Научная статья на тему 'Estimation of Stress-Strength Reliability Model Using Finite Mixture of M-Transformed Exponential Distributions'

Estimation of Stress-Strength Reliability Model Using Finite Mixture of M-Transformed Exponential Distributions Текст научной статьи по специальности «Математика»

CC BY
111
54
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
Reliability / M-Transformed Exponential Distribution / Stress / Strength.

Аннотация научной статьи по математике, автор научной работы — Adil H. Khan, T. R. Jan

In this paper StressStrength reliability is studied where various cases have been considered for stress (Y) and strength (X) variables viz., the strength follows finite mixture of M-Transformed Exponential distributions and stress follows exponential, Lindley and M-Transformed Exponential distributions. The reliability of a system and the parameters are obtained by the method of maximum likelihood method. At the end results are illustrated with the help of numerical evaluations and real life data.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Estimation of Stress-Strength Reliability Model Using Finite Mixture of M-Transformed Exponential Distributions»

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

Estimation of Stress-Strength Reliability Model Using

Finite Mixture of М-Transformed Exponential

Distributions

!Adil H. Khan and 2T .R. Jan

P.G Department of Statistics, University of Kashmir, Srinagar, India

^mail of Corresponding author: khanadil [email protected]

2Email: drtrjan@gmaiLcom

Abstract

In this paper Stress -Strength reliability is studied where various cases have been

considered for stress (Y) and strength (X) variables viz., the strength follows finite mixture

of М-Transformed Exponential distributions and stress follows exponential, Lindley and

М-Transformed Exponential distributions. The reliability of a system and the parameters

are obtained by the method of maximum likelihood method. At the end results are

illustrated with the help of numerical evaluations and real life data.

Key words: Reliability, М-Transformed Exponential Distribution, Stress, Strength.

1. Introduction

The term "stress-strength reliability" specify the quantity R=P(Y < X), where X is a random strength

and Y random stress such that the system fails if the stress Y exceeds the strength Y. Church and

Harris imported the term stress-strength for the first time. The stress-strength reliability and its

problems for considerable distributions have been discussed by Church and Harris [1970],

Woodward and Kelley [1977], Beg and Singh [1979], Awad and Gharraf [1986], Surles and Padgett

[1998, 2001], Raqab and Kundu [2005], Mokhlis [2005], and Saragoglu et al. [2011]. Kotz et al. [2003]

have presented an inspection of all approaches and results on the stress-strength reliability in the

last four decades. Adil H. khan and T.R Jan [2014] have studied the stress-strength reliability for

two parameter Lindley distribution. Exponential distribution and Gamma distribution. And have

considered different conditions for stress and strength variables.

In the present paper, we discuss stress strength reliability and have considered that the

strength variable follows finite mixture of М-Transformed Exponential distribution and stress

variables follows finite mixture of exponential or Lindley or М-Transformed Exponential

distributions. The structural properties and uses of М-Transformed Exponential distribution as a

lifetime distribution are studied by Dinesh Kumar et al. [2017]. We debate the estimation method

for finite mixture of М-Transformed Exponential distribution by the method of maximum

likelihood estimation. The М-Transformed Exponential distribution with parameters a is defined

by its probability density function (p.d.f.)

_x_

2e oc

f(x; a) =-----------~ ; a, x > 0 (1)

a (2 — e~E^j

In the present paper, we consider three cases

90

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

1) Stress follows exponential distribution and strength follows finite mixture of M-

Transformed Exponential distribution.

2) Stress follows Lindley distribution and strength follows finite mixture of M-Transformed

Exponential distribution.

3) Stress follows finite mixture of Lindley distributions and strength follows finite mixture of

M-Transformed Exponential distributions.

4) Stress and strength both follows finite mixture of M-Transformed Exponential distribution.

2. Statistical Model

In this model we assume that random variables X (strength) and Y (stress) are independent and the

values of X and Y are non-negative. The reliability of a component with strength X and stress Y

imposed on it is given by

oo г X

R = P(X > Y) =

g(y)dy

f(x)dx

(2.1)

o L0 J

where f(x) and g(y) are pdf of strength and stress respectively.

A finite mixture of M-Transformed Exponential distributions with v components can be expressed

as

f(x) = Pifi(x) + p2f2(x) + ••• + pvfv(x) ; Pi > 0, i = 1,2,

(2.2)

3. Reliability Computations

Let X be the strength of the v-components with probability density functions fj(x); i = 1,2,..., v. The

pdf of X which follows finite mixture of M-Transformed Exponential distributions is

f,(x) = Pi /2е _T2 ; X>0, «i> 0,Pi > 0, i = l,2,...(v,Eb=iPi = 1

aJ2-e ai)

Case I: The stress Y follows exponential distribution

As Y follows exponential distribution, pdf of Y is given by

g(y) = Ае”Лу, A > 0. у > 0

For two components v = 2, and

__x_ x_

2e “i 2e “2

f(x) = px-----------7 + p2---------

а1(2-е~Щ a2(2-e~k)

As X and Y are independent then from (2), Reliability function R2 is

x J ; pj +p2 = l,a1,a2,x> 0

r

о 0

OO x

=/Ny

_x_

2e

_x_

2e a2

Pi

P1 / .ix2+P2 /

a± ( 2 - e “ij a2 (:

00 00

v mi m±x

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

/ ^ e +P2 Z

Zj 2mi at

m1=l m2 = 1

(2-e-t)

dxdy

m2

2m2 a2

m2x

■ e

dxdy

2 00

0 i=1 mi=1

2 00 2

i=1 m1 = l

91

(3.1)

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

For three components v = 3 , we have

X X X

2e ai 2e a2 2e a3

f(x) = Pi —;----------— + P2 —;-----------— + Рз

„,(2 -e-k) аг{г-е~Щ а,(г-е^)

; Pi + p2 + p3 = l,a1(a2(a3(x > 0

oo x

R3 = //xe-^

0 0

2e ai

Pi-

■ + p2

2e a2

+ Рз-

X

2e

ax

(2 — e a^j a2 (2 — e a2^ a3 ^2 — e a3^

dxdy

R,

Я.. v1 TTl-i £ V1 Ш2 -m2x V1

Ле y p- Z + p* Z “г +Ps z

тх = 1

2™2 a

m2=1

3 00

m3 = l

77l3

2тъа,о

m3x

■e аз

dxdy

3 00

0 i=l mj=l

R» =1~Il2^mO : IP‘ = 1

i=l т^=1 i=l

In general for v-components, f(x) = Pifi(x) + p2f2(x) + —I- pvfv(x) ; IX1 Pi = 1, we hav

v CO v

r- 2^(Г;Г+^); 2>=i

i=l т^=1 i=l

Case II: The stress Y follows two parameter Lindley distribution

As Y follows Lindley distribution, pdf of Y is given by

02

g(y) = -—- (1 + Ay)e”0y ; у > 0, в > 0, a > — в

е + л

For two components v = 2

2e ai 2e a2

f(x) = Pi—--------7-7 +P2—---------7-2 : Pi+p2 = lai,a2>x > 0

at(2 — e a2(2 — e aA

As X and Y are independent then from (2), Reliability function R2 is

RN/Aa+iyHp--

X X

2e ai 2e az

+ P2---;------r-2 dxdy

0 0

00 x

x2'U2 x 2

i± ^2 - e a^j a2{^ 2 — e a2^

- \

Я0 V mi -ZEi£ v1 m2 ,

— (l + Ay)e-0d Pl ^ +p2 2, )dxdy

m± — 1

m2=1

2m2a7

R-

-/(

. 2 00

0 + A + A0x _взс\ / v v т,- -2ЦЕ

0 +A

2 oo

i=l wij=l \o 0

2 00

r = i-VY ( 1 A9af \

2 Zj Zj ^ 2m; \т,- + 0a,- (0 + A)(m,- + 0a;)2/

, (0 + A) (mi + 0a,

1 = 1 77li = l

For three components v = 3, we have

__x_ x_ x_

2e 2e a2 2e aз

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

f(x) = f(x) = Pi----;--------—2 + p2------------772 + Рз

аг (2 - e “i) a2 (2 - e az)

(3.2)

(3.3)

(3.4)

a3 (2 — e “3)

; Pi + P2 + Рз — b ai> a2> cx3, x > 0

92

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

yju A

Rs = //eTI(1 + Xy)e

0 0

oo

R3=f(,

-0y

2e ai

Pi-

- + p2-

2e

- + Рз-

X

2e

ax

6 + A + A0x

0+A

0 \i=l ГП!

i=l ^i=l о

3 OO

v^1 Ш/ / 1 А0а,-

Кз = 1"11 Pi2^(m; + e<xt +

i=1 vn\=1

^2 - e a^j a2^2-e a3i^2-

f3 oo

e “з)

dxdy

+

Л0

в + Х

~{lF+9)*

xe '

dx

4y)

(6 + X)(l7li + Octi.

In general for v-components, f(x) = p^Cx) + p2f2(x) + —I- pvfv(x) ; TJ=i Pi = 1, we have

V oo

A0 at

R.=i-ZZp'S(U^+-

t,)-)

(3.5)

(3.6)

. (.в + Я)(гП( + 6at

1=1 mi=1

Special case

When A = 1, two parameter Lindley distribution reduces to one parameter Lindley distribution

and then the reliability function is given as

V oo

Qat

R. = 1-ZZp'S(U^+;

t,i2)

(0 + l)(77lj + 6ct}

i=1 m\=1

Case III: The stress Y follows mixture of two parameter Lindley distributions

As Y follows mixture of М-Transformed Exponential distributions, pdf of X and Y is given by

For two components, v = 2

X X

2e ai 2e a2

fOO = Pi —;--------------777 + P2

(3.7)

a4 (2 - e “i) a2 (2 — e “2)

; Pi + P2 — b cxi, a2, x > 0

g(y) = Рз;

0?

-(1 + Я3у)е-я^ + р4

02

е3+Яз 04 + X4

As X and Y are independent then from (2), Reliability function R2 is

oo X

R,=//|P,

0 о

(1 + Я4у)е ; p3 + p4 = 1,

_Х_ X

2е ai 2е а2

--------2 +Р2----------

а4 (2 — е “i) а2 (2 — е “2)

-04у) (

02

03 + А3

■ (1 + Л3у)е

"АзУ

+ р4

J4 т 'Ч

4 2 00 х оо

д-—^-(1 + Я4у)е Й4У I dxdy

1,2 = ZI/ /й X 2^e‘“;’p'eph;d+x,y)e-^>'dxdy

)=i+2 i=l о 0 wij = l J J

j=i+2 i=l о mj=l 4 y y

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4 2 00 00 /

e-0ix |dx

R, = 1

j=i+2 i=l mi = l

4 2 00

r--XZX^

j=i+2 i=l in i = 1

■ +

+ AJ

AjQjOCi

щ + 0;^ _j_ Ay)(mi + Ojai)

(3.8)

For three components v = 3, we have

X X_ X

2e 2e а2 2e aз

f(x) = Pi--:------772 + P2----------772 + Рз

а4 (2 — e “1) а2 (2 - e “2)

«з (2 - e “з)

; Pi + P2 + Рз — b cclf a2, a3, x > 0

93

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

Al

A?

g(y) = P4 ГТ— (1 + а4у)е Л4У + p5 H— (1 + а5У)е Asy + P3

A?

A4 + a

A5 + a5

■(1 + a6y)e

-^бУ

’ A6 + a6

; p4 + p5 + Рб = 1Д4Д5Дб,у > о

X and Y are independent then from (I), Reliability function R is

X X X

Я I 2e “1 2e “2 2e “3

Pl—------------+ '-----^72+Рз-

о o \ a1 (2 — e ai ) a2 [ z — e u2 I a3\

at^2 - e a2 ^2 - e a2^ a3 ^2 - e a3^

P4A2

A4 + 0C4 v У A5 + 0C5

6 3 00 x 00

4 (1 + a4y)e XaY + 5 (1 + a5y)e Asy + 6 (1 + a6y)e ЛбУ) dxdy

A6 + a6

1,3 = Z Z/ /Pi Z 2^e‘“;’p'erh;P+x,y)e-^>'dxdy

j=i+3 i=l о 0 wij = l

4 2 00 00

‘-ZZNZ^U1

R* = 1

j=i+3 i=l о mj = 1

6 3 00 00

у у у PiPj^i Г

Zj Zj Zj 2miCCi J

j = i + 3 i = l 77li = l о

6 3 OO

^+^+^0;xe-0;x,dx

+

6j + Ay

-о-)'

dx

R,

j=i+3 i=l mj=l

Pipj^i 1

2 mi Щ + djai

+ ■

А;0;«(

(3.9)

In general for v-components,

V

f(x) = рЛ(х) + p2f2(x) + - + pvfv(x) ; ^ Pi = 1

i=l

2v

g(y) = Pv+lfv+l(y) + Pv+2^v+2(y) + - + P2vf2v(y) ’ ^ Pi = 1

i=v+l

oo X

Rv = I I (Plfl(^ + p2f2^ + + Pkfk(x)) (Pv+lfv+l(y) + Pv+2fv+2(y) + - + P2vf2v(y))dxdy

2v V 00 x 00 2

R-= Z Z//p' Z ^e^'pivh:P + xiy>‘1|J,<lxdy

)=i+v i=l о 0 Щ = 1

2v v 00 00

ш/ -Шх ( б,- + А,- + А/0/Х й А

pipi Z 2^;е 4 ' dx

j—i+v i=l о mj=l 4 J J 7

R—ZZZ

О о

j=i+v i=l vn\ = \

2v v 00

R. = 1

zzz

j=i+v i=l mi = l

PiPj™i

2™;

■ +

-ен

Ay 0y cri

mi + (#y + Ay) (ш^ + Ojai)

(3.10)

Special case

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

When Ay = 1, two parameter Lindley distribution reduces to one parameter Lindley distribution

and then Rk is the reliability function when X follows mixture of one parameter Lindley

distribution and Y follows mixture of one М-Transformed Exponential distribution and is given as

2v

ZZZ

j=i+v i=l mi

PiPj™i

■ +

0y (%i

2mi mi + Ojai _j_ 1)^772- + Ojai)

(3.11)

Case IV: The stress Y follows mixture of М-Transformed Exponential distributions

As Y follows mixture of М-Transformed Exponential distributions, pdf of X and Y is given by

94

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

For two components, v = 2

X X

2e ai 2e a2

f(x) = Pi —;-----------r-2 + P2

2 1 иг , 2- ; Pi+ p2 = l,a1;a2,x > 0

ar (2 — e ai) a2 (2 — e “2)

-У- У

2e “3 2e a*

g(y) = P3—---------—2 + P4—--------7-2 ; Рз + Р4 = 1.

a3i 2 - e aA a4i 2 — e aA

As X and Y are independent then from (2), Reliability function R2 is

oo X

r2 = //ip,

0 о

_X_ X

2e ai 2e a2

--------2+P2----------

■+p4-

У

2e “4

a4 (2 — e “1) a2 (2 — e “2) у у a3 (2 — e “3) a4 (2 — e “4)

4 2 00 x 00 00 m.

j=i+2 i=l о 0 T7ij = l rrij = l J

4 2 00 00 /00 N

j=i+2 i=l о mj=l \ rrij = l

42 00 / 00 \ / 00

:6 aJ \dx

j=i+2 i=l

Rz = 1-ZZPiPi(^

i —i-L9 i —1 ' 1 J

j=i+2i=l

For three components, v = 3

__x_ x_ x_

2e 2e a2 2e аз

f(*) = Pl----:-------777 + P2-----------772 + Рз

a4 (2 — e “i) a2 (2 — e “2)

-У- _2L

2e a4 2e 2e аь

g(y) = P4----;------772+ P5—------------772+ Рб

/ ; Pi + P2 + Рз - 1

«з (2 - e “з)

a4

(2 — e as^2 — e a^ a6^2 — e a^

; P4 + Ps + Рб = t

As X and Y are independent then from (2), Reliability function R2 is

_x_

2e “3

__x_

2e “i

■ + p2 ■

X

2e a2

' + Рз'

_y_

2e «4

P4-

аг ^2 — e a^j a2(^2 — e ^ a3(2 — e a^j у у a4 ^2 — e

__x_ \

2e “6

+ P5‘

_y_

2e “s

+ p6-

a5 (2-e “s) a6 (2 - e “б)

6 3 00 X oo

dxdy

*-ХХ/ЕХ^»Хг%-^

j=i+3 i=l о 0 T7ij = l rrij = l J

6 3 00 00 /00 m.

^-ZZbZ^f-Z^

j=i+3 i=l о mj=l \ rrij = l

63 00 / OO \ / OO ™

e dx

j=i+3 i=l

6 3

Rs = 1“ZZPiP|(t+7

j=i+3 i=l 4 7

In general for v-components.

95

dxdy

(3.12)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(3.13)

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

2v

Now,

dlogL

da2

f(x) = Pifi(x) + p2f2(x) + ••• + pvfv(x); ^ Pi = l

i=l

g(y) = Pv+lfv+l(y) + Pv+2^v+2(y) + - + P2vf2v(y) J ^ Pi = 1

i=v+l

oo X

Rv = I I ^Plfl('X') + Pzf2^ + + Pvfv(x)) (p v+l^v+l (y) + Pv+2^v+2 (y) + - + P2vf2v(y))dxdy

0 о

2v V 00 X oo OO m

j=i+v i=l о 0 mi = 1 mj = 1 J

2v v 00 oo / oo m.

j=i+v i=l о mj = 1 \ rrij=l

2v v 00 / oo \ / oo

j=i+2v i=l '---------------- 7 '----

2v v

j=i+v i=l 4 y

4. Maximum Likelihood Estimation

dx

mj

:e aix I dx

Rv

11

Ua^Pi/y) = J~|

i=i

2e “i

Pi-

■ + p2-

2e “2

X- 2 x- 2

^2 - e a^j a2 ( 2 — e

n1 xi n2

2nn! (Vi\n± /Р2\П21—Г e i—г e a2

© п

гПу

/ 2nn! \

logLCa^azPi/y) = log ——- + n1logp1 - n^og^ + n2log (1 - px) - n2loga2

\П^! П2!/

ni n2

+Z[^_2to9(2_e-t)]+X[-|-2,os(2-e-t)

i=1 |^2 - e “ij i=1 ^

2 — e “2)

dlogL

dai

= 0

n 1

.m+y

ai 4—»

Xj

2xte ai

П1

«,=iy

щ L-k

i=1

Xi +

a*‘ «,2(2-^)

_4

2xte ai

= 0

(2-e “1)

= 0

n2

a2

-^+V

a 2 L-l

n2

-f

n? L-k

Xj

2xte a2

a2 2

a22

^2 - e a2^j

= 0

2xte a2

(2 - e“z)

(3.14)

(4.1)

(4.2)

96

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

di°gL _ q

dpi

Pi 1 - Pi

nl

Pi = — ; nx + n2 + 1

(4.3)

Generalizing the above results for к-components we get

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(4.4)

It is oblivious that first equation is nonlinear in ccj and is not easily solvable, therefore for obtaining

their estimates we propose to use numerical iteration method. Therefore aj can be obtained by

using the nonlinear equation

since dt is a fixed point solution of h(at) = at, therefore it can be obtained by using simple iteration

procedure as h^a^) = a^k+1^ where atQ^ and а^к+1^ are kth and (k+l)th iterations of at. When the

difference between a^ and ai(^k+1) is very small we stop the iteration and once we obtain the

estimates at and the M.L.E of reliabilities for different cases are given as

1. M.L.E of reliability function when stress follows exponential distribution with known

parameter A and strength follows finite mixture of М-Transformed Exponential distribution

with parameter at is

2. M.L.E of reliability function when stress follows Lindley distribution with known

parameters A and 0 and strength follows finite mixture of М-Transformed Exponential

distributions with parameter at is

3. M.L.E of reliability function when stress follows finite mixture of Lindley distributions with

known parameters Ay and 0y and strength follows finite mixture of M-Transformed

Exponential distributions with parameter at is

h(at) = at

(4.5)

where

(4.6)

V oo

V oo

4. M.L.E of reliability function when stress and strength both follows finite mixture of M-

Transformed Exponential distributions with parameters at and aj is

97

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

5. Numerical Evaluation

RT&A, No 2 (57)

Volume 15, June 2020

In this section/ we have evaluated reliability of a system with two components for specific values

of a parameters involved in the reliability expressions in section 3 using graphical approach. Here

we will discuss how reliability of two component system behaves when stress, strength or

probability parameters are changed.

Case I: Stress follows exponential distribution and strength follows finite mixture of M~

Transformed Exponential distribution

Figure 1 Figure 2

Figure 3 Figure 4

98

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

Case II: Stress follows Lindley distribution and strength follows finite mixture of M-Transformed

Exponential distribution

Figure 5

Figure 7 Figure 8

99

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

Case III: Stress follows finite mixture of Lindley distributions and strength follows finite mixture

of М-Transformed Exponential distributions

Figure 9 Figure 10

Figure 11 Figure 12

100

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

Case IV: Stress and strength both follows finite mixture of М-Transformed Exponential

distributions

Figure 15

Figure 16

6. Real Data Analysis

In this sub section we analyze 33 leukaemia patients with two causes of death AG positive

(presence of Auer rods and/or significant granulature of the leukaemic cells) or AG negative (both

Auer rods and granulature are absent). The survival times in weeks are given

AG positive patients: 65, 156/ 100/134/16/108/121/ 4/ 39,143/ 56, 26/ 22/1, 1,5, 65

AG negative patients: 56/ 65,17, 7,16/ 22/ 3,4, 2, 3, 3, 4, 3, 30/ 4,43

101

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

We use the iterative procedure to obtain MLE of the parameters ax and a2 using equation (4.5) and

the final value of estimates are аг = 90.65061, a2 = 25.44067 and =0.5151.Based on these

estimates the MLE of the reliability are given below

Stress and strength both follows finite mixture of М-Transformed Exponential distributions R2 =

0.68

Table 1: Stress follows exponential distribution and strength follows finite mixture of M-

Transformed Exponential distribution

R 0.9161 0.9547 0.9689 0.9763 0.9809 0.9840 0.9862 0.9880 0.9892 0.9903

X 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Table 2: Stress follows Lindley distribution and strength follows finite mixture of M-Transformed

Exponential distribution

\A 0\ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5 0.9317 0.9264 0.9238 0.9223 0.9212 0.9205 0.9200 0.9195 0.9191 0.9189

1 0.9409 0.9340 0.9298 0.9270 0.9250 0.9235 0.9224 0.9215 0.9207 0.9200

1.5 0.9450 0.9375 0.9327 0.9292 0.9265 0.9245 0.9228 0.9215 0.9204 0.9195

2 0.9473 0.9399 0.9346 0.9306 0.9275 0.9250 0.9230 0.9214 0.9200 0.9187

2.5 0.9490 0.9415 0.9360 0.9317 0.9283 0.9255 0.9232 0.9212 0.9195 0.9181

3 0.9500 0.9427 0.9371 0.9326 0.9289 0.9258 0.9233 0.9211 0.9191 0.9174

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3.5 0.9507 0.9436 0.9380 0.9333 0.9294 0.9262 0.9234 0.9209 0.9188 0.9169

4 0.9514 0.9444 0.9387 0.9340 0.9299 0.9264 0.9234 0.9208 0.9185 0.9164

4.5 0.9520 0.9450 0.9393 0.9344 0.9303 0.9266 0.9235 0.9207 0.9182 0.9160

5 0.9523 0.9455 0.9398 0.9348 0.9305 0.9268 0.9235 0.9206 0.9180 0.9156

Table 3: Stress follows finite mixture of Lindley distributions and strength follows finite mixture of

M-Transformed Exponential distributions, p3 = 0.35Д2 = 6.5,02 = 5.5

1 2 3 4 5 6 7 8 9 10

1 0.9680 0.9656 0.9644 0.9637 0.9632 0.9629 0.9626 0.9624 0.9622 0.9621

2 0.9784 0.9762 0.9748 0.9739 0.9733 0.9728 0.9725 0.9722 0.9719 0.9717

3 0.9818 0.9794 0.9780 0.9768 0.9760 0.9754 0.9749 0.9744 0.9741 0.9738

4 0.9833 0.9810 0.9792 0.9779 0.9770 0.9761 0.9754 0.9750 0.9744 0.9740

5 0.9842 0.9817 0.9798 0.9784 0.9771 0.9762 0.9754 0.9747 0.9741 0.9736

6 0.9848 0.9822 0.9801 0.9785 0.9772 0.9761 0.9751 0.9743 0.9736 0.9730

7 0.9852 0.9825 0.9803 0.9786 0.9771 0.9758 0.9747 0.9738 0.9730 0.9723

8 0.9855 0.9827 0.9804 0.9786 0.9769 0.9755 0.9743 0.9733 0.9723 0.9715

9 0.9858 0.9829 0.9805 0.9785 0.9768 0.9753 0.9740 0.9728 0.9717 0.9708

10 0.9860 0.9830 0.9806 0.9784 0.9766 0.9750 0.9735 0.9723 0.9711 0.9701

102

Adil H. Khan, T .R. Jan

ESTIMATION OF STRESS-STRENGTH RELIABILITY MODEL USING

FINITE MIXTURE OF M-TRANSFORMED EXPONENTIAL DISTRIB.

RT&A, No 2 (57)

Volume 15, June 2020

7. Conclusion

In this paper we have obtained stress strength reliability of a system with v-components using

different distributions for stress variables viz. exponential distribution, M-Transformed

exponential distribution and for strength variable we have used M-Transformed exponential

distribution. In the last section we showed that reliability of 2-component system can be

monotonically increasing and monotonically decreasing for specific values of parameter. Thus by

proper choice of parameters leads to high reliability. The maximum likelihood estimates of

parameters involved in the reliability function of v-components system are also obtained using

iteration method.

References

1. Awad, A.M., Gharraf, M.K., 1986, Estimation of (P(Y < X) in the Burr case: A comparative study.

Commun. Statist. Simul. Comp., 15(2), 389-403.

2. Beg, M.A., Singh, N., 1978, Estimation of P(Y < X) for the pareto distribution. IEEE Trans.

Reliab., 28(5), 411-414.

3. Church, J.D., Harris, B., 1970, The estimation of reliability from stress strength relationships.

Technometrics, 12, 49-54.

4. Khan, A.H., Jan, T.R., 2014, Estimation of Multi Component Systems Reliability in Stress-

Strength Models. Journal of Modern Applied Statistical Methods, 13 (2), 389-398.

5. Khan, A.H., Jan, T.R., 2014, Reliability Estimates of Generalized Poisson Distribution and

Generalized Geometric Series Distribution. Journal of Modern Applied Statistical Methods, 13

(2), 379-388.

6. Kotz, S., Lumelskii, Y., Pensky, M., 2003, The Stress-Strength Model and its Generalizations:

Theory and Applications, World Scientific Publishing, Singapore.

7. Kumar, D., Singh, U., Singh, S.K, Mukherjee, S., 2017, The New Probability Distribution: An

Aspect to Lifetime Distribution. Math. Sci. Lett. 6(1), 35-42.

8. Mokhlis, N.A., 2005, Reliability of a stress-strength model with Burr Type III distributions.

Commun. Statist.Theory Meth. 34(7). 1643-1657.

9. Raqab, M. Z., Kunda, D., 2005, Comparison of Different Estimates of P(Y < X) for a Scaled Burr

Type X distribution. Communication in Statistics-Computations and Simulations, 34(2), 465-

483.

10. Saragoglu, B., Kmaci, i., Kundu, D., 2011, On estimation of (P(Y < X) for exponential distribution

under progressive type-II censoring. J. Stat. Comput. Simul. 82(5), 729-744.

11. Surles, J. G., Pudgett, W. J., 1998, Inference for P(Y < X) in the Burr X Model, Journal of Applied

Statistical Sciences, 225-238.

12. Surles, J. G., Pudgett, W. J., 2001, Inference for Reliability and Stress-Strength for Scald Burr X

distribution. Lifetime Data Analysis, 7,187-200.

13. Woodward, W.A., Kelley, G.D., 1977, Minimum variance unbiased estimation of P(Y < X) in the

normal case. Technometrics, 19, 95-98.

103

i Надоели баннеры? Вы всегда можете отключить рекламу.