Научная статья на тему 'ESTIMATION OF RELIABILITY ON SEQUENTIAL ORDER STATISTICS FROM (k, n) SYSTEM'

ESTIMATION OF RELIABILITY ON SEQUENTIAL ORDER STATISTICS FROM (k, n) SYSTEM Текст научной статьи по специальности «Математика»

CC BY
26
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
Sequential (𝑘 / 𝑛) systems / Reliability function / Exponential/Gamma distribution / Location and Scale parameters

Аннотация научной статьи по математике, автор научной работы — K. Glory Prasanth, A. Venmani

The focus of this paper is to introduce a reliability model for differently structured independent sequential (k, n) systems. In such a system, the failure of any component possibly influences the other components such that their underlying failure rate is parametrically adjusted with respect to the number of preceding failures. The system works if and only if at least k out of the n components works. By considering the different models of sequential (k, n) system, we obtain the reliability assuming that the system failure time belongs to exponential/gamma distribution with location and scale parameters. These results are important because the distributions can model diverse time-tofailure behavior. As the result it is found that the reliability decreases with increase in time by shifting location and scale parameters. This indicates that the reliability for different models of sequential (k, n) system are as expected.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ESTIMATION OF RELIABILITY ON SEQUENTIAL ORDER STATISTICS FROM (k, n) SYSTEM»

K. Glory Prasanth, A. Venmani N 4fsm

ESTIMATION OF RELIABILITY ON ,, , , Z^0 „ „ „ „ Volume 19, December, 2024 SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM__

ESTIMATION OF RELIABILITY ON SEQUENTIAL ORDER STATISTICS FROM (k, n) SYSTEM

K. Glory Prasanth1 and A.Venmani2

12 Department of Mathematics and Statistics, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur- 603203, Chengalpattu district, Tamil nadu, India. [email protected] , [email protected]

Abstract

The focus of this paper is to introduce a reliability model for differently structured independent sequential (k, n) systems. In such a system, the failure of any component possibly influences the other components such that their underlying failure rate is parametrically adjusted with respect to the number of preceding failures. The system works if and only if at least k out of the n components works. By considering the different models of sequential (k, n) system, we obtain the reliability assuming that the system failure time belongs to exponential/gamma distribution with location and scale parameters. These results are important because the distributions can model diverse time-to-failure behavior. As the result it is found that the reliability decreases with increase in time by shifting location and scale parameters. This indicates that the reliability for different models of sequential (k, n) system are as expected.

Keywords: Sequential (k,n) systems, Reliability function, Exponential/Gamma distribution, Location and Scale parameters.

1. Introduction

Components designed to carry out a specific task make up a system. The component failure times are commonly assumed to be independent and identically distributed in the (k,ri) system. The remaining operational components are supposed to remain unaffected by any component failure in the system. However, this is practically not applicable. Any failure in one of the system's components will impact the system as a whole. This places additional strain on the remaining active components, leading to an increase in stress levels. This leads to a rise in failure rates, a fall in efficiency, or both. As a result, an alternative flexible model was developed by taking into account variations in the active component's lifelengths distribution. In this mode l, as and when each component fails, the remaining active components take on the stress and change their distribution. The extensible model, developed specifically for this reason, is termed as a sequential (k,n) system. Sequential order statistics are the results of the sequential (k,ri) system's order statistics. In this case, we suppose that the failure rate for the surviving active components changes with each component failure. A (k,ri) system is said to be a sequential (k,ri) system wherein lifelengths distribution of the active components changes if any one of the components fails. The rth sequential order statistics model the life length of a sequential (ri — r + 1,ri) system.

K. Glory Prasanth, A. Venmani N 4fsm

ESTIMATION OF RELIABILITY ON ,, , , Z^0 „ „ „ „ Volume 19, December, 2024 SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM__

Cramer and Kamps [7] derived the basic results pertaining to the sequential order statistics. Bain [2], Barlow [4], and Meeker et al. [15] provide the most useful statistical techniques in the areas of reliability and life testing models. Basu and Mawaziny [3] identified the minimum variance unbiased estimator of the system's reliability at a given mission time. Baratnia and Doostparast [5] describe the lifetime of engineering systems when component lifetimes are dependent. Pham [18] discussed the most likely estimates of reliability and the uniformly minimal variance unbiased estimator for k-out-of-n systems. These systems consist of n independent, identically distributed components with exponential lifetimes. Méndez-González et al. [16] used the inverse power law and the exponentiated Weibull model to examine the reliability of an electronic component. Using the exponentiated Weibull distribution, Chaturvedi and Pathak [6] were able to get the reliability function's Maximum likelihood estimator. Demiray and Kizilaslan [9] looked in k-out-of-n system stress-strength reliability using point and interval estimates where stress and strength variable follows the proportional hazard rate model. Kalaivani and Kannan [12] introduced the concept of mean time to system failure and reliability function for (k,n) system using weibull distribution. Shi et al. [20] with Burr XII components used both classical and Bayes approaches to investigate how well the m consecutive (k, n): F system worked. Alghamdi and Percy [1] looked at the equivalence and reliability factors of a series-parallel system following exponentiated Weibull distribution. According to Hong and Meeker [11], the system's reliability is determined by the components and system structure.

This article aims to determine the reliability function based on sequential order statistics from different models of sequential (k,n) systems, under the assumption that the failure time distribution follows an exponential/gamma location-scale family. The article is organized as follows: In Section 2, the distribution function, marginal and joint density function of different models of sequential (k, n) systems are given. Section 3 calculates the reliability function of (1, 3) and (2, 3) systems. . Section 4 calculates the reliability function of (1, 4) and (2, 4) systems. In Section 5, numerical illustrations are presented for analysis, and Section 6 gives the conclusion about the result.

2. Sequential Order Statistics

According to Kamps [13], the joint density function of the first r, (1 < r < n) sequential order stics X^^^,...^^ based on absolutely conti respective density functions f1,f2,... , fn is given by

i r

ft(Xl,X* .....Xr) = (n-r)i n

statistics xt(1),xt(2),...,x!:r) based on absolutely continuous distribution functions F1,F2, .-,Fn with

1 — Fi(xi))n-i fi(Xi)

1 — Fi(xi-i)) 1-Fi(xi-i) -rn = x0 <

Revathy and Chandrasekar [19] provide certain reliability metrics and equivariant parameter estimates based on sequential (1,3) and (2,3) systems. By introducing sequential (1,4) and (2,4) systems, Glory Prasanth and Venmani [10] computed the minimum risk equivariant estimator of location, scale, and location-scale families. In this section, we discuss about the distribution function, marginal and joint density function of system failure time for different models of sequential (k, n) system.

The density function of the random variable X with Gamma distribution (8, t k) where 8is the location parameter, Tis the scale parameter and k is the shape parameter is defined as

1 if jr,

f(x; 8, t k) =---r-^(x — 8)k-1e-r(x-s> ; 8 > 0, T>0,k>0,x>0.

(k — 1)! Tk

SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM

2.1. Model 1

Consider the sequential (1, 3) system which are absolutely continuous with the lifelength distributions F1, F2, F3 having the respective density functions f1, f2, f3 . Let f1 and f2 be the density function of Gamma distribution (S, t,2) and f3 the density function of Gamma distribution (S, t, 1). The sequential order statistics have the failure times as )and ) .

Suppose F1(x) = F2(x) = 1 — e-1(x-s) [l + t > 0, x > S, S ER

and F3(x) = 1 — e-1(x-S), t> 0, x> S, 5 E R.

Then f1(x) = f2(x) =1(x — S)e-1(x-s), T > 0, x>8, SeR

and f3(x)=1e-1(x-s), t>0,x>8, S E R.

Thus the joint probability density functions of X(1\X(2 and X(3) is

r(xi,x2,x3) = 6±(xi — S)(X2 — 5)[l+^]e- fr^'3-3*,

8 <x1<x2<x3<™, 8 e R, t> 0. (1)

2.2. Model 2

Consider the sequential (2, 3) system which are absolutely continuous with the lifelength distributions F1, F2 having the respective density functions f1, f2 . Let f1 be the density function of Gamma distribution (S, t,2) and f2 be the density function of Gamma distribution (S, t,1). Let X(1 and Xbe the failure times which are called sequential order statistics. Suppose F1(x) = 1 — e- T(x-s) [l + t > 0, x > S, S ER

and F2(x) = 1 — e-1(x-S), t> 0, x> S, S E R. Then f1(x) =1(x — S)e- 1(x-s), t > 0, x > S, SeR

and f2(x) = ^e- 1(x-s), t > 0, x>8, S E R. Thus the joint probability density function of X(1 and X^2 is

r(x1,x2) = 61(x1 — S)[1+^f?]2 e- 1ixi+2x2-3s),8 <X1<X2<™,S e R,t>0. (2)

2.3. Model 3

Consider the sequential (1, 4) system which are absolutely continuous with the lifelength distributions F1, F2, F3, F4 having the respective density functions f1, f2, f3, f4 . Let f1 & f2 be the density function of Gamma distribution (S, t,2) and f3 & f4 be the density function of Gamma distribution (S, t, 1).

Suppose F1(x) = F2(x) = 1 — e- 1(x-s) [1t > 0, x > S, S E R

and F3(x) — F4(x) — 1 - e

- kx-8)

, t > 0, x > S, S E R.

Then f1(x) - f2(x) =1(x- S)e- 1(x-S\ t > 0, x>5, S ER

and f3(x) - f4(x) - -e

_ i - kx-s)

', t > 0, x > S, S E R.

Thus the joint probability density function of x(1\x(2\x(3 and X(4 is

P(xi,x2,x3,xi) =24(xi - s)(x2 - ^[l+^V^I

l2 q- 1(x1 + x2+x3 + x4-48)

8 < x- < %2 < X3 < xA < m, 8 e R, r >0.

(3)

2.4. Model 4

Consider the sequential (2, 4) system which are absolutely continuous with the lifelength distributions F1, F2, F3 having the respective density functions f1, f2, f3 . Let f1 be the density function of Gamma distribution (8, t, 2) and f2 & f3 be the density function of Gamma distribution (8, t 1). Let X(1\X(2and X^3) be the failure times which are called sequential order statistics.

Suppose F1(x) = 1- e-1(x-s) [l + t > 0, x>8, SeR

and F2(x) = F3(x) = 1 - e

kx-s)

, t > 0, x > S, S E R.

Then f1(x) = —(x- S)e- 1(x-s), t>0, x>S, SeR

and f2(x) - f3(x) - -e

1„- 1(x-S)

, t > 0, x > S, S E R.

Thus the joint probability density function of X(1\X(2 and X^3 is

f*(xi,x2,x3) = 24 — (xi - 5)

1+

x1 - S

g-:1(X1 + X2 + 2X3-4S)

S < x1 < x2 < x3 < m, S e R, t > 0.

(4)

3. Reliability Measure of (1, 3) and (2, 3) systems

In this section, using the joint density function given in (1) & (2), the reliability function for different models of sequential (1,3) and (2,3) systems are obtained. The Reliability function for (1, 3) system is

«0 -fff f(x1,x2,x2)dx3ix2 ixt, t< xt,x2,x2 < m

-III'

1

6~K (x1 - S)(X2 - S)

1+

*2 - 8'

e- 1(X1+X2+X3-3S^ dx3dx2 dx1, t< x1,x2,x3 < m

- - S)3e-Tt-S + 24(t - S)2e-TftS + ™(t- S)e-Tt-S + 18e~ Tit-S>,

24

T2

,2e- 3ft-s

36.

t < x1,x2,x3 < m, S> 0, t> 0.

3

T

T

SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM

The Reliability function for (2, 3) system is R(t) = J J f*(x1,x2)dx2dx1,t < x1,x2,< œ

=jj

1

6 — (Xi — 5)

T3

1 +

x1 — S

■ _i e t

1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

r(xi+2x2-3s)dx2dx1,t < x1,x2,< œ

3(t — S)3e~ r(t-û) +15(t — S)2e~~r(t-û) + -(t — S)e~~*(L-0) + 24e *

T3 "

\3„-3(t-S) J_15,

T2

•\2„- j_24,

t

3(t-S)

- 3(t-S)

t < x1,x2 < œ, S> 0, T > 0.

4. Reliability Measure of (1, 4) and (2, 4) systems

In this section, using the joint density function given in (3) & (4), the reliability function for different models of sequential (1, 4) and (2, 4) systems are obtained. The Reliability function for (1, 4) system is

R(t) = 1111 f(x1,x2,x3,x4)dx4dx3dx2dx1,t < X1_.X2.X3.X4 < ™

JJJJ

24

-¿■(X! — S)(X2 — S)

1+

X2 — S

e— 1(x1+x2 +x3+x4—4S)dx4dx3 dx2 dXl,

t < x1,x2,x3,x4 < œ

24

4 4(t-S) 12

, 4 312

4

= ^(t — S)4e-~T(Z-0) + ^(t — S)3e-~t(Z-0) — S)2e-~t(Z-0) + — (t — S)e-~*(t-S)

4 3 2

„ 4 528

4

+ 264e-T(t-S), t < x1,x2,x3,x4 < œ, S> 0, t > 0.

The Reliability function for (2, 4) system is

R(V = JJJ f(*1,*2,*3)

1, X'2, ^3) 3X3^X2 d%1 , t < Xl, X2, X3 <

R(t) =JJJ 24^(Xl — S)

1+

x1 — 5

3 — -(X1+X2+2X3~4S)

dx3dx2 dx1 , t < x1,x2,x3 < œ

12 4,. .. 84 4,. .. 288 4,. .. 588 4.. . — (t — S)4e-T(t-S)+8-(t — S)3e-~T(t-S)+2—(t — S)2e-~^t-S) +-(t — S}e-T(t-0)

4 3 2

4

+ 588e-T(t-S), t < x1,x2,x3 < œ, S> 0, t > 0.

5. Numerical illustration

In this section, numerical illustration is presented for sequential (k, n) systems. The reliability R(t) for different time (t) with various location parameter and scale parameter when the failure time of the system follows exponential/gamma distribution are calculated. The reliability for different time by shifting location and scale parameters for different models of sequential (k, n) systems are

T

2

T

co

e

T

presented in Table 1,2,3,4,5,6,7 and 8.

Table 1: Reliability for (1, 3) system versus time for 8= 0.60 and t= 0.25, 0.50, 0.75,1

S. No 8=0.60 , t=0.25 8=0.60 , t=0.5 8=0.60 , t=0.75 8=0.60 , t=1

t R(t) t R(t) t R(t) t R(t)

1 0.89 0.97948 1.47 0.99987 1.91 0.98624 2.34 0.99987

2 0.91 0.77831 1.49 0.92062 1.93 0.93340 2.36 0.95948

3 0.93 0.61688 1.51 0.84726 1.95 0.88323 2.38 0.92062

4 0.95 0.48776 1.53 0.77941 1.97 0.83558 2.4 0.88323

5 0.97 0.38479 1.55 0.71669 1.99 0.79035 2.42 0.84726

6 0.99 0.30290 1.57 0.65873 2.01 0.74743 2.44 0.81267

7 1.01 0.23795 1.59 0.60522 2.03 0.70670 2.46 0.77941

8 1.03 0.18656 1.61 0.55583 2.05 0.66808 2.48 0.74743

9 1.05 0.14600 1.63 0.51027 2.07 0.63144 2.5 0.71669

10 1.07 0.11405 1.65 0.46827 2.09 0.59671 2.52 0.68713

11 1.09 0.08894 1.67 0.42956 2.11 0.56379 2.54 0.65873

12 1.11 0.06925 1.69 0.39391 2.13 0.53259 2.56 0.63144

13 1.13 0.05384 1.71 0.36109 2.15 0.50303 2.58 0.60522

14 1.15 0.04179 1.73 0.33088 2.17 0.47503 2.6 0.58003

15 1.17 0.03239 1.75 0.30310 2.19 0.44852 2.62 0.55583

16 1.19 0.02508 1.77 0.27756 2.21 0.42341 2.64 0.53259

17 1.21 0.01939 1.79 0.25409 2.23 0.39965 2.66 0.51027

18 1.23 0.01497 1.81 0.23252 2.25 0.37716 2.68 0.48884

19 1.25 0.01154 1.83 0.21272 2.27 0.35588 2.7 0.46827

20 1.27 0.00889 1.85 0.19455 2.29 0.33575 2.72 0.44852

Table 2: Reliability for (1, 3) system versus time for t= 0.65 and 8= 0.2, 0.4, 0.6, 0.8

S. No 8=0.2 , t=0.65 8=0.4 , t=0.65 8=0.6 , t=0.65 8=0.8 , t=0.65

t R(t) t R(t) t R(t) t R(t)

1 1.34 0.97174 1.54 0.97174 1.74 0.97174 2.15 0.98387

2 1.36 0.91186 1.56 0.91186 1.76 0.91186 2.17 0.93498

3 1.38 0.85544 1.58 0.85544 1.78 0.85544 2.19 0.88813

4 1.40 0.80230 1.6 0.80230 1.8 0.80230 2.21 0.84328

5 1.42 0.75227 1.62 0.75227 1.82 0.75227 2.23 0.80037

6 1.44 0.70518 1.64 0.70518 1.84 0.70518 2.25 0.75933

7 1.46 0.66088 1.66 0.66088 1.86 0.66088 2.27 0.72011

8 1.48 0.61921 1.68 0.61921 1.88 0.61921 2.29 0.68265

9 1.50 0.58003 1.7 0.58003 1.9 0.58003 2.31 0.64690

10 1.52 0.54320 1.72 0.54320 1.92 0.54320 2.33 0.61278

11 1.54 0.50859 1.74 0.50859 1.94 0.50859 2.35 0.58026

12 1.56 0.47608 1.76 0.47608 1.96 0.47608 2.37 0.54926

13 1.58 0.44555 1.78 0.44555 1.98 0.44555 2.39 0.51973

14 1.60 0.41689 1.80 0.41689 2.00 0.41689 2.41 0.49162

15 1.62 0.38998 1.82 0.38998 2.02 0.38998 2.43 0.46487

16 1.64 0.36474 1.84 0.36474 2.04 0.36474 2.45 0.43943

17 1.66 0.34106 1.86 0.34106 2.06 0.34106 2.47 0.41525

18 1.68 0.31885 1.88 0.31885 2.08 0.31885 2.49 0.39227

19 1.70 0.29802 1.9 0.29802 2.1 0.29802 2.51 0.37044

20 1.72 0.27850 1.92 0.27850 2.12 0.27850 2.53 0.34972

1.0 8=0.60 1.0

0.8 t=0.25 0.8

£y 3 0.6 £y 3 0.6

Reliabi 0. 4 Reliabi 0. 4

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0.2 0.0 0.2 0.0

0.89

1.09 1.29

Time

Figure 1: Reliability versus time with 8 = 0.60, t= 0.25 for (1, 3) system.

1.49

1.47

2.97

1.97 2.47

Time

Figure 2: Reliability versus time with 8 = 0.60, t= 0.50 for (1, 3) system.

-Q

.2

Pi

1.0 8=0.60 1.0

0.8 t=0.75 0.8

0.6 £y tli 0.6

0.4 Reliabi 0. 4

0.2 0.0 0.2

0.0

1.91

2.41

3.41

3.91

2.91 Time

Figure 3: Reliability versus time with 8 = 0.60, t= 0.75for (1, 3) system.

2.34

3.34 4.34

Time

Figure 4: Reliability versus time with 8 = 0.60, t= 1.00 for (1, 3) system.

5.34

1.0 0.8 3 0.6

cs

iel0.4 Pi

0.2 0.0

1.34

1.84 2.34

Time

2.84

1.0 0.8 3 0.6

Xi cs

iel0.4 Pi

0.2 0.0

1.54

2.04

2.54 Time

3.04

3.54

Figure 5: Reliability versus time with 8 = 0.20, t= 0.65 for (1, 3) system.

Figure 6: Reliability versus time with 8 = 0.40, t= 0.65for (1, 3) system.

it 3

1.0 0.8 0.6 0.4 0.2 0.0

1.74

2.24 2.74

Time

Figure 7: Reliability versus time with 8 = 0.60, t= 0.65 for (1, 3) system.

3.24

1.0 0.8 IT 0.6

iel0.4 pi

0.2 0.0

2.15

2.65

3.15 Time

3.65

4.15

Figure 8: Reliability versus time with 8 = 0.80,t= 0.65for (1, 3) system

SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM

From Table 1 & 2, it is observed that the sequential (1, 3) system's reliability decreases with increasing time and is also clear that time increases along with location and scale parameters.

Table 3: Reliability for (2, 3) system versus time for S= 0.60 and t = 0.25, 0.50, 0.75,1

S. No 8=0.60 , t=0.25 S=0.60 , t=0.5 S=0.60 , t=0.75 S=0.60 , t=1

t R(t) t R(t) t R(t) t R(t)

1 0.99 1.00000 1.51 1.00000 1.77 1.00000 2.34 0.99987

2 1.01 0.85354 1.53 0.93633 1.79 0.95786 2.36 0.95948

3 1.03 0.71726 1.55 0.86702 1.81 0.90425 2.38 0.92062

4 1.05 0.60204 1.57 0.80246 1.83 0.85354 2.4 0.88323

5 1.07 0.50476 1.59 0.74235 1.85 0.80556 2.42 0.84726

6 1.09 0.42272 1.61 0.68642 1.87 0.76018 2.44 0.81267

7 1.11 0.35363 1.63 0.63441 1.89 0.71726 2.46 0.77941

8 1.13 0.29551 1.65 0.58607 1.91 0.67668 2.48 0.74743

9 1.15 0.24669 1.67 0.54116 1.93 0.63831 2.5 0.71669

10 1.17 0.20573 1.69 0.49948 1.95 0.60204 2.52 0.68713

11 1.19 0.17140 1.71 0.46080 1.97 0.56776 2.54 0.65873

12 1.21 0.14266 1.73 0.42493 1.99 0.53537 2.56 0.63144

13 1.23 0.11863 1.75 0.39169 2.01 0.50476 2.58 0.60522

14 1.25 0.09855 1.77 0.36090 2.03 0.47584 2.6 0.58003

15 1.27 0.08180 1.79 0.33239 2.05 0.44852 2.62 0.55583

16 1.29 0.06784 1.81 0.30601 2.07 0.42272 2.64 0.53259

17 1.31 0.05621 1.83 0.28161 2.09 0.39835 2.66 0.51027

18 1.33 0.04654 1.85 0.25905 2.11 0.37535 2.68 0.48884

19 1.35 0.03850 1.87 0.23821 2.13 0.35363 2.70 0.46827

20 1.37 0.03183 1.89 0.21896 2.15 0.33313 2.72 0.44852

Table 4: Reliability for (2, 3) system versus time for t = 0.65 and S= 0.2, 0.4, 0.6, 0.8

S. No S=0.2 , t=0.65 S=0.4 , t=0.65 S=0.6 , t=0.65 S=0.8 , t=0.65

t R(t) t R(t) t R(t) t R(t)

1 1.22 0.99454 1.42 0.99454 1.72 1.00000 1.88 0.99508

2 1.24 0.93069 1.44 0.93069 1.74 0.97174 1.90 0.93731

3 1.26 0.87078 1.46 0.87078 1.76 0.91186 1.92 0.88257

4 1.28 0.81458 1.48 0.81458 1.78 0.85544 1.94 0.83074

5 1.30 0.76188 1.50 0.76188 1.80 0.80230 1.96 0.78167

6 1.32 0.71246 1.52 0.71246 1.82 0.75227 1.98 0.73525

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

7 1.34 0.66614 1.54 0.66614 1.84 0.70518 2.00 0.69135

8 1.36 0.62272 1.56 0.62272 1.86 0.66088 2.02 0.64985

9 1.38 0.58203 1.58 0.58203 1.88 0.61921 2.04 0.61064

10 1.40 0.54391 1.60 0.54391 1.90 0.58003 2.06 0.57361

11 1.42 0.50820 1.62 0.50820 1.92 0.54320 2.08 0.53865

12 1.44 0.47476 1.64 0.47476 1.94 0.50859 2.10 0.50567

13 1.46 0.44344 1.66 0.44344 1.96 0.47608 2.12 0.47455

14 1.48 0.41413 1.68 0.41413 1.98 0.44555 2.14 0.44522

15 1.50 0.38669 1.70 0.38669 2.00 0.41689 2.15 0.43119

16 1.52 0.36101 1.72 0.36101 2.02 0.38998 2.17 0.40436

17 1.54 0.33698 1.74 0.33698 2.04 0.36474 2.19 0.37908

18 1.56 0.31450 1.76 0.31450 2.06 0.34106 2.21 0.35528

19 1.58 0.29348 1.78 0.29348 2.08 0.31885 2.23 0.33289

20 1.60 0.27381 1.80 0.27381 2.10 0.29802 2.25 0.31182

0.99

1.09

1.39

1.19 1.29 Time

Figure 9: Reliability versus time with S = 0.60, t = 0.25 for (2, 3) system.

1.49

1.0 0.8

ty

■3 0.6

cs

"3 0.4 ei

0.2 0.0

1.51 2.01 2.51 3.01

Time

Figure 10: Reliability versus time with S= 0.60, t = 0.50for (2, 3) system.

it

.2

Pi

1.0 0.8 0.6 0.4 0.2 0.0

1.77

2.27

2.77 Time

3.27

3.77

Figure 11: Reliability versus time with S= 0.60, t = 0.75for (2, 3) system.

1.0 0.8 ■s 0.6

CS

13 0.4

Pi

0.2 0.0

2.34 2.84 3.34 3.84 Time

4.34 4.84

Figure 12: Reliability versus time with S= 0.60, t = 1 for (2, 3) system.

1.0 0.8

ty

■3 0.6 .2

Pi

0.4 0.2 0.0

1.22

1.72 2.22

Time

2.72

Figure 13: Reliability versus time with S= 0.2,t = 0.65for (2, 3) system.

1.42

1.92

2.42 Time

2.92

3.42

Figure 14: Reliability versus time with S= 0.40,t = 0.65for (2, 3) system.

1.0 0.8

it 1 0.6 .2

"oj

Re0.4 0.2 0.0

1.72

2.22 2.72

Time

3.22

Figure 15: Reliability versus time with S= 0.6, t = 0.65 for (2, 3) system.

1.0 0.8

it

2 0.6

pi

0.4 0.2 0.0

2.38

2.88 Time

3.38

Figure 16: Reliability versus time with S= 0.8, t = 0.65 for (2, 3) system.

1

3

From Table 3 & 4, it is observed that the sequential (2, 3) system's reliability declines with increasing time and is also clear that time increases along with location and scale parameters.

Table 5: Reliability for (1, 4) system versus time for 8=0.60 and t=0.25, 0.50, 0.75,1

S. No 8=0.60 , t=0.25 8=0.60 , t=0.5 8=0.60 , t=0.75 8=0.60 , t=1

t R(t) t R(t) t R(t) t R(t)

1 1.12 0.92791 1.64 0.92791 2.14 1.00000 2.66 0.98621

2 1.14 0.72668 1.66 0.82127 2.16 0.92791 2.68 0.92791

3 1.16 0.56846 1.68 0.72668 2.18 0.85541 2.70 0.87299

4 1.18 0.44422 1.70 0.64281 2.20 0.78847 2.72 0.82127

5 1.20 0.34677 1.72 0.56846 2.22 0.72668 2.74 0.77256

6 1.22 0.27042 1.74 0.50258 2.24 0.66965 2.76 0.72668

7 1.24 0.21068 1.76 0.44422 2.26 0.61702 2.78 0.68348

8 1.26 0.16397 1.78 0.39253 2.28 0.56846 2.80 0.64281

9 1.28 0.12751 1.80 0.34677 2.30 0.52366 2.82 0.60451

10 1.30 0.09906 1.82 0.30626 2.32 0.48233 2.84 0.56846

11 1.32 0.07689 1.84 0.27042 2.34 0.44422 2.86 0.53452

12 1.34 0.05963 1.86 0.23871 2.36 0.40906 2.88 0.50258

13 1.36 0.04621 1.88 0.21068 2.38 0.37665 2.90 0.47251

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

14 1.38 0.03577 1.90 0.18589 2.40 0.34677 2.92 0.44422

15 1.40 0.02767 1.92 0.16397 2.42 0.31922 2.94 0.41759

16 1.42 0.02139 1.94 0.14461 2.44 0.29382 2.96 0.39253

17 1.44 0.01652 1.96 0.12751 2.46 0.27042 2.98 0.36895

18 1.46 0.01275 1.98 0.11240 2.48 0.24885 3.00 0.34677

19 1.48 0.00984 2.00 0.09906 2.50 0.22898 3.02 0.32589

20 1.50 0.00758 2.02 0.08728 2.52 0.21068 3.04 0.30626

Table 6: Reliability for (1, 4) system with time for t= 0.65 and 8= 0.2, 0.4, 0.6, 0.8

S. No 8=0.2 , t=0.65 8=0.4 , t=0.65 8=0.6 , t=0.65 8=0.8 , t=0.65

t R(t) t R(t) t R(t) t R(t)

1 1.54 0.98160 1.74 0.98160 1.94 0.98160 2.14 0.98160

2 1.56 0.89373 1.76 0.89373 1.96 0.89373 2.16 0.89373

3 1.58 0.81358 1.78 0.81358 1.98 0.81358 2.18 0.81358

4 1.60 0.74050 1.80 0.74050 2.00 0.74050 2.20 0.74050

5 1.62 0.67388 1.82 0.67388 2.02 0.67388 2.22 0.67388

6 1.64 0.61315 1.84 0.61315 2.04 0.61315 2.24 0.61315

7 1.66 0.55780 1.86 0.55780 2.06 0.55780 2.26 0.55780

8 1.68 0.50737 1.88 0.50737 2.08 0.50737 2.28 0.50737

9 1.70 0.46143 1.90 0.46143 2.10 0.46143 2.30 0.46143

10 1.72 0.41958 1.92 0.41958 2.12 0.41958 2.32 0.41958

11 1.74 0.38147 1.94 0.38147 2.14 0.38147 2.34 0.38147

12 1.76 0.34677 1.96 0.34677 2.16 0.34677 2.36 0.34677

13 1.78 0.31517 1.98 0.31517 2.18 0.31517 2.38 0.31517

14 1.80 0.28642 2.00 0.28642 2.20 0.28642 2.40 0.28642

15 1.82 0.26025 2.02 0.26025 2.22 0.26025 2.42 0.26025

16 1.84 0.23643 2.04 0.23643 2.24 0.23643 2.44 0.23643

17 1.86 0.21477 2.06 0.21477 2.26 0.21477 2.46 0.21477

18 1.88 0.19506 2.08 0.19506 2.28 0.19506 2.48 0.19506

19 1.90 0.17714 2.10 0.17714 2.30 0.17714 2.50 0.17714

20 1.92 0.16084 2.12 0.16084 2.32 0.16084 2.52 0.16084

1.12

1.22

1.32 1.42

Time

1.52

1.62

Figure 17: Reliability versus time with 8= 0.60, t = 0.25for (1, 4) system.

1.64

1.84

2.04 Time

2.24

2.44

Figure 18: Reliability versus time with 8= 0.60, t = 0.50for (1, 4) system.

2.14

2.64

3.14

3.64

Time

Figure 19: Reliability versus time with 8= 0.60, t = 0.75 for (1, 4) system.

1.0

0.8 .It 0.6

a 0.4

OJ Pi

0.2

0.0

1.54

2.04

2.54

3.04

Time

Figure 21: Reliability versus time with 8= 0.20,t = 0.65for (1, 4) system.

1.0 0.8 0.6 0.4 0.2 0.0

2.66

3.16

3.66 Time

4.16

4.66

Figure 20: Reliability versus time with 8= 0.60, t = 1.00 for (1, 4) system.

1.74 1.94 2.14 2.34 2.54 2.74 2.94 Time

Figure 22: Reliability versus time with 8= 0.40,t = 0.65for (1, 4) system.

1.0 8=0.60 1.0

0.8 t=0.65 0.8

Reliability 0. 0. 46 Reliability 0. 0. 46

0.2 0.0 0.2 0.0

1.94

3.44

2.44 2.94

Time

Figure 23: Reliability versus time with 8= 0.60, t = 0.65 for (1, 4) system.

2.14

2.64 3.14

Time

3.64

Figure 24: Reliability versus time with 8= 0.8, t = 0.65 for (1, 4) system.

From Table 5 & 6, it can be observed that for sequential (1, 4) system's reliability declines with increasing time and it is also clear that time increases along with location and scale parameters.

SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM

Table 7: Reliability for (2, 4) system with time for 8=0.60 and t=0.25, 0.50, 0.75,1

S. No 8=0.60 , t=0.25 8=0.60 , t=0.5 8=0.60 , t=0.75 8=0.60 , t=1

t R(t) t R(t) t R(t) t R(t)

1 1.12 0.9835 1.64 0.9835 2.16 0.98353 2.68 0.9835

2 1.14 0.7623 1.66 0.8660 2.18 0.90352 2.70 0.9229

3 1.16 0.5904 1.68 0.7623 2.20 0.82994 2.72 0.8660

4 1.18 0.4569 1.70 0.6709 2.22 0.76230 2.74 0.8125

5 1.20 0.3534 1.72 0.5904 2.24 0.70011 2.76 0.7623

6 1.22 0.2731 1.74 0.5194 2.26 0.64294 2.78 0.7152

7 1.24 0.2109 1.76 0.4569 2.28 0.59039 2.80 0.6709

8 1.26 0.1628 1.78 0.4019 2.30 0.54210 2.82 0.6294

9 1.28 0.1255 1.80 0.3534 2.32 0.49771 2.84 0.5904

10 1.30 0.0967 1.82 0.3107 2.34 0.45692 2.86 0.5538

11 1.32 0.0745 1.84 0.2731 2.36 0.41944 2.88 0.5194

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12 1.34 0.0573 1.86 0.2400 2.38 0.38501 2.90 0.4872

13 1.36 0.0441 1.88 0.2109 2.40 0.35337 2.92 0.4569

14 1.38 0.0339 1.90 0.1853 2.42 0.32431 2.94 0.4285

15 1.40 0.0260 1.92 0.1628 2.44 0.29761 2.96 0.4019

16 1.42 0.0200 1.94 0.1429 2.46 0.27309 2.98 0.3768

17 1.44 0.0153 1.96 0.1255 2.48 0.25057 3.00 0.3534

18 1.46 0.0118 1.98 0.1102 2.50 0.22989 3.02 0.3313

19 1.48 0.0090 2.00 0.0967 2.52 0.21090 3.04 0.3107

20 1.50 0.0069 2.02 0.0849 2.54 0.19346 3.06 0.2913

Table 8: Reliability for (2, 4) system with time for t= 0.65 and 8= 0.2, 0.4, 0.6, 0.8

S. No 8=0.2 , t=0.65 8=0.4 , t=0.65 8=0.6 , t=0.65 8=0.8 , t=0.65

t R(t) t R(t) t R(t) t R(t)

1 1.56 0.99910 1.75 0.99321 1.95 0.99321 2.15 0.99321

2 1.58 0.90750 1.77 0.90057 1.97 0.90057 2.17 0.90057

3 1.60 0.82423 1.79 0.81649 1.99 0.81649 2.19 0.81649

4 1.62 0.74852 1.81 0.74017 2.01 0.74017 2.21 0.74017

5 1.64 0.67971 1.83 0.67092 2.03 0.67092 2.23 0.67092

6 1.66 0.61716 1.85 0.60808 2.05 0.60808 2.25 0.60808

7 1.68 0.56032 1.87 0.55107 2.07 0.55107 2.27 0.55107

8 1.70 0.50866 1.89 0.49935 2.09 0.49935 2.29 0.49935

9 1.72 0.46173 1.91 0.45243 2.11 0.45243 2.31 0.45243

10 1.74 0.41908 1.93 0.40988 2.13 0.40988 2.33 0.40988

11 1.76 0.38033 1.95 0.37129 2.15 0.37129 2.35 0.37129

12 1.78 0.34514 1.97 0.33630 2.17 0.33630 2.37 0.33630

13 1.80 0.31317 1.99 0.30458 2.19 0.30458 2.39 0.30458

14 1.82 0.28414 2.01 0.27581 2.21 0.27581 2.41 0.27581

15 1.84 0.25777 2.03 0.24974 2.23 0.24974 2.43 0.24974

16 1.86 0.23382 2.05 0.22611 2.25 0.22611 2.45 0.22611

17 1.88 0.21208 2.07 0.20469 2.27 0.20469 2.47 0.20469

18 1.90 0.19234 2.09 0.18529 2.29 0.18529 2.49 0.18529

19 1.92 0.17443 2.11 0.16770 2.31 0.16770 2.51 0.16770

20 1.94 0.15816 2.13 0.15177 2.33 0.15177 2.53 0.15177

SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM

Figure 25: Reliability versus time with Figure 26:Reliability versus time with

8= 0.60, t= 0.25 for (2, 4) system. 8= 0.60, t= 0.50 for (2, 4) system.

Time Time

Figure 27: Reliability versus time with 8= 0.60, t= 0.75 for (2, 4) system.

Figure 29: Reliability versus time with 8= 0.2, t= 0.65 for (2, 4) system.

Figure 31: Reliability versus time with 8= 0.6, t= 0.65for (2, 4) system.

Figure 28: Reliability versus time with 8= 0.60, t= 1 for (2, 4) system.

Figure 30: Reliability versus time with 8= 0.40, t= 0.65 for (2, 4) system.

Time

Figure 32: Reliability versus time with 8= 0.8, t= 0.65for (2, 4) system.

K. Glory Prasanth, A. Venmani 4 8

ESTIMATION OF RELIABILITY ON , ,

„ „ „ „ Volume 19, December, 2024 SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM_'_

From table 7 and 8, it can be observed that for sequential (2, 4) system's reliability declines with

increasing time and is also clear that time increases along with location and scale parameters.

From table 1,2,3,4,5,6,7,8 and figures, it is clear that as time increases, the different models of sequential (k, n) system's reliabilty decreases. It is also clear that time increases with increase in location and scale parameters. The results of numerical illustration clearly show that.

6. Conclusion

In this paper, different models of Sequential (k,n) system having exponential/gamma distribution with location and scale parameters are considered. The reliability function for different models of sequential (k, n) system's reliability decreases have been determined. Based on the findings in Table 1, 2, 3, 4, 5, 6, 7 & 8 and figures, we note the following

• By shifting the location and scale parameters, the reliability for different time are estimated for the suggested systems. As expected, the reliability decreases as the time increases.

• By monitoring reliability measures through shifting of parameters we can plan updates or patches to prevent system failures.

• It would be of interest to emulate this work for generalised gamma distribution and to extend this work for other continuous distributions, including Weibull distributions and Pareto distribution.

References

[1] Alghamdi, S. M., & Percy, D. F. (2014). Reliability equivalence factors for a series-parallel system assuming an exponentiated Weibull distribution.

[2] Bain, L. (2017). Statistical analysis of reliability and life-testing models: theory and methods. Routledge.

[3] Basu A.P., El Mawaziny A.H. (1978). Estimates of reliability of k-out-of-m structures in the independent exponential case. Journal of American Statistical Association, 73(364):850-854.

[4] Barlow, R. B. (1975). Statistical theory of reliability and life testing. Holt.

[5] Baratnia, M., & Doostparast, M. (2019). Sequential order statistics from dependent random variables. Communications in Statistics-Theory and Methods, 48(18), 4569-4580.

[6] Chaturvedi, A., & Pathak, A. (2012). Estimation of the Reliability Function for Exponentiated Weibull Distribution. Journal of Statistics & Applications, 7.

[7] Cramer, E., and Kamps, U. (1996).Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates. Annals of the Institute of Statistical Mathematics, 48, 535549.

[8] Cramer, E., Kamps, U. (2001). Estimation with Sequential Order Statistics from Exponential Distributions. Annals of the Institute of Statistical Mathematics 53, 307-324.

[9] Demiray, D., & Kizilaslan, F. (2022). Stress-strength reliability estimation of a consecutive k-out-of-n system based on proportional hazard rate family. Journal of Statistical Computation and Simulation, 92(1), 159-190.

[10] Glory Prasanth, K., & A. Venmani. (2023). (1, 4) and (2, 4) systems based on sequential order statistics for equivariant parameters estimation. Utilitas Mathematica, 120, pp. 12-24.

[11] Hong, Y., & Meeker, W. Q. (2014). Confidence interval procedures for system reliability and applications to competing risks models. Lifetime data analysis, 20(2), 161-184.

[12] Kalaivani, M., & Kannan, R. (2022). Estimation of reliability function and mean time to system failure for k-out-of-n systems using Weibull failure time model. International Journal

K. Glory Prasanth, A. Venmani

ESTIMATION OF RELIABILITY ON , ^^ ,

____„ „ Volume 19, December, 2024

SEQUENTIAL ORDER STATISTICS FROM (k,n) SYSTEM_'_

of System Assurance Engineering and Management, 13(5), 2195-2207.

[13] Kamps, U. (1995). A concept of generalized order statistics. Teubner, Stuttgart.

[14] Katzur, A., Kamps, U. (2020). Classification using sequential order statistics. Advances in Data Analysis and Classification, 14, 201-230.

[15] Meeker, W. Q., Escobar, L. A., & Pascual, F. G. (2022). Statistical methods for reliability data. John Wiley & Sons.

[16] Méndez-González, L. C., Rodríguez-Picón, L. A., Valles-Rosales, D. J., Alvarado Iniesta, A., & Carreón, A. E. Q. (2019). Reliability analysis using exponentiated Weibull distribution and inverse power law. Quality and Reliability Engineering International, 35(4), 1219-1230.

[17] Pesch, T., Polpo, A., Cripps, E., & Cramer, E. (2023). Reliability inference with extended sequential order statistics. Applied Stochastic Models in Business and Industry, 39(4), 520-535.

[18] Pham, H. (2010).On the estimation of reliability of k-out-of-n systems. International Journal of Systems Assurance Engineering and Management, 1, 32-35.

[19] Revathy, S.A., and Chandrasekar, B. (2007). Equivariant Estimation of Parameters based on sequential order statistics from (1, 3) and (2,3) Systems, Communication in Statistics-Theory and it Methods, 36(3), 541-548.

[20] Shi, Y.M.,Gu, X., & Sun, Y.D.(2011),Reliability evaluation for m-consecutive-k-out-of-n:F system with Burr XII components. In 2011 International Conference on Multimedia Technology (pp.2314-2317).IEEE.

i Надоели баннеры? Вы всегда можете отключить рекламу.