Научная статья на тему 'EVALUATING EFFECTIVENESS OF BIOLOGICALLY ACTIVE ADDITIVES WITH ANTIOXIDANT EFFECT IN COMBINATION WITH VITAMIN E IN FISH FOOD COMPOSITION'

EVALUATING EFFECTIVENESS OF BIOLOGICALLY ACTIVE ADDITIVES WITH ANTIOXIDANT EFFECT IN COMBINATION WITH VITAMIN E IN FISH FOOD COMPOSITION Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
87
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
DIHYDROQUERCETIN / ARABINOGALACTAN / ANTIOXIDANT / VITAMIN E / IMMUNOSTIMULANT / TILAPIA / AQUACULTURE / FEEDING / GROWTH

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Ponomarev Sergey Vladimirovich, Levina Olga Aleksandrovna, Fedorovykh Yulia Viktorovna, Akhmedzhanova Aliya Baimuratovna

Success of the industrial methods of fish farming depends primarily on the quality and balance of the combined feeds used. The results of a study of the effectiveness of the use of a flavonoid antioxidant, dihydroquercetin, and an assessment of the synergistic effect of this antioxidant in combination with the immunostimulant arabinogalactan and vitamin E are presented. To evaluate the effectiveness of dihydroquercetin in fish diets, two series of experiments were carried out. The research results showed that the best growth rates are owed to the addition of a complex of biologically active substances - dihydroquercetin in combination with vitamin E. The growth increased by 37.0-46.0%, and the fatness coefficient according to Fulton was 0.07 units, then as in the fish of the control group, the indicator did not exceed 0.04 units. When using an antioxidant in combination with vitamin E, the average weight of fish in the control group increased by 18.0%, while in the experimental variants this figure increased by 30.0-31.0%. Fatness coefficient according to Fulton in fish of the control group was 0.04 units, and when the diet was enriched with complexes of antioxidant additives, it was 0.07 units. The indicators of energy metabolism also indicate a better accumulation of plastic substances in the fish of the experimental groups: ESR 1.92 ± 0.30 mm/h and 1.83 ± 0.27 mm/h, the level of total protein is significantly (p ≤ 0.01) lower values of the control group (test 1 with dihydroquercetin - 25.70 ± 2.9 and test 2 with dihydroquercetin and arabinogalactan - 23.38 ± 0.90 g/l), and the cholesterol level is lower by 11.5-24.1%. Thus, it can be inferred that the complex of antioxidants provided more favorable trophic and biochemical conditions necessary, in particular, for the normal growth and development of fish. The results obtained in the course of the research can serve as a basis for improving the technologies for the production of mixed feed when raising fish on an intensive basis.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «EVALUATING EFFECTIVENESS OF BIOLOGICALLY ACTIVE ADDITIVES WITH ANTIOXIDANT EFFECT IN COMBINATION WITH VITAMIN E IN FISH FOOD COMPOSITION»

ТОВАРНАЯ АКВАКУЛЬТУРА И ИСКУССТВЕННОЕ ВОСПРОИЗВОДСТВО ГИДРОБИОНТОВ

COMMODITY AQUACULTURE AND ARTIFICIAL REPRODUCTION OF HYDROBIONTS

Original article UDK 639.3.043.13

https://doi.org/10.24143/2073-5529-2022-3-39-47 EDN BRTUTL

Evaluating effectiveness of biologically active additives with antioxidant effect in combination with vitamin E in fish food composition

S. V. Ponomarev1, O. A. Levina2, Yu. V. Fedorovykh3, A. B. Akhmedzhanova4^

1-4Astrakhan State Technical University, Astrakhan, Russia, aliyaakhmedl4@gmail. com14

'К. G. Razumovsky Moscow State University of technologies and management (the First Cossack University), Moscow, Russia

Abstract. Success of the industrial methods of fish farming depends primarily on the quality and balance of the combined feeds used. The results of a study of the effectiveness of the use of a flavonoid antioxidant, dihydroquercetin, and an assessment of the synergistic effect of this antioxidant in combination with the immunostimulant arabinogalac-tan and vitamin E are presented. To evaluate the effectiveness of dihydroquercetin in fish diets, two series of experiments were carried out. The research results showed that the best growth rates are owed to the addition of a complex of biologically active substances - dihydroquercetin in combination with vitamin E. The growth increased by 37.0-46.0%, and the fatness coefficient according to Fulton was 0.07 units, then as in the fish of the control group, the indicator did not exceed 0.04 units. When using an antioxidant in combination with vitamin E, the average weight of fish in the control group increased by 18.0%, while in the experimental variants this figure increased by 30.0-31.0%. Fatness coefficient according to Fulton in fish of the control group was 0.04 units, and when the diet was enriched with complexes of antioxidant additives, it was 0.07 units. The indicators of energy metabolism also indicate a better accumulation of plastic substances in the fish of the experimental groups: ESR 1.92 ± 0.30 mm/h and 1.83 ± 0.27 mm/h, the level of total protein is significantly (p < 0.01) lower values of the control group (test 1 with dihydroquercetin - 25.70 ± 2.9 and test 2 with dihydroquercetin and arabinogalactan - 23.38 ± 0.90 g/1), and the cholesterol level is lower by 11.5-24.1%. Thus, it can be inferred that the complex of antioxidants provided more favorable trophic and biochemical conditions necessary, in particular, for the normal growth and development of fish. The results obtained in the course of the research can serve as a basis for improving the technologies for the production of mixed feed when raising fish on an intensive basis.

Keywords: dihydroquercetin, arabinogalactan, antioxidant, vitamin E, immunostimulant, tilapia, aquaculture, feeding, growth

Acknowledgment: the research was carried out due to the support of the Russian Science Foundation, project № 22-26-00008 "Scientific and methodological fundamentals of using highly effective feeding technology to prevent oxidative stress and maintain peroxide homeostasis of the fish body in conditions of intensive aquaculture".

For citation: Ponomarev S. V., Levina O. A., Fedorovykh Yu. V., Akhmedzhanova A. B. Evaluating effectiveness of biologically active additives with antioxidant effect in combination with vitamin E in fish food composition. Vestnik of Astrakhan State Technical University. Series: Fishing Industry. 2022;3:39-47. (In Russ.). ht1ps://doi.org/10.24143/2073-5529-2022-3-39-47. EDN BRTUTL.

© Ponomarev S. V., Levina O. A., Fedorovykh Yu. V., Akhmedzhanova А. В., 2022

'' Научная статья

a

Р I

° о

о g

я S

я е-

§ §

В §

и и

§ я

Оценка эффективности применения биологически активных добавок с антиоксидантным действием в сочетании с витамином Е в составе продукционных кормов для рыб

Л С. В. Пономарев1, О. А. Левина2, Ю. В. ФедоровыхА. Б. Ахмеджанова

о

& 1-4.Астраханский государственный технический университет,

| Астрахань, Россия, [email protected]

и .

8 Московский государственный университет технологий и управления имени К. Г. Разумовского

ц (Первый казачий университет), Москва, Россия

а Аннотация. Успех индустриальной формы рыбоводства в первую очередь зависит от качества и сбалансирован-

5 g ности применяемых комбинированных кормов. Представлены результаты исследования эффективности приме-

| § нения антиоксиданта флавоноидной природы — дигидрокверцетина — и оценка синергетического действия этого

1 ° антиоксиданта в сочетании с иммуностимулятором арабиногалактаном и витамином Е. Для оценки эффективно-

§ сти дигидрокверцетина в рационах рыб проводили две серии экспериментов. В результате исследований уста-

§ новлено, что лучшие показатели по приростам наблюдались при добавлении комплекса биологически активных

S веществ — дигидрокверцетина в сочетании с витамином Е. Прирост увеличился на 37,0-46,0 %, а коэффициент

g упитанности по Фультону составил 0,07 ед., тогда как у рыб контрольной группы показатель не превышал

§ 0,04 ед. При использовании антиоксиданта в сочетании с витамином Е у рыб контрольной группы средняя масса

(о увеличилась на 18,0 %, тогда как в опытных вариантах этот показатель увеличился на 30,0-31,0 %. Коэффициент

| упитанности по Фультону у рыб контрольной группы составил 0,04 ед., а при обогащении рациона комплексами

g антиоксидантных добавок — 0,07 ед. Показатели энергетического обмена также свидетельствуют о лучшем

I накоплении пластических веществ у рыб экспериментальных групп: СОЭ 1,92 ± 0,30 мм/ч и 1,83 ± 0,27 мм/ч,

g, уровень общего белка достоверно (р < 0,01) ниже значений контрольной группы (вариант 1 с дигидроквертеци-

s ном - 25,70 ± 2,9, вариант 2 с дигидроквертецином и арабиногалактаном - 23,38 ± 0,90 г/л), а уровень холестери-

g на ниже на 11,5—24,1 %. Таким образом, можно говорить о том, что комплекс антиоксидантов обеспечил более

п благоприятные трофические и биохимические условия, необходимые, в частности, д ля нормального роста и раз-

g вития рыб. Результаты, полученные в ходе исследований, могут служить основой для совершенствования технологий производства комбикормов при выращивании рыб на интенсивной основе.

« Ключевые слова: дигидрокверцетин, арабиногалактан, антиоксидант, витамин Е, иммуностимулятор, тиля-

§ пия, аквакультура, кормление, прирост

w

и- Благодарности: работа выполнена при поддержке гранта Российского научного фонда, проект № 22-26-00008

^ «Научно-методические основы применения высокоэффективной технологии кормления для предотвращения ок-

g сидативного стресса и сохранения перекисного гомеостаза организма в условиях интенсивной аквакультуры». 8

I Для цитирования: Пономарев С. В., Левина О. А., Федоровых Ю. В., Ахмеджанова А. Б. Оценка эффективно-

g сти применения биологически активных добавок с антиоксидантным действием в сочетании с витамином Е

Ъ в составе продукционных кормов для рыб // Вестник Астраханского государственного технического универ-

^ ситета. Серия: Рыбное хозяйство. 2022. № 3. С. 39-47. https://doi.org/10.24143/2073-5529-2022-3-39-47. EDN

Я BRTUTL. й

§ Introduction At the same time, an important role is assigned § Analysis of the work of aquaculture enterprises to organizing rational feeding balanced with the needs | shows that the technological features of industrial of the cultivated species. Deficiency or imbalance ® fish farming (high stocking densities, regular sorting of vitamins, macro- or microelements in the diet of fish < of fish, oxygen level drops, etc.) are stressful for fish leads to characteristic disturbances in metabolic pro° and can provoke free radical oxidation processes and cesses, contributing to a decrease in the efficiency s disrupt metabolism, which leads to a delay in the of cultivation. In addition, non-compliance with certain growth and development of cultivated objects and stages of feeding technology (production of feed from fflr affects the fish adaptive mechanisms [1-6]. low-quality raw materials, improper storage) can cause о In this regard, further improvement of modern producing peroxides dangerous for the fish body. S technologies of industrial fish farming, in particular, in Loss of appetite, decreased growth rate, decreased s recirculation aquaculture systems, involves a detailed activity and high mortality are signs of weakening of the g study of metabolism and, especially, effect of antioxi- body's antioxidant defense. In addition, muscular dys-c dant protection in conditions of artificially created trophy, fatty degeneration of the liver, accumulation ecosystems. This will allow identifying the most vul- of fluid in the abdominal cavity, hemolysis of erythro-nerable stages, monitoring, and if necessary, correcting cytes, decrease in hematocrit, etc. are noted [7, 8]. the physiological state of the fish.

One of the ways to improve the biotechnics of fish breeding is using the biologically active substances (BAS) that have a stimulating effect on the vital functions of the body.

An important argument when choosing BAS is their antioxidant and adaptogenic effect. Thus, the diet of fish should not only be balanced, according to the biological needs of cultivated species, but also additionally enriched with antioxidant complexes.

Developing the new drugs with antioxidant properties makes it possible to improve the technology of fish feeding and increase the pro-oxidant - antioxidant balance.

Due to the fact that an important criterion for choosing feed additives is environmental safety, natural bioantioxiflers of flavonoid nature, in particular, dihydroquercetin, are of interest. Dihydroquercetin, a natural flavonoid isolated from the larch wood has a wide range of properties, for example, it participates in the synthesis of vitamin P, helps to reduce the permeability and fragility of capillaries [9]. Being an effective antioxidant, dihydroquercetin interrupts the processes of lipid peroxidation in cell membranes,

penetrates into the cytoplasm of the cell and protects the cell from the damaging effects of free radicals.

Dihydroquercetin also has a synergistic effect on ascorbic acid and the membrane antioxidant vitamin E promoting the regeneration of the active form of the latter and preventing the formation of tocopherylqui-none [10-14].

The aim of the study was to examine the metabolic processes in the fish body when using dihydroquercetin in diets and to evaluate the synergistic effect of this antioxidant in combination with the immunostimulator arabinogalactan (AG) and vitamin E.

Materials and methods of research

The study was conducted in the innovation center "Bioaquapark - scientific and technical center of aquaculture" under Astrakhan State Technical University. To evaluate the effectiveness of dihydroquercetin (DHQ) in fish diets, two series of experiments were conducted. The work was carried out according to the scheme presented in Table 1.

Scheme of the experiment

Indicator Control Test 1 Test 2

Feeding Basic diet (BD) BD + 50.0 mg DHQ BD + 25.0 mg DHQ + 25.0 mg AG

BD + 50.0 mg DHQ + 50.0 mg vitamin E BD + 25.0 mg DHQ + 50.0 mg vitamin E

The object of the study Tilapia hybrid Oreochromis mossambicus x Oreochromis niloticus

Stocking density, pcs/m3 100

Granule size, mm 3.5 3.5 3.5

Temperature regime, °C 26.5 during a day

pH 7.5 7.5 7.5

Feeding method Manually, by eatability

Research period 28 days

1 o

% I

o 3

GO S

ïï. 3

§ <

w

f n

9 >

H n Q.

i 4

Table 1

£

1 <

œ

2

<g CD

3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CTo'

<8.

Q. &

?"

CD

GO

I

I

o

><

cu

3

o

5"

I

I

5"

M

5"

31

S-

The drug Flavitol (CJSC SPF "FLAVIT") was used as a source of DHQ, which contains highly purified DHQ (94-96%) with a preserved native form. The drug dissolved in distilled water was introduced into the compound feed in the process of its producing. Experimental batches of dry compound feeds were made under laboratory conditions by wet pressing followed by drying.

The daily feeding rate was determined according to the feed tables depending on the average weight of fish and water temperature. The dynamics of the growth rate was assessed based on the analysis of changes in linear and weight indicators and their dependencies among themselves (absolute and average daily growth, average daily growth rate, Fulton fatness coefficient, weight accumulation coefficient). Measurements and calculations were carried out in accordance with the recommendations adopted in fish farming [15-17].

The assessment of the functional state of cultured fish was carried out on the basis of a comprehensive physiological and biochemical study of blood, taking into account species and age characteristics. Blood was taken in vivo from the caudal vein into Eppendorf tubes with the addition of an anticoagulant (heparin) for he-

matological analysis and without an anticoagulant to obtain blood serum (by centrifugation at 3 000 rpm) and to study biochemical parameters.

Hemoglobin was determined by the hemoglobin cyanide method [18]. The erythrocyte sedimentation rate (ESR) was determined by the Panchenkov method [19].

Determination of biochemical parameters of blood serum (total serum protein, cholesterol) was carried out according to certified methods and reagent kits of Olvexdiagnosticum-Yug, LLC (Russia) and Agat-Med, LLC (Russia) [20-22]. Blood smears were prepared using a May-Grunwald dye fixative from Olvex-Diagnosticum [23,24].

The research results were processed using generally accepted methods of biological statistics [25] and the Microsoft Excel program. Statistical analysis was carried out using the Student's t-criterion, differences were considered significant at p< 0.05.

Research results

Analysis of fish-breeding and biological indicators (Table 2) showed that the growth rate of fish whose diet was enriched with DHQ exceeded these indicators in fish of control groups.

Я

О.

(Г ч

° m

о g

и S

S g-

S §

s в

u Й

>si S

U Щ

ч 9

Table 2

Dynamics of growth indicators of tilapia hybrid when using DHQ and AG

Indicator Control Test 1 Test 2

Weight, g:

initial; 99.43 ± 10.51 80.27 ±6.12 79.88 ± 7.48

final 131.73 ±10.01 119.53 ±7.33 124.00 ±8.91

Length, cm:

initial; 18.27 ±0.52 17.68 ±0.42 17.39 ±0.44

final 19.54 ±0.46 19.23 ±0.39 19.03 ± 0.42

Fulton fatness coefficient:

initial; 1.54 ±0.04* 1.41 ±0.03* 1.45 ±0.04

final 1.7 ±0.03 1.76 ±0.14 1.77 ±0.03

Absolute growth, g 32.28 39.26 44.12

Average daily growth, g 1.15 1.40 1.58

Average daily growth rate, % 1.01 1.43 1.58

Weight accumulation coefficient 0.05 0.07 0.07

Duration of cultivation, days 28 28 28

1 £ a a

vo g

ai

P<0.05.

R О

SI Ю

During the experiment, it was found that high growth rate was observed in all groups. The average daily increments fluctuated in the range of 1.1-1.5 g.

The best indicators for increments were observed with the addition of a complex of biologically active

substances - the live weight gain in fish of the first group was 39.26 g versus 44.12 g in the second group, which is 17.7 and 27.2% higher than in fish of the control group (Table 3).

Table 3

g

Я" О

w <

Dynamics of growth indicators of tilapia hybrid when combined in the diet of DHQ and vitamin E

ffl

9

§

я

о &

t=c

и ©

<f о

4 cd ü

Indicator Control Test 1 Test 2

Weight, g:

initial; 142.00 ± 12.17 121.65 ±27.20 130.50 ±7.87

final 173.68 ± 10.88 172.45 ± 38.56 189.16 ±8.36

Length, cm:

initial; 20.29 ± 0.54 20.18 ±4.51 20.22 ± 0.36

final 21.13 ±0.60 21.35 ±4.77 21.36 ±0.22

Fulton fatness coefficient:

initial; 1.63 ±0.03* 1.46 ±0.03* 1.55 ±0.03***

final 1.91 ±0.10 1.77 ±0.05** 1.92 ±0.04**

Absolute growth, g 31.68 50.80 58.66

Average daily growth, g 1.13 1.81 2.10

Average daily growth rate, % 0.72 1.25 1.33

Weight accumulation coefficient 0.04 0.07 0.07

Duration of cultivation, days 28 28 28

P < 0.001; p < 0.01; p < 0.05.

When using an antioxidant in combination with vitamin E in fish of the control group, the average weight increased by 18.0%, whereas in experimental variants this indicator increased by 30.0-31.0%. The Fulton fatness coefficient in fish of the control group was 0.04 units, and when enriching the diet with complexes of antioxidant additives 0.07 units.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

During the growing period, the absolute body weight gain of fish in the control group was 37.6-45.9% lower than that of fish in the experimental groups. A similar trend is observed for other piscicultural indicators. The best piscicultural indicators according to the results of cultivation were shown by an experimental group of fish that consumed the main diet with the addition of 25.0 mg of Flavitol and 50.0 mg of vitamin E. Survival in all variants of the study was 100%. The feed

coefficient characterizing the feed conversion in the control variant was 1.4 units, which is 14.3% higher than in the experimental variants. The best assimilation of the feed was with the addition of a complex of antioxidants, and the feed coefficient was 1.2 units.

Thus, the results of biological growth indicators (increased weight gain and length, fatness of fish) and survival indicate a positive effect of adding a complex of antioxidants to the diet of hybrid tilapia. The functional state of the organism in the proposed growing conditions was assessed by physiological and biochemical parameters of blood, which act as specific indicators of physiological or pathological changes. The results of studies of blood biochemical parameters are presented in Tables 4 and 5.

Table 4

Biochemical blood parameters of tilapia hybrid when used in the diets of DHQ and AG

Indicator Control Test 1 Test 2

Hemoglobin, g/1 48.38 ±5.84 80.91 ±11.01* 54.57 ±2.65**

ESR, mm/h 1.92 ±0.33 1.90 ±0.24 1.83 ±0.28

Total serum protein, g/1 21.33 ±0.88 23.67 ±1.86 33.00 ±2.0**

Cholesterol, mmol/1 3.23 ±0.35 3.62 ±0.52 3.75 ±0.57

Glucose, g/1 5.79 ± 0.42 6.01 ±0.16 5.21 ±0.18**

Total lipids, g/1 2.95 ±0.18 3.27 ±0.15 3.34 ±0.20

1 o

% I

o 3

GO S

ïï. 3

§ <

w

f n

p >

H n Q.

i 4

'P < 0.01; "p< 0.001.

Table 5

Biochemical blood parameters of tilapia hybrid using DHQ and vitamin E in diets

Iidicator Test 1 Test 2 Control

Hemoglobin, g/1 60.07 ±3.89 54.32 ±2.87 59.62 ±2.68

ESR, mm/h 1.92 ±0.30 1.83 ±0.27 1.50 ±0.19

Total serum protein, g/1 25.70 ± 2.93 23.38 ±0.90* 30.88 ±2.34*

Cholesterol, mmol/1 3.22 ±0.24* 3.75 ±0.22 4.24 ± 0.32*

"P < 0.05.

The obtained results of hematological and biochemical parameters are consistent with the data of other authors [26-32]. The erythrocyte sedimentation rate in all experimental variants remained within the normative values, which is also consistent with the literature data [33, 34] and indicates a constant protein composition of blood plasma.

The concentration of hemoglobin varied from 40.0 to 80.0 g/1. When the BAS complex was added to the diet, the hemoglobin level was 30.0-40.0% higher compared to other experimental variants and indicates a positive effect of the feed additive on the metabolism of the studied fish.

A similar dynamic can be traced in the change in glucose level (p < 0.001), and maintaining it within 5.0-6.0 mmol/1 is the result of the normal operation of the enzymatic system that catalyzes the transformation of glucose.

In comparison with the control, BAS contributed to the activation of plastic metabolism, which is confirmed by a lower level of total whey protein and a high growth rate.

Under experimental conditions the level of total serum lipids changed slightly. Its important component is cholesterol, which stimulates the body's immune system and plays a role in protecting against stress. The dynamics of lipid metabolism contributed to the normal process of accumulation of energy resources.

The enrichment of the diet of DHQ in combination with vitamin E also influenced some biochemical parameters of the blood of fish, a significant difference (p < 0.01) of which indicate a positive effect of biologically active substances on the physiological state of the body of fish.

In the fish of the control group the ESR was slightly lower than in the fish of the experimental groups. The revealed difference may indicate a change in the

protein composition of blood plasma due to a more intensive diet of fish, and may also be the result of adaptation of tilapia to other habitat conditions, in this case, to a different diet [35, 36]. Hemoglobin concentration in the fish of the control and experimental groups differed slightly (p > 0.01).

Depending on the conditions of nutrition, diet and the level of energy metabolism, the amount of total whey protein changes, the excess or shortage of which indicates a decrease in the viability of fish. In all variants of the study the indicator was within the normative values for this type of fish and varied from 19.08 to 36.40 g/1. The lower protein level in fish of the experimental groups (p < 0.01) is explained by the better growth rate of fish, since it affects the structure of the body, which is confirmed by the data of fish-breeding and biological analysis.

According to the level of cholesterol stimulating the body's immune system, the changes ranged from 2.8 to 5.5 mmol/1 (p > 0.01). However, this indicator in the fish of the control group was 11.5-24.1% higher than in the fish of the experimental groups. The increased level of cholesterol in the blood contributes to a change in blood viscosity, which leads to a violation of active metabolism in the body, so it can be assumed that the dynamics of lipid metabolism in fish of the experimental groups also contributed to the normal process of accumulation of energy resources.

Considering that the fish of all groups were kept in the same conditions, the processing of the material was carried out uniformly, and the difference was only the diet, we can say that the complex of antioxidants provided more favorable trophic and biochemical conditions necessary, in particular, for the fish normal growth and development.

A fairly informative indicator in assessing the overall physiological state of the body is the leukocyte

£

1 <

œ

2

<g CD

3

CTo'

<8.

Q. &

?"

CD

GO

I

I

o

><

cu

3

o

5"

I

I

5"

M

5"

31

S-

Я

О.

(Г ч

° m

о g

и S

S g-

S §

s в

u Й

>si S

U Щ

ч 9

blood formula, which reflects not only the physiological state of fish, but also some aspects of cellular immunity. Changes in the leukogram can detect metabolic disorders and deterioration of the condition of the

object under study long before the appearance of clinical signs of emerging pathologies. Table 6 shows the leukocyte formula of the blood of the fish under study.

Table 6

Leukocyte blood formula (%) of tilapia hybrid using DHQ and AG in the diets

Indicator Control Test 1 Test 2

Lymphocytes 86.94 ±2.62 88.92 ±1.87 89.48 ±1.59

Monocytes 2.95 ± 0.71 2.94 ± 0.65 2.24 ± 0.47

Neutrophils 9.08 ±1.57 7.45 ±1.27 7.53 ±1.21

Basophils 1.03 ±0.14 0.69 ± 0.06* 0.75 ±0.17

1 £ a a

vo g

ai

R О

SI Ю

g

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

P<0.01.

The number of lymphocytes, monocytes, neutrophils, basophils remained at the same level in all three experimental groups. The leading group in the studied smears were lymphocytes, which made up the majority of the total number of leukocytes (from 86.94 to 89.48%).

Thus, the obtained hematological and biochemical indicators indicate a positive effect of BAS on the health of fish, and the results of size and weight characteristics confirm the high activity of metabolic processes.

Conclusion

The conducted studies indicate the effectiveness of the use of bioflavonoids in feeding promising aqua-

culture objects, in particular tilapia and its hybrids. The positive effect of the tested BAS on the growth and development of cultured juveniles has been established.

The results obtained complement the existing ideas about the fields of application of antioxidants, and also prove the prospects of using herbal remedies as antioxidant feed additives.

The data obtained allow us to recommend the complex use of DHQ in combination with vitamin E as part of the production feed for hybrid tilapia during its commercial cultivation.

Я" О

w <

References

ш

9

§

я

о &

t=c

и ©

<f О

4 cd ü

1. Sargent J., Henderson R. J., Tocher D. R. The Lipids Fish Nutrition. Academic Press, 1989. Pp. 154-209.

2. Delgado A., Estevez A., Hortelano P., Alejandre M. J. Analyses of fatty acids from different lipids in liver and muscle of sea bass (Dicentrarchus labrax). Influence of temperature and festing. Biochem. Physiol., 1994, no. 108, pp. 673-680.

3. Guderle H., St-Pierre J. Going with the flow in the fast lane: contrasting mitochondrial responses to thermal change. Exp. Biol., 2002, no. 205, pp. 2237-2249.

4. Ermakova N. V. Osobennosti karatinoidnogo sostava vitaminnoi dobavki, poluchennoi na osnove otkhodov morkovi putem konservatsii molochnokislymi mikroorganizmami [Features of carotenoid composition of vitamin supplement obtained on basis of carrot waste by conservation with lactic acid microorganisms], Ratsional'noe ispol'zovanie syr'ia i sozdanie novykh produktov biotekhnologicheskogo naznacheniia: mate-rialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii. Orel, OOO PF Kartush, 2018.239 p.

5. Petrenko V. P. Effektivnost' primeneniia vitaminnogo premiksa i kompleksa mikroelementov v kombikormakh dlia tovarnogo karpa [Effectiveness of using vitamin premix and complex of trace elements in compound feed for commercial carp], Voprosy intensifikatsii prudovogo rybovodstva: sbornik nauchnykh trudov. Moscow, Izd-vo VNHPRKh, 1985. Pp. 16-18.

6. Ponomarev S. V. Novyi lechebnyi osetrovyi kombi-korm dlia predotvrashcheniia lordoza i skolioza pri indus-triaTnom vyrashchivanii [New therapeutic sturgeon compound feed for prevention of lordosis and scoliosis in industrial cultivation], Vestnik Astrakhanskogo gosudarstvennogo

tekhnicheskogo universiteta. Seriia: Rybnoe khoziaistvo, 2005, no. 3(26), pp. 62-66.

7. Lovell R. T. Selenium in fish feeds: nutritional, environment and legal aspects. Aquacultult. Meg., 1996, vol. 22, no. l,pp. 76-81.

8. Watanabe T., Takeuchi C., Matsui M., Ogino C., Ka-wabata T. Effekt of a-tocopherol deficiency on carp. VII. The relation ship between dietary levels of linoleat and a-tocopherol requirement. Bull. Jap. Sci. Fish., 1977, vol. 43, pp. 935-946.

9. Nakusov T. T., Shortanova T. Kh., SamoilikN. I., Shil-ina N. M. Izuchenie vliianiia digidrokvertsetina na sistemu perekisnogo okisleniia lipidov (antioksidantnaia zashchita pri ostroi eksperimental'noi gipoksii) [Studying effect of dihy-droquercetin on lipid peroxidation system (antioxidant protection in acute experimental hypoxia)]. Voprosy detskoi dieto-logii, 2005, vol. 3, no. 6, pp. 9-11.

10. Ponomarev S. V., Bakhareva A. A., Grozesku Iu. N. Novyi polivitaminnyi premiks dlia osetrovykh ryb [New multivitamin premix for sturgeons], Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Rybnoe khoziaistvo, 2000, no. 1, pp. 63-66.

11. Bakhareva A. A., Grozesku Iu. N. Vliianie vitaminov na reproduktivnye funktsii ryb [Vitamins influence fish reproductive functions], Estestvennye nauki, 2013, no. 3 (44), pp. 86-92.

12. Ponomareva E. N., Sorokina M. N. Ispol'zovanie vitaminov dlia povysheniia rezistentnosti osetrovykh ryb v ran-nem ontogeneze [Using vitamins to increase resistance of sturgeons in early ontogenesis], Vestnik Astrakhanskogo

gosudarstvennogo tekhnicheskogo universiteta, Seriia: Rybnoe khoziaistvo, 2004, no. 2, pp. 67-73.

13. Metallov G. F., Grigor'ev V. A., Kovaleva A. V., Lev-ina O. A., Sorokina M. N. Vliianie preparata E-selen na rest i fiziologicheskie pokazateli gibrida russkii osetr x lenskii osetr pri vyrashchivanii v ustanovke zamknutogo vodosnabzheniia [Effect of E-selenium preparation on growth and physiological parameters of Russian sturgeon * Lena sturgeon hybrid when grown in recirculating water supply system], Vestnik Iuzhnogo nauchnogo tsentra, 2013, vol. 9, no. 2, pp. 57-67.

14. Metallov G. F., Levina O. A., Grigor'ev V. A., Kovaleva A. V. Biologicheski aktivnye dobavki v produk-tsionnykh kormakh dlia osetrovykh ryb [Biologically active additives in production feeds for sturgeons], Vestnik Astra-khanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Rybnoe khoziaistvo, 2013, no. 3, pp. 146-152.

15. Lakin G. F. Biometriia [Biometrics], Moscow, Vysshaia shkola Publ., 1990. 293 p.

16. Castell J. D., Tiews K. Report of the EIFAC, IUNS and ICES Working Group on the standardization of methodology in fish nutrition research. EIFAC Technical Paper, 1979, pp. 1-24.

17. Kupinskii S. V., Baranov V. F., Reznikov S. A. Radu-zhnaia forel' - predvaritel'nye parametry standartnoi modeli massonakopleniia [Rainbow trout: preliminary parameters of standard mass accumulation model], Industrial'noe rybovod-stvo v zamknutykh sistemakh, 1985, iss. 46, pp. 109-115.

18. Van Kampen E. J., Zjilstra W. G. Standardization of he-moglobinometry. Clinic Chemistry Acta, 1961, no. 6,538 p.

19. Limanskii V. V., Iarzhombek A. A., Bekina E. N., Andronnikov S. B. Instruktsiia po fiziologo-biologicheskim analizam ryby [Instructions for physiological and biological analysis offish], Moscow, Izd-vo VNHRKh, 1984. 60 p.

20. Filippovich Iu. B., Egorova T. A., Sevast'ianova G. A. Praktikum po obshchei biokhimii [Workshop on general biochemistry], Moscow, Prosveshchenie Publ., 1975.318 p.

21. Fishbach F. A., Dunning M. Manual of laboratory diagnostic tests. Lppincott Williams & Wilkins, 2004, vol. 14, p. 1291.

22. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Clinic Chemistry Acta, 1969, vol. 6, pp. 24-25.

23. Kozinets G. I. Atlas kletok krovi i kostnogo mozga [Atlas of blood cells and red marrow], Moscow, Triada-Kh Publ., 1998. 160 p.

24. Abramov M. G. Gematologicheskii atlas [Hematology Atlas], Moscow, Meditsina Publ., 1985. 344 p.

25. Chun-Yao C., Wooster G. A., Getchell R. G., Bowser P. R., Timmons M. B. Blood chemistry of healthy,

nephrocalcinosis-affected and ozone-treated tilapia in a recirculation system, with application of discriminant analysis. Aquaculture, 2003, vol. 218, pp. 89-102.

26. Palikovâ M., Kopp R, Mares J., Navratil S., Kubicek Z., Chmelar L., Band'ouchovâ H., Pikula J. Selected Haemato-logical and Biochemical Indices of Nile Tilapia (Oreo-chromis niloticus). Reared in the Environment with Cyano-bacterial Water Bloom. ACTA VET. BRNO, 2010, pp. 61-73.

27. Keri A.-I. The study of growth performance and some biochemical parameters of Nile tilapia (Oreochromis niloticus) fingerlings fed on olive mill waste. International Journal of Scientific and Research Publications, 2015, vol. 5, iss. 4, pp. 94-102.

28. Hamid A., Mohamed A., Adam M., Mohamed A. Physical & Chemical Characteristics of Blood of two Fish Species (Oreochromis niloticus and Clarias lazera). World's Vet., 2013, no. 3 (1), pp. 17-20.

29. Abdul Jaffar H., Jaya Rani V. Effect of phosalone on haematological indices in the tilapia, Oreochromis mossambi-cus. Turk J. Vet. Anim. Sci., 2009, no. 33 (5), pp. 407-411.

30. Weinert N. C., Volpato J., Costa A, Antunes R. R, Oliveira A C., Scabelo -Mattoso C. R, Saito M. E. Hematology of Nile tilapia (Oreochromis niloticus) subjected to anesthesia and anticoagulation protocols. Semina: Ciências Agrârias, Lon-drina, 2015, vol. 36, no. 6, supl. 2, pp. 4237-4250.

31. Bittencourt N. L., Molinari L. M., Scoaris D. O., Pedroso R. B., Nakamura C. V., Ueda-Nakamura T., Fil-ho B. A., Filho B. P. Haematological and biochemical values for Nile tilapia Oreochromis niloticus cultured in semiintensive system. Acta Scientiarum. Biological Sciences Maringâ, 2003, vol. 25, no. 2, pp. 385-389.

32. Vasil'eva E. G., Bystriakova E. A. Izmeneniia poka-zatelei krovi tiliapii pod vliianiem elektromagnitnogo polia [Changes in blood parameters of tilapia under influence of electromagnetic field], Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Rybnoe khoziaistvo, 2009, no. l,pp. 119-120.

33. Akinrotimi O. A., Agokei E. O. Effects of acclimation on haematological parameters of Tilapia guineensis (Bleeker, 1862). Science World Journal, 2010, vol. 5, no 4, pp. 1-4.

34. Shirina lu. M., Kotel'nikov A. V., Ableev D. R., Ponomarev S. V., Fedorovykh lu. V. Vliianie lechebno-profilakticheskogo preparata ES-2 na funktsional'noe sosto-ianie gibrida tiliapii Oreochromis SPP [Influence of ES-2 therapeutic and prophylactic drug on functional state of tilapia hybrid Oreochromis SPP], Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Rybnoe khoziaistvo, 2017, no. 2, pp. 130-136.

1 о

я I

о 3

ce S

ïï. з

§ <

и

Г n

p >

ч

n Q.

i 4

c5

► ю

9

w.

<g

n

3

CTo'

<8.

Q. &

l

CU

3

О

S"

Список источников

g.

1. Sargent J., Henderson R. J., Tocher D. R. The Lipids Fish Nutrition//Academic Press. 1989. P. 154-209.

2. Delgado A., Estevez A., Hortelano P., Alejandre M. J. Analyses of fatty acids from different lipids in liver and muscle of sea bass (Dicentrarchus labrax). Influence of temperature and fasting // Biochem. Physiol. 1994. N. 108. P. 673-680.

3. Guderle H., St-Pierre J. Going with the flow in the fast lane: contrasting mitochondrial responses to thermal change // Exp. Biol. 2002. N. 205. P. 2237-2249.

4. Ермакова H. В. Особенности каратиноидного состава витаминной добавки, полученной на основе отходов моркови путем консервации молочнокислыми

микроорганизмами // Рациональное использование сырья и создание новых продуктов биотехнологического назначения: материалы Междунар. науч.-практ. конф. Орел: ООО ПФ Картуш, 2018. 239 с.

5. Петренко В. П. Эффективность применения витаминного премикса и комплекса микроэлементов в комбикормах для товарного карпа // Вопросы интенсификации прудового рыбоводства: сб. науч. тр. М.: Изд-во ВНИИПРХ, 1985. С. 16-18.

6. Пономарев С. В. Новый лечебный осетровый комбикорм для предотвращения лордоза и сколиоза при индустриальном выращивании // Вестн. Астрахан. гос.

I

В' м В'

В)

е-

Я

О.

(Г ч

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

° о о g

я S

я е-§ §

е §

и и

2м I я

в о 5! Ю

Я"

о

&

ч

С О

и

Ü

техн. ун-та. Серия: Рыбное хозяйство. 2005. № 3 (26). С. 62-66.

7. Lovell R. Т. Selenium in fish feeds: nutritional, environment and legal aspects // Aquacultult. Meg. 1996. V. 22. N. 1. P. 76-81.

8. Watanabe Т., Takeuchi C., Matsui M., Ogino С., Ka-wabata Т. Effekt of a-tocopherol deficiency on carp. УП. The relation ship between dietary levels of linoleat and a-tocopherol requirement // Bull. Jap. Sei. Fish. 1977. V. 43. P. 935-946.

9. Накусов Т. Т., Шортанова Т. X., Самойлик Н. И., Шилина Н. М. Изучение влияния дигидрокверцетина на систему перекисного окисления липидов (антиоксидант-ная защита при острой экспериментальной гипоксии) // Вопр. дет. диетологии. 2005. Т. 3. № 6. С. 9-11.

10. Пономарев С. В., Бахарева А. А., Грозеску Ю. Н. Новый поливитаминный премикс для осетровых рыб // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2000. № 1. С. 63-66.

11. Бахарева А. А., Грозеску Ю. Н. Влияние витаминов на репродуктивные функции рыб // Естеств. науки. 2013. № 3 (44). С. 86-92.

12. Пономарева Е. И., Сорокина М. Н. Использование витаминов для повышения резистентности осетровых рыб в раннем онтогенезе // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2004. № 2. С. 67-73.

13. Металлов Г. Ф., Григорьев В. А., Ковалева А. В., Левина О. А., Сорокина М. Н. Влияние препарата Е-селен на рост и физиологические показатели гибрида русский осетр х ленский осетр при выращивании в установке замкнутого водоснабжения // Вестн. Юж. науч. центра. 2013. Т. 9. № 2. С. 57-67.

14. Металлов Г. Ф., Левина О. А., Григорьев В. А., Ковалева А. В. Биологически активные добавки в продукционных кормах для осетровых рыб // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2013. № 3. С. 146-152.

15. ЛакинГ. Ф. Биометрия. М.: Высш. шк., 1990. 293 с.

16. CastellJ. D., Tiews К. Report of the EIFAC, IUNS and ICES Working Group on the standardization of methodology in fish nutrition research // EIFAC Technical Paper. 1979. P. 1-24.

17. Купинский С. В., Баранов В. Ф., Резников С. А. Радужная форель - предварительные параметры стандартной модели массонакопления // Индустриальное рыбоводство в замкнутых системах. 1985. Вып. 46. С. 109-115.

18. Van Kampen Е. J., Zjilstra W. G. Standardization of he-moglobinometry // Clinic Chemistiy Acta 1961. N. 6. 538 p.

19. Лиманский В. В., ЯржомбекА. А., Бекина Е. И., Ан-дронников С. Б. Инструкция по физиолого-биологическим анализам рыбы. М.: Изд-во ВНИИРХ, 1984. 60 с.

20. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии. М.: Просвещение, 1975.318 с.

21. Fishbach F. A., Dunning М. Manual of laboratory diagnostic tests // Lppincott Williams & Wilkins. 2004. V. 14. P. 1291.

22. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor // Clinic Chemistry Acta. 1969. V. 6. P. 24-25.

23. Козинец Г. И. Атлас клеток крови и костного мозга. М.: Триада-Х, 1998.160 с.

24. Абрамов М. Г. Гематологический атлас. М.: Медицина, 1985. 344 с.

25. Chun-Yao С., Wooster G. A., GetchellR. G„ Bowser P. R, Timmons М. В. Blood chemistry of healthy, nephrocalcino-sis-affected and ozone-treated tilapia in a recirculation system, with application of discriminant analysis // Aquaculture. 2003. V. 218. P. 89-102.

26. Palikova M., Kopp R., Mares J., Navratil S., KubicekZ., ChmelarL., Band'ouchovd H., PikulaJ. Selected Haematolog-ical and Biochemical Indices of Nile Tilapia (Oreochromis niloticus) // Reared in the Environment with Cyanobacterial Water Bloom. ACTA VET. BRNO. 2010. P. 61-73.

27. Keri A.-I. The study of growth performance and some biochemical parameters of Nile tilapia (Oreochromis niloticus) fingerlings fed on olive mill waste // International Journal of Scientific and Research Publications. 2015. V. 5. Iss. 4. P. 94-102.

28. Hamid A., Mohamed A., Adam M., Mohamed A. Physical & Chemical Characteristics of Blood of two Fish Species (Oreochromis niloticus and Clarias lazera) И World's Vet. 2013. N. 3 (1). P. 17-20.

29. Abdul Jaffar H., Jay a Rani V. Effect of phosalone on haematological indices in the tilapia, Oreochromis mos-sambicus И Turk. J. Vet. Anim. Sci. 2009. N. 33 (5). P. 407-411.

30. Weinert N. C., Volpato J., Costa A., Antunes R. R., Oliveira A. C., Scabelo -Mattoso C. R., Saito M. E. Hematology of Nile tilapia (Oreochromis niloticus) subjected to anesthesia and anticoagulation protocols // Semina: Ciencias Agrarias, Londrina. 2015. V. 36. N. 6. Suplemento 2. P. 4237-4250.

31. Bittencourt N. L., Molinari L. M., Scoaris D. O., Pedroso R. В., Nakamura С. V, Ueda-Nakamura Т., Fil-ho B. A., Filho B. P. Haematological and biochemical values for Nile tilapia Oreochromis niloticus cultured in semiintensive system // Acta Scientiarum. Biological Sciences Maringa. 2003. V. 25. N. 2. P. 385-389.

32. Васильева E. Г., Быстрякова E. А. Изменения показателей крови тиляпии под влиянием электромагнитного поля // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2009. № 1. С. 119-120.

33. Akinrotimi О. A., Agokei Е. О. Effects of acclimation on haematological parameters of Tilapia guineensis (Bleek-er, 1862) // Science World Journal. 2010. V. 5. N. 4. P. 1-4.

34. Ширина Ю. M., Котельников А. В., Аблеев Д. P., Пономарев С. В., Федоровых Ю. В. Влияние лечебно-профилактического препарата ЭС-2 на функциональное состояние гибрида тиляпии Oreochromis SPP // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2017. № 2. С. 130-136.

The article is submitted 28.07.2022; approved after reviewing 19.08.2022; accepted for publication 31.08.2022 Статья поступила в редакцию 28.07.2022; одобрена после рецензирования 19.08.2022; принята к публикации 31.08.2022

Information about the authors / Информация об авторах

Sergey V. Ponomarev - Doctor of Biology, Professor; Professor of the Department of Aquaculture and Fisheries, Head of RL "Sturgeon Farming and Promising Objects of Aquaculture"; Astrakhan State Technical University; Leading Researcher of Department of Ichthyology and Biology; K. G. Razumovsky Moscow State University of technologies and management; ya.panama201 [email protected]

Olga A. Levina - Candidate of Agricultural Sciences; Assistant Professor of the Department of Aquaculture and Fishery, Junior Researcher of RL "Sturgeon Farming and Promising Objects of Aquaculture"; Astrakhan State Technical University; [email protected]

Сергей Владимирович Пономарев - доктор биологических наук, профессор; профессор кафедры аквакультуры и рыболовства, заведующий научно-исследовательской лабораторией «Осетроводство и перспективные объекты аквакультуры»; Астраханский государственный технический университет; главный научный сотрудник кафедры ихтиологии и биологии; Московский государственный университет технологий и управления имени К. Г. Разумовского; уа.рапата201 [email protected]

Ольга Александровна Левина - кандидат сельскохозяйственных наук; доцент кафедры аквакультуры и рыболовства, младший научный сотрудник научно-исследовательской лаборатории «Осетроводство и перспективные объекты аквакультуры»; Астраханский государственный технический университет; [email protected]

1 о

I g

о В

И S

g: 3

§ <

и

Г со

О >

Ч ст

О.

§

4

с5

Yulia V. Fedorovykh - Candidate of Agricultural Sciences, Assistant Professor; Assistant Professor of the Department of Aquaculture and Fishery, Researcher of RL "Sturgeon Farming and Promising Objects of Aquaculture"; Astrakhan State Technical University; [email protected]

Юлия Викторовна Федоровых - кандидат сельскохозяйственных наук, доцент; доцент кафедры аквакультуры и рыболовства, научный сотрудник научно-исследовательской лаборатории «Осетроводство и перспективные объекты аквакультуры»; Астраханский государственный технический университет; [email protected]

ю

2

Aliya B. Akhmedzhanova - Candidate of Biology; Assistant Professor of the Department of Aquaculture and Fisheries, Leading Engineer of RL "Sturgeon Farming and Promising Objects of Aquaculture"; Astrakhan State Technical University; [email protected]

Алия Баймуратовна Ахмеджанова - кандидат биологических наук; доцент кафедры аквакультуры и рыболовства, ведущий инженер научно-исследовательской лаборатории «Осетроводство и перспективные объекты аквакультуры»; Астраханский государственный технический университет; [email protected]

о.

S

О

3

О-

о' <8.

о. &

I

о!

3

О

В-

I

В" м В"

И)

е-

i Надоели баннеры? Вы всегда можете отключить рекламу.