Научная статья на тему 'ESTIMATES FOR THE SECOND HANKEL–CLIFFORD TRANSFORM AND TITCHMARSH EQUIVALENCE THEOREM'

ESTIMATES FOR THE SECOND HANKEL–CLIFFORD TRANSFORM AND TITCHMARSH EQUIVALENCE THEOREM Текст научной статьи по специальности «Математика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Проблемы анализа
WOS
Scopus
ВАК
MathSciNet
Область наук
Ключевые слова
second Hankel–Clifford transform / Hankel–Clifford translation / Sobolev–Hankel–Clifford spaces / Titchmarsh equivalence theorem

Аннотация научной статьи по математике, автор научной работы — S. S. Volosivets

We obtain estimates of integrals containing the second Hankel–Clifford transforms of functions from Sobolev-Hankel– Clifford spaces. As a corollary, we obtain a new variant of Titchmarsh equivalence theorem for the second Hankel–Clifford transform.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ESTIMATES FOR THE SECOND HANKEL–CLIFFORD TRANSFORM AND TITCHMARSH EQUIVALENCE THEOREM»

144

Probl. Anal. Issues Anal. Vol. 13(31), No 2, 2024, pp. 144-154

DOI: 10.15393/j3.art.2024.15790

UDC 517.544

S. S. Volosivets

ESTIMATES FOR THE SECOND HANKEL-CLIFFORD TRANSFORM AND TITCHMARSH EQUIVALENCE

THEOREM

Abstract. We obtain estimates of integrals containing the second Hankel-Clifford transforms of functions from Sobolev-Hankel-Clifford spaces. As a corollary, we obtain a new variant of Titch-marsh equivalence theorem for the second Hankel-Clifford transform.

Key words: second Hankel-Clifford transform, Hankel-Clifford translation, Sobolev-Hankel-Clifford spaces, Titchmarsh equivalence theorem

2020 Mathematical Subject Classification: 44A15, 47A10

1. Introduction. Let f: R ^ C be in L1(R). The Fourier transform of f is defined by

f(x) = (2^) —1/2 f f (t)e—itx dt, x e R. Jr

If f e LP(R), 1 < p ^ 2, then Fourier transform f(x) is defined as the b

limit of (2^)—1/2 $ f (x)e—ztx dx in the norm of Lq(R), q = p/(p — 1), as

—a

a,b ^ +8.

From the definition it follows that f e Lq (R). The following Hausdorff-Young inequality

\\f\\q ^ C\\f \\p := C (J\f (t)\p dt)1/P, f e LP(R), 1 < p ^ 2, (1)

R

is valid. For p = q = 2, we have the Plancherel equality instead of (1). More about these results can be found in [14, Ch. III and IV] or [3, Ch. 5].

© Petrozavodsk State University, 2024

In [14, Ch. 4, Theorem 85] the following Titchmarsh equivalence theorem is proved:

Theorem 1. Let 0 < a < 1 and f e L2(R). Then the conditions

(i) ||/(• + h) — f (• - h)\\2 = 0(ha), h > 0, and

(ii) $ \f(x)\2 dx = 0(y-2a), y > 0,

are equivalent.

The norm in L2(R) is translation-invariant and \\f (• + h) — f (• — h)\\2 = = \\f (• + 2h) — f (•)|2, h > 0, so the condition (i) may be substituted by \\f(• + 2h) — f(•)\2 = 0(ha), h > 0. Lorentz [8] proved

Theorem 2. If 1 ^ p ^ 2, 1 ^ a > 1/p—1/2, and a 2n-periodic function f e L1 [0, 2^] with trigonometrical Fourier coefficients an, bn belongs to Lip(a) (i.e., \f (x) — f (y)\ ^ C\x — y\a for all x,y e R), then

8

2 (\ak\ + \hk\P) < Cn-ap-p/2+1, n e N.

k=n

Since the proof of Theorem 2 uses the Parseval equality, the condition f e Lip(a) may be replaced by the condition f e Lip(a, 2) (i.e., f is

2tT

2^-periodic, f e L2[0, 2n], and $ \ f (x + h) — f (x)\2 dx = 0(h2a), h > 0.)

0

The aim of this paper is to obtain analogues and generalizations of Theorems 1 and 2 for the second Hankel-Clifford transform. Note that an analogue of Theorem 1 was obtained for the first Hankel-Clifford transform by El Hamma, Daher, and Mahfoud [4], while estimates of this transform in terms of corresponding differential operator were proved by Lahmadi and El Hamma [7], but there are doubts in the last result. A more elementary estimate for the first Hankel-Clifford transform was obtained by the author [15, Theorem 3]. Some close results and facts about the second Hankel-Clifford transform can be found in [16].

2. Definitions. Let 1 ^ p <8, ^ ^ 0, R+ = [0, + 8), and L^(R+) be the space of all real-valued measurable functions, such that

/8 \i/p \\f \\lp = ( 5 \f (x)\Px^ dxJ < 8. If xe is the indicator of a set E c R+

and fXE e LP(R+), then f e LP(E).

The Bessel-Clifford function of the first kind of order ¡i ^ 0 (see, e.g., [5]) is defined by

+8 (—i)kxk m» + k +1) ■ * s 0'

where by r(a) we have denoted the Euler gamma function. It is known that c^(x) is a solution of the differential equation xy" + (i + 1)y' + y " 0.

If jv (x) is the normalized Bessel function of the first kind and order v > —1/2, given by

8 (—1\n »{X)" r( "+ ^ Wn+ l + 1)(l/2)2"'

n=0 x '

then c^ and are connected by

c^(x) " r—1(i + 1) j„(2?x), x > 0. (2)

Hayek [6] introduced the second Hankel-Clifford transform for feL}l(R+) by

+ 8

hvAf)(y) " $ (yx) f(x)x^ dx. 0

By Lemma 2 below and (2), we have \c^(x)\ ^ r—1 (i + 1) on R+. As a corollary, we obtain

\\h2Af)\\l8 ^ r—1(i + 1)\\f\\L., f e Ljl(R+). (3)

For i ^ 0, the transform h2,^ extends from Ljl(R+) x Lfl(R+) onto

Ll(R+) and

\ \ h2,,(f)\\l2 "\ \f\\Ll, feLl(R+). (4)

This Plancherel-type equality can be found in [6] or in [9]. Using Riesz-Thorin interpolation theorem (see [2, Ch. 1, Theorem 1.1.1]), we obtain a Hausdorff-Young type inequality

\ \ h2,,( f)\\Ll <C\\f\\lI, feLl(R+), (5)

where 1 < p ^ 2 and q " p/(p — 1) as in (1).

Let A(x, y, z) " (p(p — x)(p — y)(p — z))1{2, where p " (x + y + z)/2, be the area of the triangle with sides x, y, z. For ¡i ^ 0, set

A2^ 1(x,y,z)

^(x,y,z) 22»(xyz yr(p + 1 ^

when the triangle with sides x, y, z exists, and D^(x,y,z) = 0 in other cases. Then D^(x,y,z) is non-negative and symmetric in x, y, z. In [12], Prasad, Singh, and Dixit suggested the generalized Hankel-Clifford translation of f e Ljl(R+) as follows:

Tx(f)(y) = J f(z)Dß(x,y,z)zßdz , 0 < x,y <8. 0

Using Lemma 1.3 from [12], we have, for f e Lji(R+):

h2,,(Tx(f))(y) = c,(xy)h2M)(y), y > 0. (6)

By Lemma 2.3 in [16], this result is also valid for f e L^(R+), 1 < p ^ 2, a.e. on R+.

Now we introduce the difference of order m e N with step t > 0 by

(x) = (i - r(ß + rnrf (x) ^(-i)^ 7 )r> +

i-0

m / \

y

where I is the identical operator, and the modulus of smoothness of order m in L^(R+), 1 ^ p < 8, by

(f,6)p^hc = sup \\&™ß>hJ\\Lp.

Due to Lemma 1, for 1 ^ p < 8, ß ^ 0, and ö ^ 0, we have wm(f., ¿>)I,,ß,hc ^ c\\f\\LP.

Let S(0, +8) be the set of all infinitely differentiable functions ip(x) defined on (0, +8), such that

pm.k(1) = sup \xm^pk)(x)\ < 8

0<X<8

for all m,k e Z+. In [9] it is proved that h2,ß is an automorphism of S(0, +8). Also, in [9, Proposition 6] it is established that for differential operator Bß(1) = xip" + (ß + 1)1 and 1 e S(0, + 8) the equality

h^B(ip))(y) = (-y)ih2,ß(ip)(y), y> 0, ze N, (7)

holds (see also (1.14) in [12]). For i ^ 0, 1 ^ p <8, and m e N, we define the Sobolev space W^(R+) consisting of f e LP^(R+), such that f, f, ..., f(2m^1q are absolutely continuous on each segment from (0, +8) and B* (f) e L?(R+), i = 1, 2,...,m.

Also, we can consider the space S,e(R+) as the space of pX[0,+8q, where p are even Schwartz functions. Then ) c 5(0, 8) and S,e(R+) is

dense in all L^(R+), 1 ^ p <8. Using the usual density arguments, we state that (7) is valid for ^ e W^(R+) and i = 1, 2,... ,m.

Denote by $ the set of continuous and increasing on R+ = [0, 8)

functions u, such that u(0) = 0. If u e $ and $ t^1u(t) dt = 0(u(8)),

0

8

Xm f +—m—1,

8^ 0, then u belongs to the Bary class B; if u e $ and 8m § t~m~1u(t) dt =

= 0(u(8)) for some m > 0 and all 8 > 0, then u belongs to the Bary-Stechkin class Bm (see [1]). We say that u e $ satisfies the A2-condition (u e A2), if u(2x) ^ Cu(x), x e R+.

3. Auxiliary propositions. Lemma 1. Let 1 ^p < 8, i ^ 0, f e LP(R+). Then

\\T(p + 1)Ttf\\Lfi \ f\\Ll.

The proof of Lemma 1 belongs to Prasad and Singh [13, Lemma 1.1]. Lemma 2. Let ß ^ 0. Then

(i) \ jß(x)\ ^ 1 for x ^ 0 and jß(x) < 1 for x > 0;

(ii) 1 - jß(x) ^ C > 0 forx ^ 1;

(iii) the double inequality C\x2 ^ 1 — jß(x) ^ C2x2 is valid for some C2 > C1 > 0 and all x e [0,1].

Proof. For (i) and (ii), see papers by Platonov [11] and [10, Lemma 3.3]. The assertion of (iii) see, e.g., in [17]. □

From (6), (7), (2), and using induction, we deduce

Lemma 3. Let 1 ^ p ^ 2, ß ^ 0, f e LP(R+), m e N, t^ 0. Then

f)(y) = (1 — J,(2?yt)mh2A f)(y) for a.e. ye R+.

For k e N and f e Wkß(R+), we have:

h^A^Bj(f))(v) = (1 — J»(2Vyt)m(—y)kh2Af)(y) for a.e. y e R+.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Lemma 4 can be found in [16].

Lemma 4. Let ß ^ 0, m > 0, u p Bm, and Git) be a non-negative

measurable function on R+, such that

>

G(t)rdt = 0(u(l/y)), y > 0.

Then tmG(t) is integrable on each segment \a, b] c R+ and i

tmG(t)r dt = 0(ymu(l/y)), y > 0.

Lemma 5 is proved in [1].

Lemma 5. Let u e $ and m e N. Then the conditions (i) u e Bm; and (ii) there exists a e (0,m), such that for all 0 < u ^ v <8 the inequality u(v)/vm~a ^ Cu(u)/um~a holds; are equivalent. In particular, if u e Bm, then u satisfies the A2-condition.

4. Main results. Theorem 3 is an analogue and an extension of Theorem 2.

Theorem 3. Let p > 0, 1 < p ^ 2, \/p + 1/q = 1, m e N, k e Z+, f e L?(R+) fork = 0 or f e W^(R+) for k e N. If 0 <r ^q and a e R, then for all N > 0 we have:

ya\h2,,( f)(y)\ry»dy^C J r-^+^u^ B (f), t-1)p^dt.

N N/2

Proof. By Lemma 3 and Hausdorff-Young inequality (5), we have

\h2,ß(f)(y)\qykq(1 - jß{2Vyt))mqyßdy ^

^ c-iW^B(f)\\* ^ (Bkß(f),tu,hc.

ly , Pi+1 ó ^ ^ +. — 0-iAT-1

Lemma 2 (ii), we find that

Let N > 0 and A = [2lN, 2l+1N), i e Z+, U = 2~lNThen, by

\h2,ß( f)(y)Wdy ^ C2(2iN)-kq<4> B (f), UU,hc

Di

+

By the Holder inequality, for 0 < r < q we obtain:

ya\h2A f)(y)\r ykd y^

Di

(J yaq/{q-r)+k dy) x~r,q (J \ h2,,( f)(y)\q yk dy) r'q ^

Di Di

^ C3(2iNy+^+m-rM^N)-krumB(f), 2-N-1)p^hc ^

2lN

j urm (f, t-1)Pi,hhcta-kr-Pk+1)r/q+kdt. (8)

2i-1N

For = , we see that

ya\h2Af)(y)\qykdy ^ C5(2Nr-k«um(Bk(f), 2-iN-1)p^hc ^

Di

2lN

B k

ul (Bk (f), t-1)p,,Mta-kq-1 dt. (9)

2i-1N

Summing up (9) or (8) over i = 0,1,..., we obtain

ya\h2,k (f)(y)\rykdy^C7 ta-kr-Pk+1)r/iul (Bk (f), t-1)PkhJk dt.

l k

N N/2

Corollary 1. Let 1 < p ^ 2, q = p/(p — 1), u e A2, m,k e N, f e WpkAR+) and ui(Bk(f),5)p^hc = 0(u(5)), 5 ^ 0. Then

8

\h2,k(f)(y)\qykdy^Cu(N-1, N > 0. (10)

N

Proof. By Theorem 3, we have for a = 0 and r = q:

\h2,k( f)(y)\qykdy^C1u1 (Bk (f),2/N )p,k,hc t-k-1dt^

i\ kv

N N/2

tC^N-l, N > 0,

^ 2 Nki

due to the condition u e A2. □

Remark. It is interesting to compare Corollary 1 with Theorem 2.1 in [7], where a similar to (10) estimate with instead of h2, ^ is obtained. It seems that a factor N-2kq in the analogue of (10) in [7] is not proper.

Now we can obtain a variant of Theorem 1 (or Titchmarsh equivalence theorem).

Theorem 4. Let p > 0, f e Lfl(R), m e N and u2 e B x B2m. Then the conditions (i) um(f,S)p,^,hc = 0(u(6)), 6 ^ 0;

8

(ii) $\h2Af)(y)Wdy = 0(u2(N-1)), N > 0,

N

and

2 N

(iii) f \h2,,(f)(y)Wdy = 0(u2(N-1)), N > 0,

are equivalent.

N

Proof. Let (i) be valid. By Theorem 3 in the case a = k = 0, r = p = 2, we obtain

\h2Af)(y)Udy^C\ J t-»-1 u2(t-1)t»dt =

N N/2

2 { N

jj ~t

0

22

= Ci\ j2P)dt^CiJ2(2/N) ^C2J2(N-1),

since u e B and, by Lemma 5, u satisfies A2-condition. Thus, we prove (i) ^ (ii) ^ (iii).

Conversely, let (iii) be true. Then

2i+1N

8

\h2A f)(y)Wdy = 2 \h2A f)(y)\Ydy^

N 2iN

1/(2i~1N )

8 8 r

Yi^PP^N )-1) = C4u2(N-1) + CA Y, 2N u2(t)dt^

" " mm)

1/(2i~1N ) 8 r 2(+\

^ 2C^u2(N-1) + y ^dt^CU (N-1), N > 0,

%"1 1/{2iN )

by the condition u2 e B, i.e., (iii) ^ (ii).

By Lemma 3 and Plancherel-type equality (4), we have:

I I A^c f IIh = f \h2Af)(y)\2(l - Jß(2?yt))2my^dy =

R+

1/{4t) 8

" (J ^ )\h2Af)(y)\2(l - Jß(2?yt))2my»dy = h(t) + h(t).

° i/№

By Lemma 2 (i), Lemma 5, and condition (ii) of the Theorem, we obtain:

8

h(t) < 22m J \h2jf)(y)\Ydy^C6u2(4t) ^C7u2(t). (11)

1/(4t)

On the other hand, by Lemma 2 (iii):

1/(4t)

h(t) <C>j \h2M)(y)\2(yt)2myßdy. °

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

But by (11), the condition u2 e B2m, and Lemma 4, we find that

1/(4t)

y2m\h2Af)(y)\Ydy ^ C8(1/(41))2mu2(4t)

and I\{t) ^ C9u(t), t > 0, by Lemma 5. From the last inequality and (11), we deduce that | | A™>ÄCf||L2 ^ (C7 + Cg)1{2u(t), t > 0, and (ii) ^ (i) follows. Theorem 4 is proved. □

Acknowledgments. This work was supported by the Program of development of Regional Scientific and Educational Mathematical Center "Mathematics of Future Technologies" (project no. 075-02-2023-949). The author thanks the anonymous referee for valuable remarks.

References

[1] Bary N. K., Stechkin S. B. Best approximation and differential properties of two conjugate functions. Trudy Mosk. Mat. Obs., 1956, vol. 5, pp. 483-522 (in Russian).

[2] Bergh J., Lofstrom J. Interpolation spaces. An introduction. SpringerVerlag, Berlin-Heidelberg, 1976.

[3] Butzer P. L., Nessel R. J. Fourier analysis and approximation. Birkhauser, Basel-Stuttgart, 1971.

[4] El Hamma M., Daher R., Mahfoud A. An analogue of Titchmarsh theorem for the first Hankel-Clifford transform. J. Anal. 2021, vol. 29, no. 4, pp. 1129-1136. DOI: https://doi.org/10.1007/s41478-020-00300-7

[5] Gray A., Matthecos G. B., MacRobert T. M. A treatise on Bessel functions and their applications to physics. Macmillan, London, 1952.

[6] Hayek N. Sobre la transformacion de Hankel. Actas de la VIII Reunion Anual de Matematicos Epanoles. 1967, pp. 47-60.

[7] Lahmadi H., El Hamma M. On estimates for the Hankel-Clifford transform in the space Lp. J. Anal., 2023, vol. 31, no. 2, pp. 1479-1486.

DOI: https://doi.org/10.1007/s41478-022-00524-9

[8] Lorentz G. G. Fourier-Koeffizienten und Funktionenklassen. Math. Zeitchr., 1948, vol. 51, no. 3, pp. 135-149.

[9] Mendez Perez J. M. R., Socas Robayna M. M. A pair of generalized Hankel-Clifford transformation and their applications. J. Math. Anal. Appl., 1991, vol. 154, no. 2, pp. 543-557.

[10] Platonov S. S. Generalized Bessel translations and some problems of aprroximation of functions theory in metric L2.II. Proc. Petrozavodsk State Univ. Matematika., 2001, vol. 8, pp. 20-36 (in Russian).

[11] Platonov S. S. Bessel harmonic analysis and approximation of functions on the half-line. Izv Math., 2007, vol. 71, no. 5, pp. 1001-1048.

DOI: https://doi.org/10.1070/IM2007v071n05ABEH002379

[12] Prasad A., Singh V. K., Dixit M. M. Pseudo-differential operators involving Hankel-Clifford transformations. Asian-European. J. Math., 2012, vol. 5, no. 3, paper 1250040 (15 pages).

DOI: https://doi.org/10.1142/S1793557112500404

[13] Prasad A., Singh V. K. Pseudo-differential operators associated to a pair of Hankel-Clifford transformations on certain Beurling type function spaces. Asian-European J. Math., 2013, vol. 6, no. 3, paper 1350039 (22 pages). DOI: https://doi.org/10.1142/S1793557113500393

[14] Titchmarsh, E.: Introduction to the theory of Fourier integrals. Clarendon press, Oxford, 1937.

[15] Volosivets S. S. Weighted integrability results for first Hankel-Clifford transform. Prob. Anal. Issues Anal., 2023, vol. 12(30), no. 2, pp. 107-117. DOI: https://doi .org/10.15393/j3.art. 2023.13050

[16] Volosivets S. S. Dual Boas-type theorems and weighted integrability results for second Hankel-Clifford transform. J. Pseudo-Differ. Oper. Appl., 2023, vol. 14, 48. DOI: https://doi.org/10.1007/s11868-023-00542-6

[17] Volosivets S. S. Fourier-Bessel transforms from generalized Lipschitz spaces and weighted Lebesgue spaces. Ann. Univ. Ferrara Ser. VII Sci. Mat., 2024, vol. 70, no. 2, pp. 285-306.

DOI: https://doi.org/10.1007/s11565-023-00472-7

Received February 27, 2024. In revised form, May 10 , 2024. Accepted May 31, 2024. Published online June 14, 2024.

S. S. Volosivets Saratov State University 83 Astrakhanskaya St., Saratov 410012, Russia E-mail: VolosivetsSS@mail.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.