperature in 1.5...2.00C

Mountains, in the Tallish Mountains, this compared to previous years has accelerated

regularity is violated (Hajiyev, 2015; Safarov, the disruption of the traditional climate regime

2022). Mesoscale atmospheric circulations, air in all regions and the recurrence of anomalous

masses and local air circulation play the main atmospheric events (Mahmudov, 2022;

role in falling of atmospheric precipitation in the Hajiyev, 2023). Global warming has caused

country. The basis of this process is the creation beside with increase in air temperature in the

of temperature differences on individual surfaces South Caucasus region as well as a decrease

that move air masses. Thus, high heating in plain in precipitation. A decrease in atmospheric

79

2

Scientific article Huseynov et al., Evaluation of the time space...

precipitation will lead for a decrease in water From the obtained results, graphs, histograms and

reserves, which will create conditions for a tables are illustrated with the support of MS Excel

decrease in the flow volume of most rivers and map ArcGIS software (Hydrometeorological

that take their source from the mountains. conditions and dangerous hydrometeorological

This means a decrease in underground water events in the territory of the Republic of

reserves, drying up of swamps and acceleration Azerbaijan, 2001...2017).

of salinization in plain areas, especially in

the Kura-Aras lowland (Huseynov, 2020). DISCUSSION

The research of the temporal-spatial distribution The physical and geographical location of

of precipitation in the country area had been the Kura-Aras lowland creates conditions for the

widely investigated by many researchers. A.M. different distribution of atmospheric precipitation

Shikhlinski, A.A. Madatzade, N.Sh. Huseynov, here in time and space. First of all, the location

F.A. Imanov, Said H. Safarov, R.N. Mahmudov, of the southeastern regions of the lowland on the

A.S. Mammadov, C.S. Huseynov, Kh.Sh. coast of the Caspian Sea and the abundance of

Rahimov, H.S. Nabiyev and others, carried moisture reserves make it possible for the amount

out such researches. In such researches, the of precipitation to be higher in those areas. Thus,

distribution of precipitation in the territory of the the air masses entering this region from the east

republic for regions, altitude zones throughout and southeast are constantly transformed over

the year, it had been considered to dynamics the sea, the humidity of the air masses increases

within time (Huseynov, 2020; Safarov, 2021). due to evaporation, and the warm, dry air masses

However, in recent times, the increase of are slightly moistened. Meridional currents,

time series, refinements through new research which form the main conditions for rainfall in the

methods, and the effect of climate changes country, play a key role in the entry of more humid

on precipitation require a re-examination of air masses into this region (Abdullayev, 2015).

the time-space distribution of atmospheric For the continental climate prevails in the

precipitation in the Kura-Aras lowland, which central and western parts of the plain, the

is the largest agricultural region of the country. amount of precipitation is relatively lower than

Purpose of work the surrounding areas. On the other hand, the

Determining the modern distribution average annual air temperature observed in the

characteristics of atmospheric precipitation plain (15.50C) is the highest average temperature

in Kura-Aras lowland is the main goal of in the country. This leads for long-term droughts

the conducted research. For this purpose, and high evaporation rates which are harmful to

determination of precipitation series in different agriculture in the area. Usually, moist, cold air

limits, distribution on the surface of the station and masses from the north cannot directly enter the

the plain and multi-year dynamics were evaluated. Kura-Aras plain. However, hot and dry air masses

from the south of the lowland - the Iranian plateau

MATERIAL AND METHODS dominate here in the hot season. In the coastal plain

All the analyzes conducted in the and surrounding regions, the moderating effect of

research work are based on the precipitation the sea manifests itself in the region throughout

observation data conducted in Kura-Aras plain the year (Safarov, 2021). Continentally is higher

in 1992...2022. In the analysis, time-space in the center and west of the plain (Mammadov,

dependencies of precipitation distributions were 2015). In the northwest, passing through the

investigated based on mathematical, statistical Jeyranchol lowland, air masses from Asia Minor

and cartographic methods, using the primary data and the Black Sea also affect the central part.

of 10 hydrometeorological stations (Goychay, The analysis shows that the average annual

Kurdamir, Zardab, Imishli, Jafarkhan, Hajigabul, precipitation in Kura-Aras plain was 315

Bilasuvar, Salyan, Neftchala, Goytepe). In the mm (226...606 mm) in 1991...2022. In the

study, a comparative analysis of the indicators lowland, 40 % of the perennial precipitation

of the amount of precipitation for the years fell in the warm half-period and 60% in the

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1961...1990 and the corresponding indicators of the cold half-period (Safarov and et al., 2021).

years 1991...2022 was carried out (WMO, 2017).

80

3

Hydrometeorology and ecology №1 2024

The most annual precipitation the coastal regions to the west of the plain. In

here is 610 mm, and it rains in the other words, in the warm season, the amount

plain, foothills (Goytapa) areas located of precipitation falling on the plain increases

in its southeast, some distance from the sea. from east to west, and in the cold season,

Goychay, located on the border with the the amount of precipitation decreases on the

foothills of the southern ones of the Greater contrary (Karimov, 2016; Huseynov, 2022).

Caucasus Mountains, receives more Seasonal distribution of precipitation becomes

precipitation than other stations located in almost equal as you approach the border of the

the coastal and interior parts of the plain. foothillsofthesouthernslopeoftheGreaterCaucasus

Here, the distribution of precipitation in different Mountains. Precipitation in these regions is almost

seasons of the year gradually changes from evenly distributed throughout the year (Table 1).

Table 1

Seasonal and semiannual distribution of precipitation in Kura-Aras plain

Note: All indicators are normalized.

The change trend of atmospheric March (6%), April (23%), May (22%), June (26%),

precipitation in the Kura-Aras plain during August (11%), October (12%), November (5%)

1991...2022 compared to the climate norm and December (13 %) precipitation decreased,

(1961...1990) is also of special interest (Table 2). only in February (13%), July (20 %) and September

As can be seen from Table 2, the average monthly (14%) normal (1961...1990) has increased.

precipitation in Kura-Aras plain in January (6%),

Table 2

Average monthly and annual precipitation anomalies (mm, %-dark black)

Note: All indicators are normalized.

81

4

Scientific article Huseynov et al., Evaluation of the time space...

In the lowland, the greatest decrease in grain crops. The annual indicator of the amount of

precipitation occurred in the months of March- precipitation in the plain decreased up to 10% or 36

June, that is, in the growing season, when mm in 1991...2022 compared to the base amount.

agricultural plants need more moisture. The Precipitation fluctuations based on

second period of greater decrease in precipitation average indicators in Kura-Aras plain are

lasts from mid-autumn to early winter, which also depicted in a special graph (Figure 1).

coincides with the initial cultivation period of

Fig. 1. Fluctuations of average monthly precipitation range in the Kura-Aras plain

The long-term dynamics of the annual the least of the series, 1963, 1966, 1967, 1969,

amount of atmospheric precipitation in the 1982, 1984, 1994, 2003, 2011 and 2016 are the

Kura-Aras plain is accompanied by a gradual 10 years with the most precipitation. The analyzes

decrease (Figure 2). Thus, although there were carried out for separate years show that 70%

small fluctuations in the amount of precipitation of the years with the most precipitation in the

in the plain in the period covering 1961...2022, lowland occurred in 1994 and before. The amount

the amount of precipitation decreased during of precipitation in Kura-Aras plain was 349 mm

the general period. Here, precipitation increases in 1961...1990, and 310 mm in 1991...2022.

with a greater percentage are in Hajigabul (28%, Difference integral curves were used to analyze

February; 61%, September), Goytapa (35%, multi-year dynamics of atmospheric precipitation

July), Neftchala (56%, September), Bilasuvar of individual hydrometeorological stations in Kura-

(25%, June) and Kurdamir (27%, October). Aras plain (Figure 3 a, b). If we look at the graphs,

stations, notable precipitation decreases occurred in the multi-year integrated series, if we do not

at Salyan (40%, April; 61%, July), Bilasuvar take into account small fluctuations in individual

(44%, June; 52%, August) and Jafarkhan years, the amount of precipitation has increased

(37%, June; 48%, August) stations (Table 2). in the period from 1991 to 1993 at all stations.

The average annual rainfall in Kura-Aras plain was Although this indicator decreased rapidly from

355 mm in 1961...1970, 343 mm in 1971...1980, 1994 to 2001, it increased again from 2002 to

344 mm in 1981...1990, 305 mm in 1991...2000, 2004, and from 2005 to 2015, there was a multi-

2001...2010 323 mm in 2011-2020, 313 mm in year increase with occasional small fluctuations.

2011...2020, and 255 mm in 2021...2022. Decades Since 2016, a sharp decrease in

spanning 1991...2000 and 2011...2020 have higher precipitation has been observed in most of the

multiannual declines in lowland precipitation. stations. There is some difference in the integral

During the years 1961...2022, 1964, 1970, 1971, curves expressing the dynamics of precipitation in

1983, 1989, 1995, 1998, 2001, 2019 and 2022 are Goytapa, Neftchala and Goychay stations.

82

5

Hydrometeorology and ecology №1 2024

Fig. 2. Multi-year dynamics of precipitation amount in Kura-Aras plain.

This is due to the physical and geographical listed hydrometeorological stations was

position of the mentioned areas. Jafarkhan, Imishli, observed in 2016, and the lowest indicator

Kurdamir, Salyan, Hajigabul and Bilasuvar was observed in 2002, respectively.

stations can be mentioned as stations with more Although the internal time-space distribution of

similar difference integral trends in lowland. atmospheric precipitation is its main feature, the

Although this indicator decreased rapidly from intensity and monthly amount of precipitation

1994 to 2001, it increased again from 2002 to are also of particular importance. Determining

2004, and from 2005 to 2015, there was a multi- monthly changes in rainfall within certain limits

year increase with occasional small fluctuations. and comparing them with the climate norm are

During the general period, the highest considered very important methods for detecting

indicator of precipitation change of the extreme features of dangerous precipitation.

a)

83

6

Scientific article Huseynov et al., Evaluation of the time space...

b)

Fig. 3. Dynamics of the difference integral of precipitation in 1991...2022

For this purpose, in the study, during the During the calculations, if the amount of

repetition of precipitation at 9 hydrometeorological precipitation meets the condition for the amount

stations (Zardab, Kurdamir, Hajigabul, Goychay, of precipitation for the analyzed months, «1»,

Goytapa, Bilasuvar, Jafarkhan, Salyan and otherwise, the condition «0» is accepted, and a

Neftchala) in separate months in 1961-2022, 0-9, selectionismadeforthemonthunderconsideration.

10- Precipitation exceeding 0...9, 10...19, 20...29, At the next stage, the sum of these events is found

30...39, 40...49, 50...59, 60...69 and over 70 mm and finally the percentage of events is calculated.

was analyzed as a hazardous event (Figure 4).

Fig. 4. Recurrence (%) of different precipitation thresholds in Kura-Aras plain

From Figure 4, it is clear that in the Kura- the intensity of precipitation falling on the Kura-

Aras plain, within the considered gradations, Aras plain is very low and covers a small time

precipitation less than 10 mm prevailed. 18% of phase. This is due to the lack of strong convective

the total precipitation was in the range of 10...19 processes in the lowland, less observation of

mm, and 16% was in the range of 20...29 mm. cumulonimbus clouds, and more precipitation

Less frequent are months with precipitation in falling from layered clouds. However, heavy

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

the range of 50...70 mm. The analysis shows that rains also have a sufficient intensity (7%).

84

7

Hydrometeorology and ecology №1 2024

In addition to the above, the research also higher than 50, 60, and 70 mm. Thus, a 19% decrease

paid attention to the changes in the thresholds in monthly occurrences of precipitation above 50

where precipitation is more frequent compared to and 60 mm, and a 15% decrease in precipitation

the corresponding climate norm (1961...1990). The above 70 mm was recorded. A smaller amount

analyzes show that in the years 1991...2022, in the of variation in rainfall recurrence is observed for

Kura-Aras plain, there were significant decreases in monthly rainfall above 10 and 20 mm (Figure 5).

the months when the amount of precipitation was

Fig. 5. Fluctuations of precipitation thresholds in Kura-Aras plain (%)

The amount of monthly precipitation is in February, July and September, this indicator

associated with a decrease in the recurrence of increased compared to the norm. The annual

precipitation higher than 50... 60, and 70 mm, and indicator of the amount of precipitation in the

a decrease in the recurrence of heavy intensity plain decreased by 10% or 34 mm during the

precipitation and showers. Because, in the months period 1991...2022 compared to the base amount;

when continuous precipitations are not observed, 4. In the Kura-Aras lowland, the amount

the probability of repetition of precipitations in these of observed precipitation less than 10 mm

limits is very low. However, in 1991...2022, a high was more for individual months. 18% of the

(33%) increase was recorded in the recurring limit of total precipitation was in the range of 10...19

precipitation below 10 mm. This factor creates more mm, and 16% was in the range of 20...29 mm;

conditions for the expansion of droughts, which 5. In the Kura-Aras lowland, in 1991...2022,

have been increasing rapidly in the region recently. compared to the base (1961...1990), a 19%

decrease in monthly recurrences of precipitation

RESULTS above 50 and 60 mm, and a 15% decrease

The following results were obtained in precipitation above 70 mm was recorded.

from the analyzes carried out the basis of the If the climate changes in the Kura-Aras plain

preliminary data of the atmospheric precipitation continue with this dynamic, the reduction of

of 1991...2022 in the Kura-Aras plain: precipitation and humidity in the Kura-Aras plain,

1. Average annual precipitation which is considered a large agricultural region

in Kura-Aras plain was 349 mm in of the republic, will lead to the expansion of the

1961...1990, and 310 mm in 1991...2022. area of major environmental crises (drought,

2. 40% of the amount of salinization, etc.). The decrease in precipitation

precipitation in the area fell in the hot during the main periods when crops need water has

half-year and 60% in the cold half-year; led to the development of more drought-tolerant

3. In January, March, April, May, June, August, crops here. In order to mitigate the negative

October, November and December, the amount effects of climate changes in the area, prevention

of atmospheric precipitation decreased, while

85

8

Scientific article Huseynov et al., Evaluation of the time space...

of evaporation from the surface of existing water 7. Huseynov.N.Sh., Huseynov.J.S. Distribution of

the Contemporary Precipitation Regime and the Impact of

channels in the area, closing of the surface of

Climate Change on it within the Territory of Azerbaijan //

water reservoirs with certain accessories (special

Journal of Geography & Natural Disasters, – Barcelona: – 04

plastic or rubber balloons), construction of field

october, – 2022, Volume 12, Issue 4, №:1000254. – P.1-7.

protection forest strips, mineralization of the 8. Karimov, R.N. Reducing the effects of climate change and

water of artesian wells, etc. it is important to see. adaptation measures / R.N.Karimov. - Baku: Teacher, - 2016. - 48 p.

9. Mahmudov, R.N. Regional climate changes and

dangerous hydrometeorological phenomena in Azerbaijan / R.N.

REFERENCES

Mahmudov. - Baku: National Aviation Academy, - 2022. - 210 p.

1. Abdullayev V.R Distribution of atmospheric

10. Mammadov, R.M., Safarov, S.H., Safarov,

precipitation in the Caspian coastal areas of Azerbaijan

E.S. Current changes of the atmospheric precipitation

// - Baku: Works of the Azerbaijan Geographical

regime on the territory of Azerbaijan // Geography

Society, - 2015. Volume XVII, - p. 311-317

and Natural Resources, – 2009, 30 (4), – p. 403-407.

2. Geography of the Republic of Azerbaijan

11. Otto, FEL. (a). Attribution of extreme

/ ed. R.M. Mammadov. - Baku: Europe, -

events to climate change // Annual Review of

c. 1: Physical Geography. – 2015. – 530 p.

Environment and Resources – 2023. v.48, p. 813-828.

3. Hajiyev. A. Kh. Analysis of temperature conditions

12. Pierrehumbert, R., Brogniez, H., Roca,

during the vegetation period in the Kura-Aras plain // -

R. On the relative humidity of the atmosphere // –

Baku: Works of the Azerbaijan Geographical Society,

Princeton, NJ: Princeton University Press, In The global

Geography and natural resources, - 2015. No. 1, - p. 225-228.

circulation of the atmosphere, – 2007, p. 143-185.

4. Hajiyev, A.Kh. Dynamics of meteorological factors

13. Safarov, S.H., Huseynov, C.S., Guliyev, Z.Q. Long-term

influencing desertification of the Kura-Aras lowland for

changes in the precipitation regime in the Kura valley depression

the period 1991–2020. / A. Kh. Hajiyev, J.S. Huseynov,

region // - Baku: Works of the Azerbaijan Geographical Society,

N.N. Ismayilova // – Moscow: Hydrometeorological

Geography and natural resources, - 2021. No. 1, - p. 11-17.

studies and forecasts, – 2023. No. 1 (389), – p. 148-160.

14. Safarov, S.G. Spatio-temporal features of the distribution

5. Huseynov, N. Sh. Synoptic meteorology

of precipitation on the territory of Azerbaijan / S.G. Safarov, D.S.

/ N. Sh. Huseynov. - Baku: Sada, - 2011. - 316 p.

Huseynov, Z.G. Guliyev [etc.] //– Moscow: Hydrometeorological

6. Huseynov, J.S., Ibrahimova, I.V. Characteristics

studies and forecasts, – 2022. No. 1, – p. . 77-94.

of long-term temperature changes in the Kura-Aras plain

15. World Meteorological Organization.

// - Baku: Scientific Collections of the National Aviation WMO Guidelines on the Calculation of Climate

Academy, - 2020. Volume 22, No. 1-2, - p. 80-86.

Normals // Geneva, –2017. № 1203, –29 p.

ӘЗЕРБАЙДЖАН РЕСПУБЛИКАСЫНДАҒЫ КУРА-АРАКС ЖАЗЫҒЫНДАҒЫ АТМОС-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ФЕРАЛЫҚ ЖАУЫН-ШАШЫННЫҢ УАҚЫТ-КЕНІСТІК БӨЛУІН БАҒАЛАУ

Н.Ш. Гусейнов1 профессор, Дж.С. Гусейнов2* PhD, А.Х. Гаджиев1

1Ұлттық авиация академиясының кафедра меңгерушісі, Баку, Әзірбайжан

2 «Азербайжанские Авиалинии» АҚ «Азераэронавигация» УВД, Баку, Әзірбайжан

E-mail: camal_huseynov_88@mail.ru

Мақалада Кур-Аракс жазығындағы атмосфералық жауын-шашынның кеңістік-уақыттық

өзгерістерінің ерекшеліктері қарастырылады. Талдау кезінде облыстағы 10 гидрометеоро-

логиялық станциялардың 1992...2022 жылдардағы жауын-шашын деректері пайдаланылды.

Зерттеу жұмысы математикалық-статистикалық және картографиялық әдістер арқылы жүр-

гізілді. Талдау көрсеткендей, орташа жылдық жауын-шашын мөлшері Кура-Аракс жазығында

310 мм құрайды. Жазық аймақтарда жауын-шашынның 40%-ы жылы, 60%-ы суық жартылай

кезеңде түседі. Суық мезгілде жауын-шашын мөлшері жағалық аудандардан жазыққа қарай

азаяды, ал жылы мезгілде керісінше. Атмосфералық жауын-шашын қаңтар, наурыз, сәуір, ма-

мыр, маусым, тамыз, қазан, қараша, желтоқсан айларында азайып, ақпан, шілде, қыркүйекте

өсті. Жазықтағы жауын-шашынның жылдық мөлшері 1991...2022 жылдар аралығында баста-

пқы мөлшермен салыстырғанда 10%-ға азайды.Жалпы жауын-шашынның 18%-ы 10...19 мм,

ал 16%-ы 20...29 мм аралығында болды. Құра-Аракс жазығында айлық жауын-шашынның 50

және 60 мм-ден жоғары төмендеуі 19%-ға, 70 мм-ден жоғары жауын-шашынның 15%-ға азаюы

тіркелді. Зерттеу нәтижелерін экономиканың жаңа бағыттарын құру үшін пайдалануға болады.

86

9

Hydrometeorology and ecology №1 2024

Түйін сөздер: жауын-шашын, климаттың өзгеруі, ArcGIS, жауын-шашын шектері, ауытқулар, тренд

қисығы, айырмашылық интегралы

ОЦЕНКА ВРЕМЕННО-ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ АТМОСФЕРНЫХ

ОСАДКОВ НА КУРА-АРАКСИНСКОЙ НИЗМЕННОСТИ

В АЗЕРБАЙДЖАНСКОЙ РЕСПУБЛИКЕ

Н.Ш. Гусейнов1 профессор, Дж.С. Гусейнов2* PhD, А.Х. Гаджиев1

1Национальная Авиационная Академия, Баку, Азербайджан

2АО «Азербайджанские Авиалинии» УВД «Азераэронавигация», Баку, Азербайджан

E-mail: camal_huseynov_88@mail.ru

В статье рассмотрены особенности пространственно–временных изменений атмосферных

осадков на Кура-Араксинской низменности. При анализе использовались данные об осад-

ках с 10 гидрометеорологических станций района за период 1992...2022 гг. Исследования

проводились математико-статистическими и картографическими методами. Анализ пока-

зывает, что среднегодовое количество осадков на Кура-Араксинской низменности составля-

ет 310 мм. Здесь 40% осадков выпадает в теплый и 60% в холодный полупериод. В холод-

ное время года количество осадков уменьшается от прибрежных районов к равнинам, а в

теплое – наоборот. Атмосферные осадки уменьшились в январе, марте, апреле, мае, июне,

августе, октябре, ноябре и декабре и увеличились в феврале, июле и сентябре. Годовой по-

казатель количества осадков на равнине снизился на 10% за 1991...2022 годы по сравне-

нию с базовой суммой. 18% общего количества осадков находилось в пределах 10...19 мм,

а 16% - 20...29 мм. На Кура-Араксинской низменности зафиксировано снижение месячной

выпадения осадков свыше 50 и 60 мм на 19%, а количество осадков свыше 70 мм - на 15%.

Результаты исследований могут быть использованы при создании новых сфер экономики.

Ключевые слова: количество осадков, изменения климата, ArcGIS, пороги осадков, колебания, кривая

тренда, интеграл разности

Information about authors/Авторлар туралы мәліметтер/Сведения об авторах:

Huseynov Nazim Shakar oglu – Professor, Doctor of Science, Head of Department, National Aviation Academy, Mardakan

av., 30, Baku, nazimmet@mail.ru

Huseynov Jamal Surkhay oglu – PhD, forecaster, Azerbaijan Airlines JSC, Azeraeronavigation ATM , Mardakan av., 30,

Baku, jamal_huseynov_88@mail.ru

Hadjiev Agil Khanputa oglu – Postgraduate student, Senior lecturer, National Aviation Academy, Mardakan av., 30, Baku,

agilhaciyev35@gmail.com

Гусейнов Назим Шекар оглы – профессор, ғылым докторы, Ұлттық авиация академиясының кафедра меңге-

рушісі, Мардакана даңғылы 30, Баку, nazimmet@mail.ru

Гусейнов Жамал Сурхай оглы – Кандидат Наук, синоптик, «Азербайжанские Авиалинии» АҚ «Азераэронавига-

ция» УВД, Мардакана даңғылы 30, Баку, jamal_huseynov_88@mail.ru

Хаджиев Агиль Ханпута оглы – аспирант, Ұлттық авиация академиясының аға оқытушысы, Мардакана даңғылы,

30, Баку, agilhaciyev35@gmail.com

Гусейнов Назим Шакар оглы- Профессор, доктор наук, глава департамента, Национальная Авиационная Акаде-

мия, Проспект Мардакана 30, Баку, nazimmet@mail.ru

Гусейнов Джамал Сурхай оглы- Кандидат наук, синоптик, АО «Азербайджанские Авиалинии» УВД «Азераэрона-

вигация», Проспект Мардакана 30, Баку, camal_huseynov_88@mail.ru

Гаджиев Агиль Ханпута оглы - Aспирант, Старший преподаватель, Национальная Авиационная Академия, Про-

спект Мардакана 30, Баку, aqilhaciyev35@gmail.com

87

10

Scientific article Huseynov et al., Evaluation of the time space...

Authors contribution/ Авторлардың қосқан үлесі/ Вклад авторов:

Huseynov Nazim – мethodology development, conducting statistical analysis, conducting a research

Huseynov Jamal – сoncept development, conducting statistical analysis, conducting a research, preparing and editing

the text, visualization

Hadjiev Agil – сoncept development, conducting a research, resources, preparing and editing the text, visualization

Гусейнов Назим Шекар оглы – әдістемені әзірлеу, статистикалық талдау жүргізу, зерттеу жүргізу

Гусейнов Жамал Сурхай оглы – тұжырымдаманы әзірлеу, бағдарламалық жасақтама жасау, статистикалық

талдау жүргізу, зерттеу жүргізу, мәтінді дайындау және өңдеу, көрнекілік

Хаджиев Агиль Ханпута оглы – тұжырымдаманы әзірлеу, бағдарламалық жасақтама жасау, статистикалық тал-

дау жүргізу, зерттеу жүргізу, ресурстар, мәтінді дайындау және өңдеу, көрнекілік

Гусейнов Назим Шекар оглы – разработка методологии, проведение статистического анализа, проведение ис-

следования

Гусейнов Жамал Сурхай оглы – разработка концепции, создание программного обеспечения, проведение ста-

тистического анализа, проведение исследования, подготовка и редактирование текста, визуализация

Хаджиев Агиль Ханпута оглы – разработка концепции, создание программного обеспечения,

проведение статистического анализа, проведение исследования, ресурсы, подготовка и редактирование текста,

визуализация

88

i Надоели баннеры? Вы всегда можете отключить рекламу.