Научная статья на тему 'ESTIMATION OF POLLINATORS COMMUNITIES IN THE AREAS OF INDUSTRIAL IMPACT'

ESTIMATION OF POLLINATORS COMMUNITIES IN THE AREAS OF INDUSTRIAL IMPACT Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Insecta / pollinators / bioindicator / Slovakia / насекомые / опылители / биоиндикаторы / Словакия

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — V. Langraf, M. Zaťková, M. Fábik, K. Petrovičová

In recent decades, the European Union has issued several strategies to promote the efficient use of resources, the circular economy and to address biodiversity loss and climate change. On the basis of the strategy of the European Union, during 2023, in the premises of the company Wienerberger s.r.o. carried out biomonitoring of insecta with a focus on pollinators. We conducted the research in 4 study areas representing the meadow biotope. We used the following methods for catching insects: Yellow Sticky Traps, insect traps and entomological nets. In total, we recorded 267 individuals belonging to 44 species and 12 families. There was one eudominant species, namely Apis mellifera. We recorded the highest value of diversity in study area 1 (H'=2.931) and equitability in study area 2 (E=0.9118). Through Principal Component Analysis (PCA) analysis, we noted a greater binding of species to the meadow biotope with partial planting of grass mixtures that attract butterflies and bees.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Оценка сообществ опылителей в районах промышленного воздействия

За последние десятилетия Европейский Союз разработал несколько стратегий, направленных на содействие эффективному использованию ресурсов, циркулярной экономике и решению проблемы утраты биоразнообразия и изменения климата. В течение 2023 г. в импактной зоне предприятий компании Wienerberger s.r.o. проведен биомониторинг насекомых с акцентом на опылителей. Исследования проведены на 4-х участках, представляющих луговой биотоп. Для ловли насекомых использовали следующие методы: желтые липкие ловушки, ловушки для насекомых и энтомологические сети. Всего зарегистрировано 267 особей, принадлежащих к 44 видам и 12 семействам. Был один эвдоминантный вид ‒ Apis mellifera. Наибольшее высокое значение разнообразия на участке 1 (H'=2.931) и коэффициента выровненности на участке 2 (E=0.9118). Методом главных компонен (PCA) выявлена привязку видов к луговому биотопу с подсевом травосмесей, привлекающих бабочек и пчел.

Текст научной работы на тему «ESTIMATION OF POLLINATORS COMMUNITIES IN THE AREAS OF INDUSTRIAL IMPACT»

ЭКОЛОГИЯ ПРИРОДНЫХ СИСТЕМ

УДК 595.79 : 574.2

1V. Langraf, 2M. Zatkova, 2M. Fabik, 3K. Petrovicova

1Constantine the Philosopher University in Nitra, Slovakia, langrafvladimir@gmail.com

2Wienerberger s.r.o., Zlate Moravce, Slovakia 3 University of Agriculture in Nitra, Slovakia

ESTIMATION OF POLLINATORS COMMUNITIES IN THE AREAS OF INDUSTRIAL IMPACT

In recent decades, the European Union has issued several strategies to promote the efficient use of resources, the circular economy and to address biodiversity loss and climate change. On the basis of the strategy of the European Union, during 2023, in the premises of the company Wienerberger s.r.o. carried out biomonitoring of insecta with a focus on pollinators. We conducted the research in 4 study areas representing the meadow biotope. We used the following methods for catching insects: Yellow Sticky Traps, insect traps and entomological nets. In total, we recorded 267 individuals belonging to 44 species and 12 families. There was one eudominant species, namely Apis mellifera. We recorded the highest value of diversity in study area 1 (H-2.931) and equitability in study area 2 (E=0.9118). Through Principal Component Analysis (PCA) analysis, we noted a greater binding of species to the meadow biotope with partial planting of grass mixtures that attract butterflies and bees.

Keywords: Insecta; pollinators; bioindicator; Slovakia.

DOI: https://doi.org/10.24852/24n-7374.2024.L17.22

Introduction

The diversity of life on Earth is dramatically affected by human changes in ecosystems (Baillie et al., 2004). Many activities necessary for human existence lead to the reduction and gradual loss of biodiversity. This trend will probably continue in the future. Biodiversity impacts occur across countries and regions and span a given area over long distances. Mineral supply chains can have extensive, but often hidden, impacts on biodiversity (Lambin et al., 2018; Díaz et al., 2019).

On the one hand, industry is a key element of the economy, but on the other hand, it is also a major source of pollution. It has a major effecton the environment and biodiversity around the world. The risks associated with the negative impact on biodiversity are mainly made up of sectors focused on mining, forestry and agriculture. In these industries that uncontrolled business practices can cause environmental deterioration (Bao et al., 2019). Even the construction of industrial areas, occupying vast areas, is a simple example of an adverse impact on local biodiversity (Sonter et al., 2018). Extractive industries play a significant role in the global loss of biodiversity. This type of business is the main source of large industrial operations that often come to remote and undeveloped areas, potentially disrupting habitats and degrading the local environment (Moldalieva, 2021). The mining industry hasa special position among industries, because its activity

provides raw materials for other industries. It is at the beginning of the chain of industries and mining itself represents serious and highly specific threats to biodiversity (Chovancova, Adamisin, 2016).

The European Union's biodiversity strategy highlights the importance of the private sector and its significant role as a potential destroyer and at the same time protector of biodiversity (Marco-Fondevila, Alvarez-Etxeberria, 2023; Tregidga, 2013). The European Union has committed itself to an ambitious biodiversity restoration plan in its 2030 Biodiversity Strategy and Green Deal. The aim is to halt the loss of biodiversity and move towards sustainable development, focusing on restoring degraded habitats, expanding the network of protected areas and improving the efficiency of management, administration and financing (Hermoso, 2022; Paleari 2024).

The goal of our biomonitoring is to evaluate the state of pollinators in the industrial area of Wienerberger s.r.o., which also participates in the restoration of habitats for pollinators and the increase of overall biodiversity, according to European Union regulations.

Material and methods

During 2023, we collected insects with a focus on pollinators in the industrial area of the brick factory (Zlate Moravce, Slovakia) of Wienerberger s.r.o. We had 4 study areas on the company premises,

1/2023

17

Fig. 1. Industrial area of company Wienerberger s.r.o. Note: study area 1, 2, 3, 4.

representing meadow biotopes (fig. 1):

1) study area, mowed meadow next to the administrative building, area 15 m2, (48°23'30.3"N, 18°22'39.7"E). On the area, we noticed the predominance of the following types of plants: Vicia hirsuta, Leucanthemum vulgare, Plantago lanceolata, Elymus repens, Taraxacum officinale, Salvia nemorosa, Trifolium pratense, Papaver rhoeas, Calystegia sepium. The planted mix of pollinator-attracting herbs contained the following species: Pimpinella major, Betonica officinalis, Allium angulosum, Securigera varia, Helianthemum grandiflorum, Verbascum nigrum, Origanum vulgare, Echium vulgare, Lathyrus pratensis, Aster amellus, Dianthus carthusianorum, Dianthus deltoides, Pilosella aurantiaca, Knautia arvensis, Centaurea jacea and Trifolium montanum;

2) study area, unmown meadow adjacent to the riparian vegetation of the pond, area 45 m2, (48°23'39.1"N, 18°22'36.5"E). On the area, we noticed the predominance of the following types of plants: Vicia hirsuta, Leucanthemum vulgare, Poa pratensis, Elymus repens, Plantago lanceolata, Taraxacum officinale, Trifolium pratense;

3) study area, unmown meadow adjacent to the clay mine quarry, area 320 m2, (48°23'41.3"N, 18°22'25.0"E). On the area, we recorded the predominance of the following types of plants: Potentilla anserina, Vicia hirsuta, Leucanthemum

vulgare, Elymus repens, Taraxacum officinale, Papaver rhoeas;

4) study area, unmown meadow adjacent to the clay mine quarry, area 360 m2, (48°23'36.7"N, 18°22'03.1"E). On the area, we noticed the predominance of the following types of plants: Potentilla anserina, Vicia hirsuta, Leucanthemum vulgare, Calamagrostis arundinacea, Taraxacum officinale, Papaver rhoeas, Calystegia sepium.

We caught insects using the following methods: Yellow Sticky Traps, insect traps and entomological nets at regular monthly intervals from May to September. For each study areas (1-4), we made a total of 5 of subscriptions insect sampling. The number of individuals during the months was as follows: May = 26 individuals, June = 90 individuals, July = 42 individuals, August = 38 individuals, September = 71 individuals. We determined the captured insect material according to (Macek et al., 2015, 2017).

Multivariate analysis (Principal Component Analysis - PCA) to determine the dependencies between objects (insecta and study areas) was used in the Canoco5 program (Ter Braak, Smilauer, 2012).

We calculated Shannon's index of diversity and Equitability in the program Past 3.05 (Hammer, 2015).

Results and discussion

In the area of the brickyard, we recorded 267

18

mm nil MMI anon

ЭКОЛОГИЯ ПРИРОДНЫХ СИСТЕМ Table 1. Systematic review ofpollinator species of the study areas

Familia Species Study Area I %

1 2 3 4 Individuals

Dasysyrphus albostriatus (Fallén, 1817) 2 2 0.75

Epistrophe grossulariae (Meigen, 1822) 2 2 0.75

Episyrphus balteatus (De Geer, 1776) 1 2 3 1.12

Eristalis similis (Fallén, 1817) 1 1 0.37

Syrphidae Eupeodes corollae (Fabricius, 1794) 1 6 6 5 18 6.74

Melanostoma scalare (Fabricius, 1794) 17 4 21 7.87

Sphaerophoria fatarum Goeldlin, 1989 1 1 0.37

Sphaerophoria scripta (Linné, 1758) 5 2 5 12 4.49

Xanthandrus comtus (Harris, 1780) 3 1 4 1.50

Andrena minutula (Kirby, 1802) 1 2 2 5 1.87

Anthidium florentinum (Fabricius,1775) 1 1 0.37

Apis mellifera Linné, 1758 22 4 6 14 46 17.23

Bombus haematurus Kriechbaumer, 1870 1 1 0.37

Apidae Bombus lapidarius Linneus, 1758 7 2 1 1 11 4.12

Bombus terrestris Linné, 1758 12 1 1 14 5.24

Halictus tumulorum (Linnaeus,1758) 3 1 4 1.50

Chalicodoma ericetorum Lepeletier, 1841 2 1 3 1.12

Xylocopa violacea Linnaeus, 1758 3 1 2 6 2.25

Dolichovespula media Retzius, 1783 7 6 13 4.87

Vespidae Polistes sulcifer Zimmermann, 1930 1 1 2 0.75

Vespa crabro Linnaeus, 1758 1 1 0.37

Vespula germanica (Fabricius, 1793) 3 9 3.37

Arctiidae Amataphegea (Linnaeus, 1758) 2 1 3 1.12

Geometridae Alsophila aceraria (Denis, Schiffermüller, 1775) 1 1 0.37

Aricia agestis (Denis, Schiffermüller, 1775) 1 1 0.37

Lycaenidae Glaucopsyche alexis (Poda, 1761) 1 2 7 10 3.75

Lycaena tityrus Poda, 1761 1 1 0.37

Polyommatus eroides (Frivaldszky, 1835) 4 1 5 1.87

Boloria dia Linnaeus, 1767 4 1 5 1.87

Nymphalidae Apatura ilia (Denis & Schiffermüller, 1775) 1 1 0.37

Vanessa atalanta Linné, 1758 1 1 0.37

Aglais io (Linnaeus, 1758) 1 1 0.37

Papilionidae Iphiclidespodalirius Linnaeus, 1758 3 3 1.12

Papilio machaon Linnaeus, 1758 1 1 0.37

Aporia crataegi Linnaeus, 1758 1 1 0.37

Leptidea sinapis (Linnaeus, 1758) 1 1 2 4 1.50

Pieridae Pieris brassicae (Linnaeus, 1758) 4 4 5 9 22 8.24

Pieris rapae (Linnaeus, 1758) 6 6 2.25

Pontia edusa Fabricius, 1777 1 1 0.37

Colias hyale (Linnaeus, 1758) 1 1 0.37

Satyridae Coenonymphapamphilus Linnaeus, 1758 1 1 8 10 3.75

Melanargia galathea (Linné, 1758) 1 1 2 4 1.50

Sphingidae Hemaris tityus Linné, 1758 3 3 1.12

Zygaenidae Zygaena filipendulae Linnaeus, 1758 2 2 0.75

T individuals 118 37 47 65 267 100

1/2123

19

Table 2. Diversity and equity of study areas

Study area Shannon H Equitability

1 2.931 0.8458

2 2.339 0.9118

3 2.676 0.8931

4 2.482 0.8587

individuals belonging to 44 species and 12 families (tab. 2). We recorded a eudominant representation (D>10%) in the species Apis mellifera. In the species Eupeodes corollae, Melanostoma scalare, Bombus terrestris, Pieris brassicae we confirmed the dominant representation (D=5-9.9%). Subdominant (D=2-4.9%) species were Sphaerophoria scripta, Bombus lapidarius, Dolichovespula media, Vespula germanica, Glaucopsyche alexis, Coenonympha pamphilus. The other species had recessive or subrecessive representations.

We found the highest value of diversity in study area 1 (H-2.931) and the lowest in study area 4 (H-2.482). We found the highest value of equitability in study area 2 (E=0.9118) and the lowest in study area 1 (E=0.8458). The results of the values of diversity (H') and equitability (E) are summarized in table 2.

In study area 1, we recorded a higher species diversity, because a mixture of herbs attracting pollinators was planted on the site. In the other study areas (2-4), species biodiversity was lower due to mining. The decrease in biodiversity due to mining was also early confirmed (Turley et al., 2022; Bridge, 2004; Pascal et al., 2008; Edwards et al., 2014; Smith et al., 2004).

Principal Component Analysis (PCA, SD=1.9 on the first ordination axis) revealed the connection of species to study areas. The explained variability of taxonomic data values was 74.31% on the first ordination axis and 96.56% on the second cumulative ordination axis.

On the ordination graph (biplot) 3 clusters were recorded. The first was made up of species linked to study area 1. The second cluster wasrepresented by species preferring the conditions of study areas 2 and 3. The third cluster wasmade up of species linked to study area 4. From the analysis, we saw that the most suitable conditions were the species in study area 1, which wereinfluenced also by planting grass mixtures that attract butterflies and bees (fig. 2).

Mining companies are motivated to mitigate the loss of biodiversity caused by their activities, and various corporate sustainability strategies are increasingly being created to achieve the goals of sustainable development and biodiversity protection (Rainey et al., 2015). In our case, the Wienerberger

s.r.o. company took the same approach and ensured the planting of grass mixtures that attract pollinators on the studied meadow areas. Industrial mining operators can improve the sustainability of their operations by implementing certain strategies (Swingland, 2013; Murguia et al., 2016). Sustainable mining requires companies to better understand and appreciate the value of biodiversity to their long-term operations as well as to local communities. Therefore, companies must not only reduce negative impacts on biodiversity, but must also contribute positively to the restoration of nature (Wickham et al., 2013; Littleboy et al., 2019). In our study, we also confirmed a higher number of species in study areas 1 and 4, where insect houses were installed for better conditions for insect reproduction.

Conclusions

Our results brought knowledge about biomonitoring of pollinators in the industrial area of Wienerberger s.r.o. During 2023, we recorded a total of 267 individuals belonging to 44 species and 12 families with the eudominant species Apis mellifera. We recorded the highest value of diversity in study area 1 (H-2.931) and equitability in study area 2 (E-0.9118). PCArevealed that most species preferred study area 1, which was influenced by meadow management and partial planting of grass mixtures that attract butterflies and bees. In order to comply with the European Union's strategy for the restoration of biodiversity, it is necessary to carry out biomonitoring of industrial sites and subsequent management for the restoration of habitats after mining by attracting insects with an emphasis on pollinators.

Acknowledgements

This research was supported by the grant KEGA No. 002UKF-4/2022 Metaanalyzes in biology and ecology (databases and statistical data analysis).

References

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Baillie J., Hilton-Taylor C., Stuart S.N. IUCN red list of threatened species: a global species assessment. Gland: IUCN, 2004. 191 p.

2. Bao N.P., Mitra K.B., Kuma P. GEO-6 for industry in Asia-Pacific. UNEP, 2019. 88 p. doi: 10.13140/RG.2.2.25215.97447.

3. Bridge G. Contested terrain: mining and the environment // Annual review of environment and resources. 2004. Vol. 29. P. 205-259. doi:10.1146/annurev.energy.28.011503.163434.

4. Diaz S., Settele J., Brondizio E., Ngo H.T., Gueze M., Agard J., Arneth A., Balvarena P., Brauman K., Butchart S., Chan K., Garibaldi L., Ichii K., Liu J., Subramanian S., Midgley G., Miloslavich P., Molnar Z., Obura D., Zayas C. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn: IPBES secretariat, 2019. 60 p. doi: 10.5281/zenodo.3553579.

2!

MM Hfl IPH1 HI

ЭКОЛОГИЯ ПРИРОДНЫХ СИСТЕМ

species study area ф

Fig. 2. PCA analysis of the attachment of insects to the study areas

5. Edwards D.P., Sloan S., Weng L.F., Dirks P., Sayer J., Laurance W.F. Mining and the African environment // Conservation letters. 2014. Vol. 7. P. 302-311. doi:10.1111/ conl.12076.

6. Hammer 0. Past Paleontological Statistics Version 3.05. Reference manual [CD]. University of Oslo: Natural History Museum, 2015.

7. Hermoso V., Carvalho S.B., Giakoumi S., Goldsborough D., Katsanevakis S., Leontiou S., Markantonatou V., Rumes B., Vogiatzakis I.N., Yates K.L. The EU biodiversity strategy for2030: Opportunities and challenges on the path towards biodiversity recovery // Environmental science & policy. 2022. Vol. 127. P. 263-271. https://doi.org/10.1016/j.envsci.2021.10.028.

8. Chovancova J., Adamisin P. Environmentalne aspekty procesov a technologii. Presovska univerzita v Presove, 2016. 133 p.

9. Lambin F.E., Gibbs K.H., Heilmayr R., Carlson M.K., Fleck

C.L., Garrett D.R., Waroux Y.P., Mcdermott L.C., McLaughlin

D., Newton P., Nolte Ch., Pacheco P., Rausch L.L., Streck C., Thorlakson T., Walker N.F. The role of supply-chain initiatives in reducing deforestation // Nature Climat Change. 2018. Vol. 8. P. 109-116. https://doi.org/10.1038/s41558-017-0061-1.

10. Littleboy A., Keenan J., Ordens C.M., Shaw A., Tang R.H., Verrier B., Vivoda V., Yahyaei M., Hodge R.A. A sustainable future for mining by 2030? Insights from an expert focus group // The extractive industries and society. 2019. Vol. 6, iss. 4. P. 1086-1090. https://doi.org/10.1016/j.exis.2019.11.005.

11. Macek J., Lastuvka Z., Benes J., Traxler L. Motyli a housenky stredni Evropy - Denni motyli. Praha: Academia, 2015. 540 p.

12. Macek J., Straka J., Bogusch P., Dvorak L., Bezdecka P., Tyrner P. Blanokridli Ceske republiky I. Praha: Academia, 2017. 524 p.

13. Marco-Fondevila M., Alvarez-Etxeberria I. Trends in private sector engagement with biodiversity: EU listed companies' disclosure and indicators // Ecological economics. 2023. Vol. 210. 107864. https://doi.org/10.1016/j.ecolecon.2023.107864.

14. Moldalieva J. Localizing transparency and accountability in extractives // The extractive industries and society. 2021. Vol.

8, iss. 4. 100991. https://doi.Org/10.1016/j.exis.2021.100991.

15. Murguia D., Bringezu S., Schaldach R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation // Journal of environmental management. 2016. Vol. 180. P. 409^120. doi:10.1016/j.jenvman.2016.05.040.

16. Paleari S. The EU policy on climate change, biodiversity and circular economy: Moving towards a Nexus approach // Environmental science & policy. 2024. Vol. 151. 103603. https:// doi .org/10.1016/j .envsci .2023.103603.

17. Pascal M., De Forges B.R., Le Guyader H., Simberloff D. Mining and other threats to the New Caledonia biodiversity hotspot // Conservation biology. 2008. Vol. 22. P. 498^199. doi: 10.1111/j. 1523-1739.2008.00889.x.

18. Rainey H.J., Pollard E.H.B., Dutson G., Ekstrom J.M.M., Livingstone R., Temple H.J., Pilgrim J.D. A review of corporate goals of No Net Loss and Net Positive Impact on biodiversity // Oryx. 2015. Vol. 49, iss. 2. P. 232-238. doi:10.1017/ S0030605313001476.

19. Smith R.J., Muir R.D.J., Walpole M.J., Balmford A., Leader-Williams N. Governance and the loss of biodiversity // Nature. 2003. Vol. 426. P. 67-70. doi:10.1038/nature02025.

20. Sonter L., Saleem A., Watson J.E.M. Mining and biodiversity: key issues and research needs in conservation science // Proceedings of the Royal Society B. Biological Sciences. 2018. Vol. 285, iss. 1892. P. 1-9. https://doi. org/10.1098/rspb.2018.1926.

21. Swingland I. Biodiversity, Definition of. 2013. P. 377391. doi: 10.1016/B978-0-12-384719-5.00009-5.

22. Ter Braak C.J.F., Smilauer P.Canoco reference manual and user's guide: software for ordination, version 5.0, Microcomputer Power. 2012. 496 p.

23. Tregidga H. Biodiversity offsetting: problematisation of an emerging governance regime // Accounting auditing & accountability journal. 2013. Vol. 26, iss. 5. P. 806-832. doi: 10.1108/AAAJ-02-2013-1234.

24. Turley N., Joshi N., Biddinger D., L'opez-Uribe M. Six years of wild bee monitoring shows dramatic seasonal shifts in biodiversity and species declines. 2022. Vol. 12, iss. 8. P. 1-20. https://doi.org/10.1002/ece3.9190.

25. Wickham, J., Wood P., Nicholson M., Jenkins W., Druckenbrod D., Suter, G., Strager M., Mazzarella Ch., Galloway W., Amos, J.The Overlooked terrestrial impacts of mountaintop mining // BioScience. 2013. Vol. 63. P. 335-348. doi: 10.1525/ bio.2013.63.5.7.

Ланграф В., Заткова М., Фабик М., Петровико-ва К. Оценка сообществ опылителей в районах промышленного воздействия.

За последние десятилетия Европейский Союз разработал несколько стратегий, направленных на содействие эффективному использованию ресурсов, циркулярной экономике и решению проблемы утраты биоразнообразия и изменения климата. В течение 2023 г. в импактной зоне предприятий компании Wienerberger s.r.o. проведен биомониторинг насекомых с акцентом на опылителей. Исследования проведены на 4-х участках, представляющих луговой биотоп. Для ловли насекомых использовали следующие методы: желтые липкие ловушки, ловушки для насекомых и энтомологические сети. Всего зарегистрировано

1/2023

21

267 особей, принадлежащих к 44 видам и 12 семействам. Был один эвдоминантный вид - Apis mellifera. Наибольшее высокое значение разнообразия на участке 1 (H-2.931) и коэффициента выровненности на участке 2 (E=0.9118). Методом главных компонен (PCA) выявлена привязку видов к луговому биотопу с подсевом травосмесей, привлекающих бабочек и пчел.

Ключевые слова: насекомые; опылители; биоиндикаторы; Словакия.

Раскрытие информации о конфликте интересов: Автор заявляет об отсутствии конфликта интересов / Disclosure of conflict of interest information: The author claims no conflict of interest

Информация о статье / Information about the article

Поступила в редакцию / Entered the editorial office: 29.01.2024

Одобрено рецензентами / Approved by reviewers: 06.02.2024

Принята к публикации / Accepted for publication: 13.02.2024

Information about the authors

Langraf V., Ph.D. in Zoology, Biostatistics, Bioinformatics, Researcher, Constantine the Philosopher University in Nitra, 1, Tr. A. Hlinku, Nitra, 94901, Slovakia, E-mail: langrafvladimir@gmail.com.

Zafková M., Ph.D. in Biology, Assistant and Biodiversity Coordinator, Wienerberger Company, Tehelná 1203/6, Zlaté Moravce, 95301, Slovakia, E-mail: Magdalena.Zatkova@wienerberger.com.

Fábik M., Ph.D. in Ecology, Biodiversity Coordinator, Wienerberger Company, Tehelná 1203/6, Zlaté Moravce, 95301, Slovakia, E-mail: Martin.Fabik@wienerberger.com.

Petrovicová K., Ph.D. in Zoology, Researcher, University of Agriculture in Nitra, 2, Tr. A. Hlinku, Nitra, 94976, Slovakia, E-mail: kornelia.petrovicova@gmail.com.

Информация об авторах

Ланграф Владимир, доктор зоологии, биостатистики и биоинформатики, научный сотрудник, Университет им. Константина Философа в Нитре, 94901, Словакия, г. Нитра, ул. А. Глинки, 1, E-mail: langrafvladimir@gmail.com.

Заткова Магдалена, доктор биологии, ассистент и координатор по биологическому разнообразию, компания «Wienerberger», Техельна, 1203/6, Злате-Моравце, 95301, Словакия, E-mail: Magdalena.Zatkova@wienerberger.com.

Фабик Мартин, доктор экологии, координатор по биологическому разнообразию, компания «Wienerberger», Техельна, 1203/6, Злате-Моравце, 95301, Словакия, E-mail: Martin.Fabik@wienerberger.com.

Петровикова Корнелия, доктор зоологии, научный сотрудник, Сельскохозяйственный университет в Нитре, 94976, Словакия, г. Нитра, ул. А. Глинки, 2, E-mail: kornelia.petrovicova@gmail.com.

22

российский журннл прним экологии

i Надоели баннеры? Вы всегда можете отключить рекламу.