Научная статья на тему 'ESTIMATION OF LEVEL OF SOIL POLLUTION IN IVANOVO CITY BY POLYCYCLIC AROMATIC HYDROCARBONS'

ESTIMATION OF LEVEL OF SOIL POLLUTION IN IVANOVO CITY BY POLYCYCLIC AROMATIC HYDROCARBONS Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
30
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
POLYCYCLIC AROMATIC HYDROCARBONS / BENZO(A)PYRENE / URBAN SOIL / CARCINOGEN / ENVIRONMENTAL RISK / MONITORING

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Izvekova Tatiana V., Kobeleva Natalia A., Sulaeva Olga Yu., Gushchin Andreiy A., Grinevich Vladimir I.

The paper presents the results of a study of the level of soil pollution in the city of Ivanovo with polycyclic aromatic hydrocarbons (PAHs). In soil samples, 13 of the 16 PAHs recommended for control by the US EPA were identified. Acetonaphthylene, acetonaphthene and indeno(1,2,3-cd)pyrene were absent from the priority list in the soil cover of the city. The total concentration of PAHs in the soil cover varies from 869 to 23343 μg/kg, with a median value of 6805 μg/kg. Analysis of the distribution of PAH concentrations relative to their molecular weight showed that the main contribution to the total content is made by PAHs with a low molecular weight, the contribution of which is about 80%. It was found that the sources of fluorene, chrysene, benzo(a)anthracene, benzo(a)pyrene, and dibenz(a,h)anthracene can be both local and transboundary. It is shown that the average total content of PAHs in the soils of the city is 50 times higher than the background level. Therefore, the main channel of their input is still local emission sources. It was revealed that the contribution of carcinogenic PAHs to their total content does not exceed 12%, with ~ 85% accounted for by benzo(b)fluoranthene, and the proportion of benzo(a)pyrene does not exceed 12.5%. An assessment of the values of individual carcinogenic and non-carcinogenic risks for the city population was carried out, which showed that the found values correspond to a negligible individual risk. The level of risks of carcinogenic effects in the population, which manifests itself when the soil cover is contaminated with PAHs, is commensurate with the magnitude of health risks from soil contamination with heavy metals, and for non-carcinogenic effects it is an order of magnitude lower.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ESTIMATION OF LEVEL OF SOIL POLLUTION IN IVANOVO CITY BY POLYCYCLIC AROMATIC HYDROCARBONS»

Т 64 (12)

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»

2021

V 64 (12) ChemChemTech 2021

DOI: 10.6060/ivkkt.20216412.6467 УДК: 502.55

ОЦЕНКА УРОВНЯ ЗАГРЯЗНЕНИЯ ПОЧВ Г. ИВАНОВО ПОЛИЦИКЛИЧЕСКИМИ АРОМАТИЧЕСКИМИ УГЛЕВОДОРОДАМИ

Т.В. Извекова, Н.А. Кобелева, О.Ю. Сулаева, А.А. Гущин, В.И. Гриневич, В.В. Рыбкин, А.С. Платова

Татьяна Валерьевна Извекова, Наталья Александровна Кобелева, Ольга Юрьевна Сулаева, Андрей Андреевич Гущин*, Владимир Иванович Гриневич, Алена Сергеевна Платова

Кафедра промышленной экологии, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000 E-mail: a_guschin@bk.ru*

Владимир Владимирович Рыбкин

Кафедра технологии приборов и материалов электронной техники, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000

В работе приводятся результаты исследования уровня загрязнения почвенного покрова г. Иванова полициклическими ароматическими углеводородами (ПАУ). В пробах почв было идентифицировано 13 из 16 ПАУ, рекомендованных к контролю Агентством по охране окружающей среды США. Из приоритетного перечня в почвенном покрове города отсутствовали ацетонафтилен, ацетонафтен и индено(1,2,3-ефпирен. Суммарная концентрация ПАУ в почвенном покрове изменяется в диапазоне от 869 до 23343 мкг/кг, при медианном значении 6805 мкг/кг. Анализ распределения концентраций ПАУ относительно их молекулярной массы показал, что основной вклад в суммарное содержание вносят ПАУ с низкой молекулярной массой, вклад которых составляет ~ 80 %. Установлено, что источниками поступления флуорена, хризена, бенз(а)антрацена, бенз(а)пирена и дибенз(а,Н)антрацен, могут быть как локальные, так и трансграничные. Показано, что среднее суммарное содержания ПАУ в почвах города в 50 раз выше фонового уровня, поэтому основным каналом их поступления являются все же локальные источники выброса. Выявлено, что вклад канцерогенных ПАУ в их суммарное содержание не превышает 12 %, причем ~ 85 % приходится на бенз(Ь)флуорантен, а доля бенз(а)пирена не превышает 12,5 %о. Проведена оценка величин индивидуального канцерогенного и неканцерогенного рисков для населения города, которая показала, что найденные величины соответствуют пренебрежимо малому индивидуальному риску. Уровень рисков канцерогенных эффектов у населения, проявляющийся при загрязнении почвенного покрова ПАУ, соизмерим с величиной рисков здоровью от загрязнения почвы тяжелыми металлами, а для неканцерогенных эффектов - на порядок ниже.

Ключевые слова: ПАУ, бенз(а)пирен, городские почвы, канцероген, экологический риск, мониторинг Для цитирования:

Извекова Т.В., Кобелева Н.А., Сулаева О.Ю., Гущин А.А., Гриневич В.И., Рыбкин В.В., Платова А.С. Оценка уровня загрязнения почв г. Иваново полициклическими ароматическими углеводородами. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 12. С. 105-110 For citation:

Izvekova T.V., Kobeleva N.A., Sulaeva O.Yu., Gushchin A.A., Grinevich V.I., Rybkin V.V., Platova A.S. Estimation of level of soil pollution in Ivanovo city by polycyclic aromatic hydrocarbons. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 12. P. 105-110

ESTIMATION OF LEVEL OF SOIL POLLUTION IN IVANOVO CITY BY POLYCYCLIC AROMATIC HYDROCARBONS

T.V. Izvekova, N.A. Kobeleva, O.Yu. Sulaeva, A.A. Gushchin, V.I. Grinevich, V.V. Rybkin, A.S. Platova

Tatiana V. Izvekova, Natalia A. Kobeleva, Olga Yu. Sulaeva, Andreiy A. Gushchin*, Vladimir I. Grinevich, Alyona S. Platova

Department of Industrial Ecology, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia E-mail: a_guschin@bk.ru*

Vladimir V. Rybkin

Department of Microelectronic Devices and Materials, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia

The paper presents the results of a study of the level of soil pollution in the city of Ivanovo with polycyclic aromatic hydrocarbons (PAHs). In soil samples, 13 of the 16 PAHs recommended for control by the US EPA were identified. Acetonaphthylene, acetonaphthene and indeno(1,2,3-cd)py-rene were absent from the priority list in the soil cover of the city. The total concentration of PAHs in the soil cover varies from 869 to 23343 pg/kg, with a median value of 6805 pg/kg. Analysis of the distribution of PAH concentrations relative to their molecular weight showed that the main contribution to the total content is made by PAHs with a low molecular weight, the contribution of which is about 80%. It was found that the sources of fluorene, chrysene, benzo(a)anthracene, benzo(a)pyrene, and dibenz(a,h)anthracene can be both local and transboundary. It is shown that the average total content of PAHs in the soils of the city is 50 times higher than the background level. Therefore, the main channel of their input is still local emission sources. It was revealed that the contribution of carcinogenic PAHs to their total content does not exceed 12%, with ~ 85% accounted for by benzo(b)fluoranthene, and the proportion of benzo(a)pyrene does not exceed 12.5%. An assessment of the values of individual carcinogenic and non-carcinogenic risks for the city population was carried out, which showed that the found values correspond to a negligible individual risk. The level of risks of carcinogenic effects in the population, which manifests itself when the soil cover is contaminated with PAHs, is commensurate with the magnitude of health risks from soil contamination with heavy metals, and for non-carcinogenic effects it is an order of magnitude lower.

Key words: polycyclic aromatic hydrocarbons, benzo(a)pyrene, urban soil, carcinogen, environmental risk, monitoring

INTRODUCTION and high toxicity, they are classified as persistent or-

ganic pollutants [1]. Thus, the US Environmental ProTo identify the level of the load of economic tection Agency (US EPA) has isolated 16 PAHs, which activity on the environment and to develop measures are the most common in the environment and are highly to reduce it, it is necessary to organize and conduct en- toxic, including benzo[a]anthracene, benzo[a]pyrene, vironmental monitoring. One of the aspects of ecolog- benzo[k]fluoranthene, benzo(b)fluoranthene, chrys-ical assessment of the state of the environment is the ene, dibenzo(a)anthracene, and indo(1,2,3-c,d)pyrene study of the chemical composition of soils and analysis have been classified as carcinogens [3]. PAHs are of its changes under the influence of anthropogenic formed as a result of natural (forest fires, volcanic ac-load. Priority environmental pollutants include polycy- tivity) and anthropogenic (fuel combustion, asphalt clic aromatic hydrocarbons (PAHs), which are a large production, vehicle exhaust gases) processes [1, 4] and group of organic compounds containing in its structure enter the atmosphere, from where, due to the processes there are two or more benzene rings [1]. Most PAHs of "dry" and "wet" washout, they enter the into the soil, have carcinogenic and mutagenic properties and can where they are firmly bound by the humic substance concentrate when moving along trophic chains [2]. [5, 6]. Therefore, for PAHs, soils are the main deposit-Due to the resistance of PAHs to degradation in natural ing medium, absorbing up to 90% of the total PAH environments, as well as their ability to bioaccumulate content in environmental objects [7]. The soil cover is

a link between the biotic and abiotic components of terrestrial ecosystems [8], which makes biological processes the main channel for the removal of PAHs from soils.

The soil, especially in the urban environment, is heterogeneous and can be characterized by a significant difference in the concentration of pollutants even when sampling in small areas, which leads to difficulties in assessing the actual level of pollution [9]. To solve this problem, it is necessary to increase the number of sampling points, or to use geostatistical analysis [10]. Geostatistical analysis makes it possible to obtain maps of spatial distribution based on a scattered set of concentrations of pollutants and to estimate the general level of pollution of territories [9-11].

Earlier, in [12, 13], it was shown that the level of atmospheric pollution with PAHs in a number of districts of Ivanovo poses a potential hazard to public health. In this study, the level of PAH contamination of the soil cover in Ivanovo was assessed and the main channels for the intake of these compounds were identified. Also, the assessment of the magnitude of the risk to the health of the population, which manifests itself in soil contamination with PAHs [2].

EXPERIMENTAL PART

To assess the level of PAH content in the soil cover, the territory of Ivanovo was divided into 10 squares

with different anthropogenic load, in which sampling was carried out. The level of background pollution was assessed by sampling in a place not subject to local anthropogenic impact (at a sufficient distance from industrial enterprises, as well as at a distance of at least 500 m from highways).

Sampling was carried out in accordance with the requirements of [14] from the surface layer of the soil by the "envelope" method to a depth of 0.30 m. The determination of the PAH content in the samples was carried out by high performance liquid chromatog-raphy (HPLC) using a FLUORAT-02 liquid analyzer as a detector [15]. The identification and concentration of monitored compounds in extracts was carried out by comparing them with a known amount of PAHs prepared in an aqueous solution from a standard sample containing 16 PAHs included in the EPA list. The relative error was ± 20% with a confidence level of 0.95 in the entire range of measured concentrations [15].

RESULTS AND DISCUSSION

In soil samples from the city territory, out of 16 priority PAHs, 13 compounds were identified, including 6 carcinogenic (Table 1). It should be noted that not all priority PAHs were found in the analyzed samples, and their concentrations have a wide scatter of values depending on the sampling sites (Table 1).

Table 1

Concentration of PAHs in the soil of the city of Ivanovo (^g/kg) Таблица 1. Концентрация ПАУ в почве города Иваново (мкг/кг)

The multiplicity of

РАН Mean Median Range of Background exceeding the background

value value values level relative to the mean relative to the median value

Naphthalene 218.16 140.7 16.6-768.6 20.1 10.9 7.0

Fluoren 37.6 18.3 4.9-176 <6 6.3 3.1

Phenanthrene 3019.19 1993 465.5-12660 < 6 503.2 332.2

Anthracene 3798.85 3622 416.6-11900 132.4 28.7 27.4

Fluorantin 106.33 49.5 3.9-384 < 3 35.4 16.5

Pyrene 407.03 359.15 81.4-877.6 < 20 20.4 18.0

Chrysen* 3.17 1.1 0.03-37.4 1.6 2.0 0.7

Benz(a)anthracene 6.71 6.9 0.8-17 < 1 6.7 6.9

Benz(k)fluoranthene 7.85 2.4 0.3-82 < 1 7.9 2.4

Benz(b)fluoranthene 847.13 615.1 83.1-2787 < 6 141.2 102.5

Benz(a)pyrene 124.09 64 6.5-831.7 18.4 6.7 3.5

Dibenz(a, h) anthracene 7.05 4.1 1.1-30.2 2.1 3.4 2.0

Benz(ghi)perylene 15.61 12.8 0.6-67.05 < 0.6 26.0 21.3

EPAH 8598.77 6805,15 869.1-23342.5 174.6 49.2 38.9

Note: * PAHs with carcinogenic properties are italicized

Примечание: * курсивом выделены ПАУ, обладающие канцерогенными свойствами

According to the research results, the minimum median values of concentrations in soil samples are typical for chrysene (1.1 ^g/kg), benzo(k)fluoran-thene (2.4 ^g/kg) and dibenz(a,h)anthracene (4.1 ^g/kg), and the maximum - for anthracene (3622 ^g/kg), phe-nanthrene (1993 ^g/kg). It should be noted that the main contribution to soil pollution in the territory of Ivanovo is made by PAHs with a low molecular weight (containing less than 4 aromatic rings in the structure [16, 17]), the content of which is - 80% of the total PAH content. From the data of Table 1 it follows that the sources of the following compounds: fluorene, chrysene, benzo(a)anthracene, benzo(a)pyrene, dibenz(a,h)an-thracene, can be both local and transboundary. This conclusion is based on the multiplicity of the excess of the average concentrations of these compounds in the soil with the background level. Since the average level of the total content of PAHs in the soil is 50 times higher than the background level (Table 1), the main channel for their entry is local emission sources.

In Russia, only benzo(a)pyrene (BP) is subject to mandatory monitoring of PAHs in soil, the value of the maximum permissible concentration (MPC) in soil for which is taken at the level of 20 ^g/kg [18]. The median value of BP concentration in soil in the city is 64 ^g/kg, which is 3 times higher than the MPC value (excess of MPC is observed in 75% of soil samples).

The share of carcinogenic PAHs in the soils of the city is about 12% of their total content. Benzo(b)fluoranthene accounts for the maximum proportion of carcinogens and is ~ 85%. BP's share does not exceed 12.5%. The rest of PAHs account for 2.5%.

The results of monitoring the content of PAHs in the soil of Ivanovo (Table 1) make it possible to assess the risk of adverse effects on human health. When the soil is contaminated with chemical compounds, the impact on the human body can occur by inhalation, oral administration, and cutaneous [19]. Since the PAH group includes compounds with both general toxic and carcinogenic properties, it is possible to assess the level of individual lifelong carcinogenic risk and the level of risk from non-carcinogenic effects in chronic exposure. A more detailed procedure for assessing the risk of adverse effects on human health from soil contamination is given in [8]. The results of assessing the risk levels of adverse effects in the population from chemical soil contamination are given in Table 2.

According to [19], the risk acceptance criteria are used to characterize the risk to public health caused by exposure to chemicals that pollute the environment. If the individual risk throughout life is equal to or less than 1 • 10-6, then these levels of risk are negligible (no

different from the usual, everyday risks). If the individual risk lies in the range of 110-4 - 1-10-6, then this corresponds to the maximum permissible risk (the upper limit of the acceptable risk). It should be noted that the magnitudes of the risks of carcinogenic effects in the population, manifested when the soil cover is contaminated with PAHs, are at the same level as the magnitudes of health risks from soil contamination with heavy metals, and for non-carcinogenic effects they are an order of magnitude lower.

Because the value of the level of individual risk of both carcinogenic and non-carcinogenic effects in the population, manifested when the soil cover of Ivanovo is contaminated with PAH, does not exceed the maximum permissible values. Consequently, there is no need to develop environmental protection measures aimed at reducing their content in the soil cover. However, the cumulative assessment of the level of the ecological state of the soil cover shows that it is necessary to control the content of both PAHs and heavy metals in specific territories of the Russian Federation, because the level of their content varies widely [20, 21].

Table 2

The results of assessing the risk of adverse health effects

in Ivanovo in case of soil contamination Таблица 2. Результаты оценки риска неблагоприятных последствий для здоровья населения г. Ива-

Population group Carcinogenic risk level (CR) Risk level of non-carcinogenic effects under chronic exposure (HQ) Level of acceptable risk (R) [19]

Polycyclic aromatic hydrocarbons

Children 1.55T0"7 7.13-10-7 less than 1-10-6

Adults 6.62-10-8 3.01-10"7

Heavy metals [8]

Children 1.23T0"7 8.36-10-6 less than 1-10-6

Adults 2.60-10-7 5.01-10-5

CONCLUSIONS

In the study of the soil cover in Ivanovo, 13 out of 16 PAHs recommended for control were identified. It was revealed that the total content of PAHs exceeds the background level by 50 times, which indicates local sources of their input. It was found that anthracene (3622 ^g/kg) and phenanthrene (1993 ^g/kg) are the priority compounds that make the main contribution to soil pollution. The values of individual carcinogenic and non-carcinogenic risks to the health of the population were estimated, which amounted to 1.55 10-7 and 7.13 10-7, which does not exceed the maximum permissible levels.

This study was supported by the State Assignment of the Ministry of Education and Science of the RF № FZZW-2020-0009.

The study was carried out using the resources of the Center for Shared Use of Scientific Equipment of the ISUCT (with the support of the Ministry of Science and Higher Education of Russia, grant No. 075-15-2021-671).

The authors declare the absence a conflict of interest warranting disclosure in this article.

ЛИТЕРАТУРА

1. Ravindra K., Sokhi R., Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 2008. V. 42. N 13. P. 2895-2921. DOI: 10.1016/j.atmosenv.2007.12.010.

2. Samanta S.K., Singh O.V., Jain R.K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremedia-tion. TrendsBiotechnol. 2002. V. 20. N 6. P. 243-248. DOI: 10.1016/S0167-7799(02)01943-1.

3. Morillo E., Romero A., Maqueda C., Madrid L., Ajmone-Marsan F., Grcman H., Davidson C., Hursthouse A., Villaverde J. Soil pollution by PAHs in urban soils: a comparison of three European cities. J. Environ. Monit. 2007. V. 9. N 9. P. 1001-1008. DOI: 10.1039/b705955h.

4. Zhang X., Tao S., Liu W., Yang Y., Zuo Q., Liu S. Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ. Sci. Technol. 2005. V. 39. N 23. P. 9109-9114. DOI: 10.1021/es0513741.

5. Baker J.E., Eisenreich S.J. Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated bi-phenyls across the air-water interface of Lake Superior. Environ. Sci. Technol. 1990. V. 24. N 3. P. 342-352. DOI: 10.1021/es00073a009.

6. Hussain B.A., Westgate J.N., Hayward S.J., Shunthirasing-ham C., Brown T.N., Hung H., Lei Y.D., Wania F. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils and atmosphere of Western Canadian mountains: The role of source proximity, precipitation, forest cover and mountain cold-trapping. Atmos. Environ. 2018. V. 1. P. 100004. DOI: 10.1016/j.aeaoa.2018.100004.

7. Wild S.R., Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ. Pollut. 1995. V. 88. N 1. P. 91-108. DOI: 10.1016/0269-7491(95)91052-M.

8. Гущин А.А., Извекова Т.В., Уюткин В.А., Машкин Д.В. Оценка экологического риска при загрязнении почвенного покрова предприятиями нефтепродуктообеспе-чения (на примере г. Иваново). Безопасн. техносф. 2014. T. 3. № 1 (46). C. 32-38. DOI: 10.12737/2776.

9. Cachada A., Dias A.C., Reis A.P., Ferreira da Silva E., Pereira R., Duarte A.d.C., Patinha C. Multivariate Analysis for Assessing Sources, and Potential Risks of Polycyclic Aromatic Hydrocarbons in Lisbon Urban Soils. Minerals. 2019. V. 9. N 3. P. 139. DOI: 10.3390/min9030139.

10. Goovaerts P. Geostatistics for natural resources evaluation. Oxford University Press on Demand. 1997.

11. Zhang H., Wang J., Bao H., Li J., Wu F. Polycyclic Aromatic Hydrocarbons in Urban Soils of Zhengzhou City, China: Occurrence, Source and Human Health Evaluation. Bull. Environ. Contam. Toxicol. 2020. V. 105. P. 446-452. DOI: 10.1007/s00128-020-02982-y.

Работа поддержана Государственным заданием Минобрнауки РФ № FZZW-2020-0009.

Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГХТУ (при поддержке Минобрнауки России, соглашение № 075-15-2021-671).

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

REFERENCES

1. Ravindra K., Sokhi R., Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 2008. V. 42. N 13. P. 2895-2921. DOI: 10.1016/j.atmosenv.2007.12.010.

2. Samanta S.K., Singh O.V., Jain R.K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 2002. V. 20. N 6. P. 243-248. DOI: 10.1016/S0167-7799(02)01943-1.

3. Morillo E., Romero A., Maqueda C., Madrid L., Ajmone-Marsan F., Grcman H., Davidson C., Hursthouse A., Villaverde J. Soil pollution by PAHs in urban soils: a comparison of three European cities. J. Environ. Monit. 2007. V. 9. N 9. P. 1001-1008. DOI: 10.1039/b705955h.

4. Zhang X., Tao S., Liu W., Yang Y., Zuo Q., Liu S. Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ. Sci. Technol. 2005. V. 39. N 23. P. 9109-9114. DOI: 10.1021/es0513741.

5. Baker J.E., Eisenreich S.J. Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated bi-phenyls across the air-water interface of Lake Superior. Environ. Sci. Technol. 1990. V. 24. N 3. P. 342-352. DOI: 10.1021/es00073a009.

6. Hussain B.A., Westgate J.N., Hayward S.J., Shunthirasing-ham C., Brown T.N., Hung H., Lei Y.D., Wania F. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils and atmosphere of Western Canadian mountains: The role of source proximity, precipitation, forest cover and mountain cold-trapping. Atmos. Environ. 2018. V. 1. P. 100004. DOI: 10.1016/j .aeaoa.2018.100004.

7. Wild S.R., Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ. Pollut. 1995. V. 88. N 1. P. 91-108. DOI: 10.1016/0269-7491(95)91052-M.

8. Gushchin A.A., Izvekova T.V., Uyutkin V.A., Mashkin D.V. Assessment of ecological risk in soil pollution by oil products supply enterprises (on the example of Ivanovo). Be-zopasn. Technosf. 2014. V. 3. N 1 (46). P. 32-38 (in Russian). DOI: 10.12737/2776.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Cachada A., Dias A.C., Reis A.P., Ferreira da Silva E., Pereira R., Duarte A.d.C., Patinha C. Multivariate Analysis for Assessing Sources, and Potential Risks of Polycyclic Aromatic Hydrocarbons in Lisbon Urban Soils. Minerals. 2019. V. 9. N 3. P. 139. DOI: 10.3390/min9030139.

10. Goovaerts P. Geostatistics for natural resources evaluation. Oxford University Press on Demand. 1997.

11. Zhang H., Wang J., Bao H., Li J., Wu F. Polycyclic Aromatic Hydrocarbons in Urban Soils of Zhengzhou City, China: Occurrence, Source and Human Health Evaluation. Bull. Environ. Contam. Toxicol. 2020. V. 105. P. 446-452. DOI: 10.1007/s00128-020-02982-y.

12. Извекова Т.В., Кобелева Н.А., Гущин А.А., Герасимова М.С., Гриневич В.И. Влияние бенз(а)пирена на качество окружающей среды и здоровье населения (на примере г. Иваново). Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 12. С. 144-152. DOI: 10.6060/ivkkt.20186112.5838.

13. Izvekova T.V., Kobeleva N.A., Gushchin A.A., Grinevich V.I., Rybkin V.V. Distribution of Policyclic aromatic hydrocarbons in a snow cover in the territory of Ivanovo city, Russia. Chemosphere. 2020. V. 242. P. 125150. DOI: 10.1016/j.chemosphere.2019.125150.

14. ГОСТ 17.4.4.02-2017 Охрана природы (ССОП). Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа. М.: Стандартинформ. 2018.

15. ПНД Ф 16.1:2.2:2.3:3.62-09. Количественный химический анализ почв. Методика выполнения измерений массовых долей полициклических ароматических углеводородов в почвах, донных отложениях, осадках сточных вод и отходах производства и потребления методом высокоэффективной жидкостной хроматографии. Утв. Федеральным центром анализа и оценки техногенного воздействия. 18.06.2009. М.: 2009.

16. Tolosa Ь, De Mora S. J., Fowler S. W., Villeneuve J.-P., Bartocci J., Cattini C. Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Mar. Pollut. Bull. 2005. V. 50. N 12. P. 1619-1633. DOI: 10.1016/j.marpolbul.2005.06.029.

17. Alsbou E., Zaitoun M. A., Alasoufi A. M., Al Shra'ah A. Concentration and Source Assessment of Polycyclic Aromatic Hydrocarbons in the Street Soil of Ma'an City, Jordan. Arch. Environ. Contam. Toxicol. 2019. V. 77. N 4. P. 619-630. DOI: 10.1007/s00244-019-00665-2.

18. Предельно допустимые концентрации (ПДК) и ориентировочно-допустимые концентрации (ОДК) химических веществ в почве. Гигиенические нормативы. ГН2.1.7.2041-06, ГН 2.1.7.2042-06. Сборник. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2006.

19. Р 2.1.10.1920-04. Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду. М.: Фед. центр госсанэпиднадзора Минздрава России. 2004. C. 143.

20. Levshina S. Distribution and characteristic of PAHs in snow of the urban and reserve areas of southern Far East Russia. Bull. Environ. Contam. Toxicol. 2019. V. 102. N 2. P. 160-167. DOI: 10.1007/s00128-018-02533-6.

21. Водяницкий Ю. Природные и техногенные соединения тяжелых металлов в почвах. Почвоведение. 2014. N° 4. C. 420-420. DOI: 10.1134/S1064229314040103.

12. Izvekova T.V., Kobeleva N.A., Gushchin A.A., Gerasi-mova M.S., Grinevich V.I. Influence of benzo(a)pyrene on environmental quality and population health (by example of Ivanovo). ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 12. P. 144-152. DOI: 10.6060/ivkkt.20186112.5838.

13. Izvekova T.V., Kobeleva N.A., Gushchin A.A., Grinevich V.I., Rybkin V.V. Distribution of Policyclic aromatic hydrocarbons in a snow cover in the territory of Ivanovo city, Russia. Chemosphere. 2020. V. 242. P. 125150. DOI: 10.1016/j.chemosphere.2019.125150.

14. GOST 17.4.4.02-2017 Nature Conservation (SSOP). Soils. Methods of sampling and preparation of samples for chemical, bacteriological, helminthological analysis. M.: Standartinform. 2018 (in Russian).

15. PND F 16.1: 2.2: 2.3: 3.62-09. Quantitative chemical analysis of soils. Methods for measuring mass fractions of polycy-clic aromatic hydrocarbons in soils, bottom sediments, sewage sludge and production and consumption wastes by high performance liquid chromatography. Approved. Federal Center for Analysis and Assessment of Technogenic Impact, 18.06.2009. Moscow: 2009 (in Russian).

16. Tolosa L, De Mora S. J., Fowler S. W., Villeneuve J.-P., Bartocci J., Cattini C. Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Mar. Pollut. Bull. 2005. V. 50. N 12. P. 1619-1633. DOI: 10.1016/j.marpolbul.2005.06.029.

17. Alsbou E., Zaitoun M. A., Alasoufi A. M., Al Shra'ah A. Concentration and Source Assessment of Polycyclic Aromatic Hydrocarbons in the Street Soil of Ma'an City, Jordan. Arch. Environ. Contam. Toxicol. 2019. V. 77. N 4. P. 619-630. DOI: 10.1007/s00244-019-00665-2.

18. Maximum permissible concentration (MPC) and approximate permissible concentration (APC) of chemical substances in the soil. Hygienic standards. GN 2.1.7.2041-06, GN 2.1.7.2042-06. Collection. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. 2006 (in Russian).

19. R 2.1.10.1920-04. Guidelines for assessing the risk to public health when exposed to chemicals that pollute the environment. M.: Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health of Russia. 2004. P. 143 (in Russian).

20. Levshina S. Distribution and characteristic of PAHs in snow of the urban and reserve areas of southern Far East Russia. Bull. Environ. Contam. Toxicol. 2019. V. 102. N 2. P. 160-167. DOI: 10.1007/s00128-018-02533-6.

21. Vodyanitskiy Yu. Natural and technogenic compounds of heavy metals in soils. Pochvovedenie. 2014. N 4. P. 420-420 (in Russian). DOI: 10.1134/S1064229314040103.

Поступила в редакцию 17.06.2021 Принята к опубликованию 05.08.2021

Received 17.06.2021 Accepted 05.08.2021

i Надоели баннеры? Вы всегда можете отключить рекламу.