DOI: 10.6060/ivkkt.20216404.6380 УДК: 547.979.73
КОМПЛЕКСЫ ЭРБИЯ И ЛЮТЕЦИЯ «СЭНДВИЧЕВОГО» ТИПА, СОДЕРЖАЩИЕ ФРАГМЕНТЫ ТЕТРААНТРАХИНОНОПОРФИРАЗИНА И ЗАМЕЩЕННЫХ ФТАЛОЦИАНИНОВ
С.А. Знойко, А.П. Елизарова, Т.В. Кустова, А.Н. Наконечная
Серафима Андреевна Знойко*, Александра Павловна Елизарова, Татьяна Владимировна Кустова, Анастасия Николаевна Наконечная
Кафедра технологии тонкого органического синтеза, Ивановский государственный химико-технологический университет, Шереметевский просп., 7. Иваново, Российская Федерация, 153000 Е-mail: [email protected] *
Настоящая работа касается синтеза и спектральных свойств металлокомплек-сов эрбия и лютеция «сэндвичевого» типа, содержащих тетраантрахинонопорфиразиновые, а также фталоцианиновые фрагменты. Взаимодействием тетраантрахинонопорфиразина эрбий(лютеций)ацетата с избытками фталонитрила, 4-хлор-, 4-бромфталонитрила и незамещенного фталонитрила получены комплексы «сэндвичевого» типа несимметричного строения. Соединения экстрагировали из реакционной смеси подходящим органическим растворителем (ДМФА или толуолом) и очищали длительной экстракцией примесей ацетоном в аппарате Сокслета. Окончательную очистку осуществляли методом колоночной хроматографии. Полученные комплексы - твердые вещества зеленого цвета, обладающие растворимостью в ДМСО, ДМФА и концентрированной серной кислоте. Состав и строение комплексов подтверждали данными элементного анализа, ИК и электронной спектроскопии. Найденные значения содержания элементов находятся в хорошем соответствии с вычисленными. Исследовано влияние химического строения новых соединений «сэндвичего» типа на их спектральные свойства и возможные области применения. В частности, при анализе электронных спектров поглощения обнаружено, что металл, природа заместителей в тет-раантрахиноновом фрагменте и замена атомов водорода на атомы галогена во фталоциа-ниновом фрагменте незначительно влияют на характер и положение максимумов поглощения. В связи с тем, что традиционной областью использования соединений фталоцианино-вого ряда является их применение в качестве светопрочных красителей и пигментов, были проведены исследования колористических свойств, синтезированных органорастворимых металокомплексов эрбия и лютеция. Установлено, что соединения проявляют свойства пигментов и красителей для полимерных материалов, таких как полистирол и полиэтилен. Кроме этого, определены температурные параметры термоокислительной деструкции и установлено, что полученные фталоцианины «сэндвичего» типа обладают высокой устойчивостью к термоокислительной деструкции.
Ключевые слова: металлокомплексы эрбия и лютеция, фталоцианины, фрагменты тетраантрахинонопорфиразина, «сэндвичевого» типа комплексы, синтез, свойства
ERBIUM AND SANDWICH-TYPE LUTETIUM COMPLEXES CONTAINING FRAGMENTS OF TETRAANTHRACHINOPORPHIRAZINE AND SUBSTITUTED PHTHALOCYANINES
S.A. Znoiko, A.P. Elizarova, T.V. Kustova, A.N. Nakonechnaya
Serafima A. Znoyko *, Alexandra P. Elizavarova, Tatyana V. Kustova, Anastasiya N. Nakonechnaya Department of Fine Organic Synthesis Technology, Ivanovo State University of Chemistry and Technology, Sheremetevsky ave., 7, Ivanovo, 153000, Russia E-mail: [email protected] *
The present work relates to the synthesis and spectral properties of erbium and sandwich type metal complexes containing tetraanthraquinoporphyrazine as well as phthalocyanine fragments. By reacting tetraanthrachinoporphirazine erbium (lutetium) acetate with excess phthaloni-trile, 4-chloro, 4-bromophthalonitrile and unsubstituted phthalonitrile, sandwich-type complexes of an unsymmetrical structure were obtained. The compounds were extracted from the reaction mixture with a suitable organic solvent (DMF or toluene) and purified by prolonged extraction of impurities with acetone in a Soxlet apparatus. Final purification was carried out by column chro-matography. The obtained complexes are green solids having solubility in DMSO, DMF, and concentrated sulfuric acid. The composition and structure of complexes were confirmed by elemental analysis, IR and electron spectroscopy. Influence of chemical structure of new "sandwich" compounds on their spectral properties and possible applications has been investigated. In particular, when analyzing the electron absorption spectra, it was found that the metal, the nature of the sub-stituents in the tetraanthraquinone moiety and the replacement of hydrogen atoms with halogen atoms in the phthalocyanine moiety slightly affect the nature and position of the absorption maxima. Studies have been carried out on the coloristic properties of synthesized organosoluble metal complexes erbium and lutetium. The compounds have been found to exhibit the properties of pigments and dyes for polymeric materials such as polystyrene and polyethylene. The temperature parameters of thermal oxidative degradation were determined and it was found that the obtained "sandwich" typephthalocyanines have high resistance to thermal oxidative degradation.
Key words: erbium and lutetium metal complexes, phthalocyanines, tetraanthraquinoporphirazine fragments, "sandwich" type complexes, synthesis, properties
Для цитирования:
Знойко С.А., Елизарова А.П., Кустова Т.В., Наконечная А.Н. Комплексы эрбия и лютеция «сэндвичевого» типа, содержащие фрагменты тетраантрахинонопорфиразина и замещенных фталоцианинов. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 4. С. 42-51
For citation:
Znoiko S.A., Elizarova A.P., Kustova T.V., Nakonechnaya A.N. Erbium and sandwich-type lutetium complexes containing fragments of tetraanthrachinoporphirazine and substituted phthalocyanines. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [ChemChemTech]. 2021. V. 64. N 4. P. 42-51
The chemistry of porphyrin series macrocycles has long been the subject of intensive research due to the enormous importance and ever-expanding practical application as pigments, dyes, organic semiconductor materials, catalysts for oxidation processes, thermo-and light-stabilizers, liquid crystals, gas sensors, pale carrots and analytical reagents [1-11].
The most important feature of phthalocyanines (Pc) is the possibility of their chemical modification. Phthalocyanines of various structures have unique spectral, electrochromic, magnetic and semiconductor properties due to a multi-circuit aromatic coupling system. These compounds are capable of forming complexes with many elements of the periodic system. Of particular interest are lanthanide phthalocyaninates. These metals, having large ion radii and high coordination numbers, are able to form sandwich compounds with phthalocyanines and their analogues. The latter are characterized by overlapping the n-orbitals of the ligands, depending on the value of the ionic radius of the lanthanide. The presence of such an effect opens up new possibilities for the use of sandwich compounds
as materials for molecular electronics [12] and nonlinear optics [13], sensors [14-16], ionizing radiation sensors [17], as well as electrochromic materials [18]. Numerous methods are currently known for the synthesis of diphthalocyaninates of both symmetric and asymmetric structure [19-22]. A significant number of works also concern the synthesis and properties of «sandwich» type complexes containing phthalocyanine molecules. However, information about such complexes combining the molecules of tetraaan-trachinoporphirazine and phthalocyanines in their composition is not about-external in the literature.
The present work relates to the synthesis and spectral properties of erbium and sandwich type metal complexes containing tetraanthraquinoporphyrazine as well as phthalocyanine fragments.
The starting compounds for the synthesis of "sandwich" complexes were tetraanthrachi-nonoporphyra-zines VIII-XIV, prepared by urea method from dicar-boxyanthrachinonic acids I-VII in the presence of urea, metal acetate (Er, Lu), ammonium chloride and ammonium molybdate as a catalyst (Scheme 1). The
reaction mass was heated to 180 °C, then, after melting, the temperature was adjusted to 200 °C and held for 3 h.
It should be noted that due to the significant ionic radius of the metal, the reaction proceeds from relatively slowly, in contrast to complexation with di-
valent metals, curable under such conditions in 0.5 h [23]. The obtained complexes are blue-green solids. All compounds dissolve well in DMSO, DMF. Complexes IX, XIII, XIV dissolve well in toluene and chloroform.
HOOC
HOOi
O
I-VII
Ln = Lu (a), Er (б)
R1=H, R2=CH3 (II, IX), R2=OCH3 (Ш, X), R2=COOH (IV, XI), R2=PhSO3H (V, XII); R2=H, R1=OCH3 (VI, XIII), R1=OCO(CH2)14CH3 (VII, XIV).
Scheme 1
Схема 1
Attempts to chromatographically purify the synthesized metal complexes were unsuccessful, since as a result of column chromatography on both alumina and silica, the substance could not be desorbed from the column by any of the eluents. Therefore, further purification of compounds VIII-XIV was carried out by treating them with concentrated hydrochloric acid, water and acetone.
Heating a mixture of compounds (VIII-XIV) with excess phthalonitrile, 4-bromophthalonitrile and 4-chlorophthalonitrile at a temperature of 280 °C for 2 h leads to the formation of sandwich complexes of the composition of tetraanthrachinoporphyrazine - Ln -phtalocyanine (XV-XXV), according to
XV-XXV R
Ln = Lu (a), Er (б) R = H, Br, Cl r'=R2=H, R=Br (XV); R'=H R2=CH3 R=H (XVI) R=Cl (XVII), R2=OCH3 R=Cl (XVIII) R=H (XIX), R2=COOH R=H (XX) R=Br (XXI), R2=PhSO3H R=H (XXII); R2=H, r'=OCH3 R=Br (XXIII) R=Cl (XXIV), r'=OCO(CH2)14CH3 R=H (XXV).
Scheme 2 Схема 2
O
R
R1=R2=H (I, VIII);
The compounds (XV-XXV) were extracted from the reaction mixture with a suitable organic solvent (DMF or toluene) and purified by prolonged extraction of acetone impurities in a Soxlet apparatus. Final purification was carried out by column chromatog-raphy.
The obtained complexes are green solids having solubility in DMSO, DMF, and concentrated sulfu-ric acid. The composition and structure of complexes VIII-XXV were confirmed by elemental analysis, IR and electron spectroscopy. The found values of the content of the elements are in good accordance with the calculated values.
The nature of the IR spectra of the initial lanthanide complexes of tetraanthrachine porphyrase VIII-XIV is similar to the spectra of phthalocyanine series compounds with bands in the intervals 3400, 1246-1300, 1170-1188, 1100-1150, 910-950, 850-880, 770-780, 734-736 cm-1. At the same time, a number of bands characteristic of anthraquinone should be noted (in the regions 1650-1700 cm-1 and 2800-2900 cm-1). In addition, the IR spectra of compounds (Xa, b, XIIa, b, XIVa) are characterized by the presence of a band responsible for the oscillation of the SAr-O-C bond (1115-1149 cm-1).
In the IR spectra of the compounds of the "sandwich" structure (XVa, b-XXVa, b) there are in-intensity bands at 1368-1388 cm-1 indicating the presence of a radical fragment of phthalocyanine [24]. A lower intensity band in the 1458-1495 cm-1 region characterizes the co-swan of C-N and C-C tetrapyrrole chromophores. In the spectra of complexes (XVb,
XVII b, XXIb, XXIIb) there are bands at 888-901 cm-1 characteristic of vibration of N-Er bonds in octacoor-dinated complexes [25]. Also in the IR spectra (XVIb,
XVIII b, XIX a, XXIIb, XXIVb, XXVa) of the compounds there are bands characteristic of valence vibrations of the Cap-Hal bond at 717-754 cm-1.
The results of studies of electron absorption spectra (UV-spectra) of tetraanthraquinone-porphyra-zines VIII-XIV and "sandwich" type XV-XXV complexes based on them are presented in Table 1 and in Fig. 1-4.
UV-spectra in DMF for tetraanthrachino-porphyrazines VIII-XIV are similar: in the long-wave part of the spectrum in the area of 688-690 nm, the Q-band is observed, at 650-660 nm - an oscillatory satellite. Judging by the intensity ratio of these bands, the synthesized compounds are present in this solvent in the associated form (Fig. 1). In addition, it can be seen
that the nature of the substituents introduced into the tetraanthraquinoporphyrazine fragments does not affect the appearance of the spectral curve and the position of the long-wave absorption bands in the UV-spec-tra of these complexes (Table 1).
Table 1
Position of maxima of absorption bands in UV-spectra of erbium and lutetium complexes of "sandwich" type,
XVI a, b - XXV a, b Таблица 1. Положение максимумов полос поглощения в ЭСП комплексов эрбия и лютеция «сэндвиче-
вого» типа, XVIa,6 - XXVa, б
№ Complexes Ln UV-spectra, Xmax, nm
1 XV Er H2SO4: 435, 835 DMF: 626, 688, Toluene: 353, 627, 657, 693 Chloroform: 350, 626, 694
2 XVI Lu H2SO4: 437, 837 DMF: 620, 689 Toluene: 357, 628, 656, 693 Chloroform: 352, 628, 655, 693
3 XVII Er H2SO4: 433, 836 DMF: 621, 686 Toluene: 354, 627, 661, 693 Chloroform: 370, 626, 659, 691
4 XVIII Lu H2SO4: 406, 797, 833 DMF: 686 Toluene: 360, 626, 656, 692 Chloroform: 358, 626, 654, 692
5 XIX Lu H2SO4: 436, 835 DMSO: 622, 690
6 XX Lu H2SO4: 435, 833 DMF: 628, 657, 688 Toluene: 352, 628, 657, 695 Chloroform: 351, 626, 655, 692
7 XXI Er H2SO4: 434, 818 DMF: 623, 687 Toluene: 348, 629, 657, 694 Chloroform: 322, 627, 699
8 XXII Er H2SO4: 426, 832 DMF: 656, 688
9 XXII Lu H2SO4: 433, 835 DMF: 657, 689
10 XXIII Er H2SO4: 440, 830 DMF: 634, 692
11 XXIV Lu H2SO4: 431, 834 DMF: 622, 685
12 XXV Lu H2SO4: 441, 835 DMF: 623, 687
One of the most important characteristics of sandwich-type complexes is their electron-throne absorption spectra, which allows the simplest and most informative method to identify the "green" and "blue" forms of such compounds. UV-spectra of complexes
(XVa, b-XVIII a, b, XXa, b-XXIa, b) in chloroform, toluene (Fig. 2, curve 1) are characterized by an intense band with a maximum at 691-699 nm and a less intense band at 655-659 nm, evidencing the presence of a radical phthalocyanine fragment, wherein the ratio of their intensities is equal to 1:(0.48-0.58). Thus, in chloroform and toluene, complexes exist, generally, in a neutral radical green form.
Fig. 1. UV-spectra in DMF 1 - VIIIb; 2 - XIb; 3 - XIb Рис. 1. Электронные спектры поглощения в ДМФА 1 - VIII5; 2 - XII5; 3 - XI5
692
400 500 600 700 В^ЦЦ^т900
Fig. 2. UV-spectra of complex XIX a: 1 - toluene; 2 - DMF Рис. 2. Электронный спектр поглощения комплекса XIXа: 1 - толуол; 2 - ДМФА
During the transition from chloroform and toluene to DMF, the ESP of the compounds (XVa, b-XXVa, b) (Fig. 2, curve 2) are changed. Band intensity at 655-659 nm decreases. It is observed at a maximum of 686-692 nm and a shoulder at 758 nm. This fact indicates the transition of the compounds (XVIa, b-XXVa, b) to the anionic "blue" form. As for Sore bands, the effect of the nature of the solvent on their position is insignificant, and it is observed in the region of 341-356 nm.
It has been found that the metal, the nature of the substituents in the tetraanthraquinonoporphyrazine moiety and the replacement of hydrogen atoms with
halogen atoms in the phthalocyanine moiety have little effect on the nature and position of the absorption maxima.
The transition from organic solvents to concentrated sulfuric acid for all synthesized complexes is accompanied by a significant bathochromic shift of long-zero absorption bands. Moreover, the value of this shift significantly exceeds that for the corresponding metal complexes of tetraanthraquinoporphyrazines with d-metals [26].
The electron absorption spectra of the initial lanthanide-tetraanthrachinoporphyrazines, VIIIa,b -XIVa,b in concentrated sulfuric acid are characterized by the presence of several bands of different intensity in the regions: Soré bands 344-385 nm, characterized by pain-neck intensity, Q bands at 786-792 nm and an oscillating satellite at 667-670 and 703-708 nm (Fig. 3) Comparison of the spectra of the compounds (VIIIa,b - XIVa,b) with the spectra of the corresponding copper and cobalt complexes [23, 26, 27] shows that the replacement of the metal atom with erbium or lutetium leads to a bathochromic shift of the long-wave absorption band by 45-48 nm, without affecting oscillatory satellites.
D
Рис. 3. ЭСП комплекса VIIta в H2SO4
1,0 и
400 500 600 "70Ö ' 800 Ц Fig. 4. UV-spectrum X^ in H2SO4 Рис.4. ЭСП комплекса Xm в H2SO4
UV-spectra of sandwich-type complexes in sulfuric acid are characterized by the presence of an in-intensity Q-band in the region of 820-840 nm (Table 1, Fig. 4). At the same time, its bathochromic shift is recorded in comparison with the ESP of the corresponding lanthanide complexes of tetraanthraquinoporphyra-zines (for example, Fig. 3 and Fig. 4). The nature of the substituents has little effect on the position of the Q band (Table 1).
Considering the possibility of using synthesized phthalocyanines at high temperatures in the presence of air oxygen, it seems advisable to study their resistance to thermal oxidative degradation. In the present work, thermal oxide destruction of phthalocyanines of the "sandwich" structure of erbium and lutetium (XVb, XVIII a, XXIIa, b-XXV, b) is investigated. The results are shown in Table 2.
Table 2
Thermooxidizing destruction of compounds XVb, XVIIIa, XXIIa,b-XXVa,b
№ Complex Maximum start temperature weight loss, °C Temperature maximum ekzoeffekt, °C
XVb TAQPa(R'=H)4ErPc(R=Br)4 320 440
XVIIIa TAQPa(R'=OCH3)4LuPc(R=Cl)4 408 501
XXIIa TAQPa(R'=PhSO3H)4LuPc(R=H)4 320 387
XXIIb TAQPa(R'=PhSO3H)4ErPc(R=H)4 405 508
XXIIIb TAQPa(R'=OCH3)4ErPc(R=Br)4 220 420
XXIVa TAQPa(R'=OCH3)4LuPc(R=Cl)4 250 422
XXVa TAQPa(R'=OCO(CH2)i4LuPc(R=H)4 300 408
When studying the resistance of the obtained complexes to thermo-oxidative destruction, the general problem in their behavior was noted. At the first stage, when heated from 25 °C to 200 °C, a slight decrease in the mass of the tested samples (15%) is fixed on the TG curves. An additional controll on the IR and electronic absorption spectra of the compounds XVb, XVa, XXIIa, b-XXVa, b, fixed before the start of the experiment, and after heating to 200 °C, showed their identity. This indicates that the changes recorded on derivatograms are not associated with degradation processes in the molecules of metal complexes XVb, XVa, XXIIa, b-XXVa, b.
With further heating to 380-501 °C, in our opinion, there are transformations involving peripheral groups with the formation of, inter alia, oligomeric structures. Finally, at higher temperatures (400-580 °C, Table 2), phthalocyanine and porphyrazine rings are destroyed to produce lutetium or erbium oxides.
When comparing compounds XXIIa and XXIIb, it was found that complexes with erbium have the greatest stability. Unfortunately, we could not find any pattern related to the influence of the peripheral environment.
Application of phthalocyanine compounds is their use as light-resistant dyes and pigments. In this regard, studies were carried out on the coloristic properties of synthesized organoluble metal complexes erbium and lutetium. Compounds XVb, XVIa, XVIIb, XVIIIa, XXa, XXIb, XXIIa,b have been found to exhibit pigments and dyes for polymeric materials such as polystyrene and polyethylene.
Thus, the template condensation of substituted o-dicarboxylic acids of anthraquinone with metal salts (lutetium or erbium) for the first time synthesized new metal complexes of tetraanthraquinoporphyrazines with rare earth elements. Methods of their cleaning are offered.
By reacting the obtained lanthanid-tetraanthra-quinonoporphyrazines with different phthalonitriles, new metal complexes of the "sandwich" type combining tetraanthraquinonoporphyrazine and phthalocya-nine fragments were synthesized.
Influence of chemical structure of new "sandwich" compounds on their spectral properties and possible applications has been investigated. In particular, in the analysis of UV-spectra, it was found that the metal, the nature of the substituents in the tetraanthra-quinone moiety and the replacement of hydrogen atoms with halogen atoms in the phthalocyanine moiety slightly affect the nature and position of the absorption maxima. In addition, they have been found to exhibit the properties of pigments and dyes for polystyrene and polyethylene. Finally, temperature parameters of thermal oxidative degradation were determined and it was found that the obtained "sandwich-something" type phthalocyanines have high resistance to thermal oxida-tive destruction.
EXPERIMENTAL-METHODICAL PART
The research was performed using resources of the Center for Collective Use, Ivanovo State University of Chemical Technology "ISUCT".
Elemental analysis was performed on a Flash EA 1112 CHNS-O Analyzer.
Electron absorption spectra (UV-vis) were recorded in organic solvents (DMF, toluene, chloroform), aqueous alkaline solutions (1% sodium hydroxide solution) and concentrated sulfuric acid on a UV/VIS Perkin Elmer Spectrometer Lambda 200 spectropho-tometer at room temperature in the wavelength range (250-1000) nm.
IR spectra were recorded on an Avatar 360 FT-IR ESP device in the 400-4000 cm-1 region in quartz glass films.
Thermal-oxidative destruction studies were carried out on a thermoanalytic device consisting of a derivatograph 1000D of the company IOM, Hungary, a software-hardware complex and a PC (IHR RAS Ivanovo) [28]. Samples of tetraanthraquinoporphyrazines metal complexes weighing 10-30 mg were placed in a platinum crucible and heated in an air atmosphere at a rate of 5 degrees x min-1 in an air atmosphere.
Dyeing and coloristic analysis were carried out according to procedures [29, 30].
Starting ortho-dicarboxylic acids I-VIII were prepared according to the procedure [31].
Synthesis of metal complexes of tetraan-thraquinoporphyrazine Vlla,b-XIV a,b.
General methodology. In a quartz vial was placed a triturated mixture of 0.60 mmol of the corresponding 2,3-dicarboxyanthraquinones, 4.00 mmol (0.24 g) of urea, 0.18 mmol of metall acetate (Erbium or lutetium), 0.40 mmol (0.02 g) of ammonium chloride and 0.01 mmol (0.002 g) of ammonium molyb-date. The mass was slowly heated to 180 °C for an hour and held for 3 hours. After cooling, the reaction mixture was ground, transferred to a Schott filter, washed with 5% hydrochloric acid and water until a solid residue was removed in the wash liquid, applied to the object stack and evaporated. Then, it was dried at 100 C, then washed in a Soxlet apparatus with acetone for 10 h.
The synthesis of erbium tetraanthraquinono-porphirazine (VIIIb) was carried out according to the general procedure using 0.65 g of 2, 3-dicarboxyan-thraquinone.
Synthesis of tetra- (6-methyl) anthraquinono-porphirazine metal complexes (IXa, b) was carried out according to the general procedure using 0.18 g of 2,3-dicarboxy-6 -methylanthraquinone.
Synthesis of lutetium tetra- (6-methoxy) an-thraquinonoporphyrazine (Xa) was carried out on a total meta-wild using 0.18 g of 2,3-dicarboxy-6-meth-oxyanthraquinone.
The synthesis of tetra- (6-carboxy) anthraqui-noporphyrazine metal complexes (XI a,b) was carried out according to the general procedure using 0.20 g of 2,3,6-tricarboxyanthraquinone.
Synthesis of tetra- (6-sulfophenyl) anthrachi-noporphirazine (XII a,b) metal complexes was carried out according to the general procedure using 0.27 g of 2,3-dicarboxy-6- (para-sulfophenyl) anthrachinone.
Synthesis of metal complexes of tetra- (5, 8-di-methoxes) anthraquinoporphirazine (XIII a,b) was carried out according to the general procedure using 0.20 g of 2, 3-dicarboxes-5,8-dimethoxyanthraquinone.
Synthesis of tetra- (5, 8-dicaprinoxa) anthraquinoporphirazine lutetium (XIVa) was carried out according to the general procedure using 0.20 g of 2, 3-dicarboxy-5,8dicaprinoxyanthraquinone.
The output and elemental analysis data for metal complexes VIII-XIV are shown in Table 3.
Synthesis of phthalocyanines of "sandwich" type XVa, b - XXVa, b.
General methodology. In a quartz vial was placed a triturated mixture of 0.017 mmol of the corresponding substituted tetraanthraquinoporphirazine (VIII-XIV) and 0.1 mmol of phthalonitrile or its 4-chloro (4-bromo) substituted. The reaction mass was
Table 3
Yield and elemental analysis of metallophthalocyanines VIII-XIV
XIV
№ Yield, g (%) Gross - a formula Elemental analysis data. Found/is calculated, %
С Н N
УШб 0.36 (47) C64H24N8O8Er 64.0/64.1 2.0/2.2 9.3/9.1
IXa 0.10 (72) C68H32N8O8LU 64.4/64.6 2.9/2.6 8.6/8.9
IX6 0.08 (70) C68H32N8O8Er 65.2/65.0 2.8/2.6 9.0/8.9
Xa 0.16 (78) C68H32N8O12LU 61.9/61.5 2.9/2.4 8.7/8.4
XIa 0.12 (74) C68H24N8O16LU 59.3/59.0 2.0/1.8 8.0/8.1
XI6 0.10 (70) C68H24N8O16Er 59.7/59.3 2.0/1.8 8.1/8.2
XIIa 0.09 (37) C88H40N8 S4O20LU 56.9/56.7 2.4/2.2 6.3/6.1
XII6 0.09 (37) C88H40N8 S4O20Er 57.6/57.9 2.5/2.2 6.4/6.1
XIIIa 0.07 (62) C72H40N8O16LU 59.3/59.7 2.6/2.8 7.3/7.7
XIII6 0.09 (64) C72H48N8O16Er 60.5/60.0 2.6/2.8 7.4/7.8
XIVa 0.06 (68) C192H264N8O2LU 71.4/71.2 7.9/8.1 3.4/3.5
slowly heated to 180 °C for an hour, after cooling it was ground, transferred to a Schott filter, washed with 5% aqueous hydrochloric acid, water and acetone, was
then subjected to acetone extraction in a Soxhlet apparatus for 10 h. Dried at 100 °C.
Output and data of elemental analysis of metal complexes XlVa, b-XXVa, b are given in Table 4.
Table 4
Yield and data of elemental analysis of "sandwich" type metalophthalocyanines
№ Yield, g (%) Gross - a formula Elemental analysis data. Found/is calculated, %
С Н N
XV6 0.09 (47) C96H36Ni6O8Br4Er 56.8/56.1 1.6/1.8 11.0/11.1
XVIa 0.08 (42) C100H48N16O8Lu 67.6/67.2 2.7/2.1 12.6/12.0
XVII6 0.16 (63) C100H44N16O8Cl4Er 63.0/63.4 2.3/2.5 11.8/11.6
XVIIIa 0.16 (63) C100H44N16O12CI4LU 60.4/61.0 2.3/2.1 11.3/11.1
XIXa 0.06 (32) C100H48N16O12LU 65.4/65.2 2.7/2.5 12.1/12.0
XXa 0.06 (32) C100H40N16Oi6Lu 63.5/63.0 2.2/2.4 11.7/12.0
XXI6 0.09 (47) C100H36N16OieBr4Lu 61.3/61.0 1.9/2.0 11.3/11.5
XXIIa 0.09 (47) C120H56N16O20S4 Lu 61.6/61.8 2.5/2.4 9.5/9.7
XXII6 0.07 (37) C120H56N16O20S4 Er 61.8/62.0 2.5/2.6 9.5/9.6
XXIII6 0.12 (58) C104H52N16Oi6Br4Er 55.2/55.6 2.4/2.6 9.8/10.4
XXIVa 0.07 (37) C104H52N16Oi6CLLu 59.7/60.1 2.6/2.3 10.6/10.2
XXVa 0.06 (32) C224H280Nl6O24Lu 71.7/71.6 7.5/7.8 5.9/6.2
ACKNOWLEDGEMENTS
The research was performed using resources of the Center for Collective Use, Ivanovo State University of Chemical Technology "ISUCT". This work has been made by state assignment of the Ministry of Education and Science of the Russian Federation, topic № FZZW-2020-0008.
ЛИТЕРАТУРА
1. Стужин П.А., Пимков И.В., А Уль-Хак, Иванова С.С., Попкова И.А., Волкович Д.И., Кузьмицкий В.А., Дон-целло М.П. Синтез и спектральные свойства 1,2,5-тиа-диазоло-1,2,5-селенадиазоло- и бензоаннелированных в-фенилзамещенных порфиразинов. Ж. Орг. Х. 2007. T. 43. № 12. C. 1848-1857. DOI: 10.1134/S1070428007120202.
2. Kustov A.V., Kudayarova T.V., Antonova O.A., Smirnova N.L., Kladiev A.A., Kladiev A.A. Solvation and Ion-ion Interactions in Aqueous and Non-aqueous Solutions of Cationic Cytostatic Agent Prospidium Chloride. Mendeleev Commun. 2019. V. 29. N 4. P. 441-443. DOI: 10.1016/j.mencom.2019.07.029.
3. Berezin D.B., Makarov V.V., Znoyko S.A., Mayzlish V.E., Kustov A.V. Aggregation of Water Soluble Octaan-ionic Phthalocyanines and Their Photoinactivation Antimicrobial Effect in Vitro. Mendeleev Commun. 2020. V. 30 N 5. P. 621-623. DOI: 10.1016/j.mencom.2020.09.023.
4. Shutov D.A., Ivanov A.N., Rakovskaya A.V., Smirnova K.V., Manukyan A.S., Rybkin V.V. Synthesis of oxygen-containing iron powders and water purification from iron ions by glow discharge of atmospheric pressure in contact with the solution. J. Phys. D: Appl. Phys. 2020. V. 53. N 44. P. 445202. DOI: 10.1088/1361-6463/aba4d7.
5. Шутов Д.А., Иванов А.Н., Рыбкин В.В., Манукян А.С. Сравнительное изучение электрофизическиххарактери-стик тлеющего разряда надводными растворами анио-нактивныхи катионактивных поверхностно-активных
Исследование выполнено с использованием ресурсов Центра коллективного пользования Ивановского государственного химико-технологического университета «ИГХТУ». Работа выполнена по государственному заданию Минобрнауки РФ по теме № FZZW-2020-0008.
REFERENCES
1. Stuzhin P.A., Pimkov I.V., Ul'-Khak A., Ivanova S.S., Popkova I.A., Volkovich D.I., Kuz'Mitskii V.A., Donzello M.-
P. Synthesis and spectral properties of 1,2,5-thiadiazolo-, 1,2,5-selenadiazolo-, and benzo-fused ß-phenyl-substituted porphyra-zines. Russ. J. Org. Chem. 2007. V. 43. N 12. P. 1854-1863. DOI: 10.1134/S1070428007120202.
2. Kustov A.V., Kudayarova T.V., Antonova O.A., Smirnova N.L., Kladiev A.A., Kladiev A.A. Solvation and Ion-ion Interactions in Aqueous and Non-aqueous Solutions of Cationic Cytostatic Agent Prospidium Chloride. Mendeleev Commun. 2019. V. 29. N 4. P. 441-443. DOI: 10.1016/j.mencom.2019.07.029.
3. Berezin D.B., Makarov V.V., Znoyko S.A., Mayzlish V.E., Kustov A.V. Aggregation of Water Soluble Octaan-ionic Phthalocyanines and Their Photoinactivation Antimicrobial Effect in Vitro. Mendeleev Commun. 2020. V. 30 N 5. P. 621-623. DOI: 10.1016/j.mencom.2020.09.023.
4. Shutov D.A., Ivanov A.N., Rakovskaya A.V., Smirnova K.V., Manukyan A.S., Rybkin V.V. Synthesis of oxygen-containing iron powders and water purification from iron ions by glow discharge of atmospheric pressure in contact with the solution. J. Phys. D: Appl. Phys. 2020. V. 53. N 44. P. 445202. DOI: 10.1088/1361-6463/aba4d7.
5. Shutov D.A., Ivanov A.N., Rybkin V.V., Manukyan A.S. Comparative study of electrical and physical parameters of glow discharge under water solutions of anionic and cationic surfactants.
веществ. Изв. вузов. Химия и хим. технология. 2020. Т. 63. № 2. С. 91-98. DOI: 10.6060/ivkkt.20206302.6194.
6. Ivanov A.N., Shutov D.A., Manukyan A.S., Rybkin V.V.
Influence of Non-uniformity of Generation of Active Particles on Deposition Processes and Redox Reactions in a Glow Discharge in Contact with Water. Plasma Chem. Plasma Process. 2019. V. 39. N 1. P. 63-73 DOI: 10.1007/s11090-018-9936-9.
7. Shutov D.A., Sungurova A.V., Manukyan A.S., Izvekova A.A., Rybkin V.V. Chromium Ion Redox Processes in Aqueous Solution during Treatment with Atmospheric Pressure Direct-Current Discharge in Oxygen. High Energy Chem. 2019. V. 53. N 5. P. 385-389. DOI: 10.1134/S0018143919050126.
8. Kustov A.V., Belykh D.V., Smirnova N.L., Khudyaeva I.S., Berezin D.B. Partition of methylpheophorbide a, dioxidine and their conjugate in the 1-octanol/phosphate saline buffer biphasic system. J. Chem. Thermodyn. 2017. V. 115. P. 302-306. DOI: 10.1016/jjct.2017.07.031.
9. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethylformamide. J. Chem. Thermodyn. 2015. V. 89. Р. 123-126. DOI: 10.1016/jjct.2015.05.016.
10. Shutov D.A., Sungurova A.V., Manukyan A.S., Rybkin V.V. Reduction-Oxidation of Chromium Ions in Aqueous Solution by Treatment with Atmospheric-Pressure Direct-Current Discharge in Argon. High Energy Chem. 2018. V. 52. N 5. P. 429-432. DOI: 10.1134/S0018143918050144.
11. Шутов Д.А., Сунгурова А.В., Смирнова К.В., Ма-нукян А.С., Рыбкин В.В. Окислительно-восстановительные процессы с участием ионов марганца, инициируемые тлеющим разрядом, в водном растворе. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 9-10. С. 23-29. DOI: 10.6060/ivkkt20186109-10.5802.
12. Simic-Glavaski B. Phthalocyanines: Properties and Applications. New York: VCH. Editor C.C. Leznoff, A.B.P. Lever. 1993. V. 3. P. 119.
13. Nalwa H.S., Shirk J.S. Phthalocyanines: Properties and Applications. New York: VCH. Editor C.C. Leznoff, A.B.P. Lever. 1996. V. 4. P. 79.
14. Simpson T.R.E., Cook M.J., Petty M.C., Thorpe S.C., Russel D.A. Surface plasm on resonance of self-assembled phthalocyanine monolayers: possibilities for optical gas sensing. Analyst. 1996. V. 121. P. 1501. DOI: 10.1039/AN9962101501.
15. Krier A., Parr T., Davidson K., Collins R.A. Red Shift in Optical Absorption of Erbium and Dysprosium Diphthalocyanine Thin Films on Exposure to Chlorine. Adv. Mater. 1996. V. 6. N 4. P. 203. DOI: 10.1002/(SICI)1099-0712(199607)6:4<203::AID-AMO241>3.0.CO;2-%23.
16. Bouvet M., Silinsh E.A., Simon J., Passard M., Pauly A., Gemmain J.P., Malleysson C. Influence of NO2 on the electrical conductivity of lutetium phthalo-naphthalocyanine thin films. Synt. Metals. 1996. V. 80. N 1. P. 25. DOI: 10.1016/0379-6779(96)03658-2.
17. Lukyanets E.A., Pukhtina E.V., Ulanova L.A., Kovaleva M.A. ESR dosimeters based on metallodiphthalocyanines: Correlation between ESR and spectrophotometric data. Appl. Radiat. Isotop. 1996. V. 47. N 11-12. P. 1541. DOI: 10.1016/S0969-8043(96)00206-0.
18. Томилова Л.Г., Черных Е.В., Иоффе Н.Т., Лукьянец Е.А. Синтез и спектрально-электрохимическое исследование дифталоцианинов редкоземельных элементов. ЖОХ. 1983. Т. 53. № 11. C. 2594-2601.
Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Chem-ChemTech]. 2020. V. 63. N 2. P. 91-98. DOI: 10.6060/ivkkt.20206302.6194.
6. Ivanov A.N., Shutov D.A., Manukyan A.S., Rybkin V.V.
Influence of Non-uniformity of Generation of Active Particles on Deposition Processes and Redox Reactions in a Glow Discharge in Contact with Water. Plasma Chem. Plasma Process. 2019. V. 39. N 1. P. 63-73 DOI: 10.1007/s11090-018-9936-9.
7. Shutov D.A., Sungurova A.V., Manukyan A.S., Izvekova
A.A., Rybkin V.V. Chromium Ion Redox Processes in Aqueous Solution during Treatment with Atmospheric Pressure Direct-Current Discharge in Oxygen. High Energy Chem. 2019. V. 53. N 5. P. 385-389. DOI: 10.1134/S0018143919050126.
8. Kustov A.V., Belykh D.V., Smirnova N.L., Khudyaeva I.S., Berezin D.B. Partition of methylpheophorbide a, dioxidine and their conjugate in the 1-octanol/phosphate saline buffer biphasic system. J. Chem. Thermodyn. 2017. V. 115. P. 302-306. DOI: 10.1016/j.jct.2017.07.031.
9. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethyformamide. J. Chem. Thermodyn. 2015. V. 89. P. 123-126. DOI: 10.1016/j.jct.2015.05.016.
10. Shutov D.A., Sungurova A.V., Manukyan A.S., Rybkin V.V. Reduction-Oxidation of Chromium Ions in Aqueous Solution by Treatment with Atmospheric-Pressure Direct-Current Discharge in Argon. High Energy Chem. 2018. V. 52. N 5. P. 429-432. DOI: 10.1134/S0018143918050144.
11. Shutov D.A., Sungurova A.V., Smirnova K.V., Manu-kyan A.S., Rybkin V.V. Oxidative-reducing processes with participation of manganese ions initiated by an electric discharge in aqueous solution. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [ChemChemTech]. 2018. V. 61. N 9-10. P. 23-29. DOI: 10.6060/ivkkt20186109-10.5802.
12. Simic-Glavaski B. Phthalocyanines: Properties and Applications. New York: VCH. Editor C.C. Leznoff, A.B.P. Lever. 1993. V. 3. P. 119.
13. Nalwa H.S., Shirk J.S. Phthalocyanines: Properties and Applications. New York: VCH. Editor C.C. Leznoff, A.B.P. Lever. 1996. V. 4. P. 79.
14. Simpson T.R.E., Cook MJ., Petty M.C., Thorpe S.C., Russel
D.A. Surface plasm on resonance of self-assembled phthalocya-nine monolayers: possibilities for optical gas sensing. Analyst. 1996. V. 121. P. 1501. DOI: 10.1039/AN9962101501.
15. Krier A., Parr T., Davidson K., Collins R.A. Red Shift in Optical Absorption of Erbium and Dysprosium Diph-thalocyanine Thin Films on Exposure to Chlorine. Adv. Mater. 1996. V. 6. N 4. P. 203. DOI: 10.1002/(SICI)1099-0712(199607)6:4<203::AID-AMD241>3.0.CO;2-%23.
16. Bouvet M., Silinsh E.A., Simon J., Passard M., Pauly A., Gemmain J.P., Malleysson C. Influence of NO2 on the electrical conductivity of lutetium phthalo-naphthalocyanine thin films. Synt. Metals. 1996. V. 80. N 1. P. 25. DOI: 10.1016/0379-6779(96)03658-2.
17. Lukyanets E.A., Pukhtina E.V., Ulanova L.A., Kovaleva M.A. ESR dosimeters based on metallodiphthalocyanines: Correlation between ESR and spectrophotometric data. Appl. Radiat. Isotop. 1996. V. 47. N 11-12. P. 1541. DOI: 10.1016/S0969-8043(96)00206-0.
18. Tomilova L.G., Chernykh E.V., Ioffe N.T., Lukyanets
E.A. Synthesis and spectral-electrochemical study of diph-thalocyanines of rare earth elements. Russ. J. Gen. Chem. 1983. V. 53. N 11. P. 2594-2601.
19. Ponvaden A., Gozien Y., L'Her M. Unsymmetricly t-Bu-substituted lutetium diphthalocyanine. New J. Chem. 1991. V. 15. P. 515.
20. Немыкин В.Н., Волков С.В. Синтез, строение и спектральные свойства гетеролигандных комплексов лантаноидов на основе фталоцианина и его аналогов. Коорд. химия. 2000. Т. 26. № 6. С. 465.
21. Lapkina L.A., Niskanen L.A., Ronkkomaki H., Larchenko V.E., Popov K.I., Tsivadze A.Y. Synthesis and characterization of sandwich-type gadolinium and ytterbium crown ether-substituted phthalocyanines. J. Porph. Phthal. 2000. V. 4. N 6. P. 587. DOI: 10.1002/1099-1409(200009/10)4:6<588::AID-JPP220>3.0.CO;2-N.
22. Лапкина Л.А., Горбунова Ю.Г., Нефедов С.Е., Ци-вадзе А.Ю. Первый пример структурно-охарактеризованного сэндвичевого двухпалубного комплекса редкоземельного элемента с краунзамещенным фталоциани-ном. Синтез и строение комплекса бис[тетра-(15-краун-5)фталоцианината]-иттербия(Ш). Изв. РАН. Сер. хим. 2003. № 7. С. 1548- 1551.
23. Борисов А.В., Майзлиш В.Е., Шапошников Г.П. Тетраантрахинонопорфиразины: II. Синтез и свойства металлических комплексов замещенных тетраантрахино-нопорфиразинов. ЖОХ. 2005. Т. 75. № 10. С. 1656-1660.
24. Birin K.P., Gorbunova Yu.G., Tsivadze A.Yu. Cerium (IV) Tetra-15-crown-5-phthalocyaninate: synthesis and investigation. J. Porph. Phthal. 2004. V. 8. N 4-6. P. 610.
25. Liu W., Jiang J., Du D., Arnold D.P. Synthesis and Spectroscopic Properties of Homoleptic Bis[octakis(oc-tyloxy)phthalocyaninato] Rare Earth(III) Sandwich Complexes. Aust. J. Chem. 2000. V. 53. N 2. P. 131.
26. Криушкина М.А., Борисов А.В., Шапошников Г.П. Ами-нозамещенные тетраантрахинонопорфиразины. Изв. вузов. Химия и хим. технология. 2009. Т. 52. Вып. 7. С. 21-26.
27. Борисов А.В., Майзлиш В.Е., Шапошников Г.П., Кор-женевский А.Б., Шикова Т.Г., Соколова В.В., Койф-ман О.И. Тетраантрахинонопорфиразины: III. Синтез и физико-химические свойства металлокомплексов гид-роксизамещенных тетраантрахинонопорфиразинов. ЖОХ. 2012. Т. 82. № 10. С. 1742-1749.
28. Lebedeva N., Yakubov S., Kinchin A., V'yugin A. A software-hardware unit for measuring signals from a 1000d deri-vatograph and computer-assisted processing of thermogravi-metric data. Russ. J. Phys. Chem. 2005. V. 79. N 5. P. 827.
29. Желтов А.Я. Практикум по применению красителей. М.: РХТУ им. Д. И. Менделеева. 2009. 94 с.
30. Мельников Б.Н., Щеглова Т.Л., Виноградова Г.И. Применение красителей. М.: БИНОМ. Лаборатория знаний. 2014. 331 с.
31. Борисов А.В., Майзлиш В.Е., Шапошников Г.П. Тетра-антрахинонопорфиразины: I. Замещенные 2,3-дикарбокси-антрахиононы. ЖОХ. 2005. Т. 75. № 7. С. 1215-1220. DOI: 10.1007/s11176-005-0384-x.
19. Ponvaden A., Gozien Y., L'Her M. Unsymmetricly t-Bu-substituted lutetium diphthalocyanine. New J. Chem. 1991. V. 15. P. 515.
20. Nemykin V.N., Volkov S.V. Synthesis, structure and spectral properties of heteroligand complexes of lanthanides based on phthalocyanine and its analogs. Russ. J. Coord. chem. 2000. V. 26. N 6. P. 465.
21. Lapkina L.A., Niskanen L.A., Ronkkomaki H., Larchenko V.E., Popov K.I., Tsivadze A.Y. Synthesis and characterization of sandwich-type gadolinium and ytterbium crown ether-substituted phthalocyanines. J. Porph. Phthal. 2000. V. 4. N 6. P. 587. DOI: 10.1002/1099-1409(200009/10)4:6<588::AID-JPP220>3.0.C0;2-N.
22. Lapkina L.A., Gorbunova Yu.G., Nefedov S.E., Tsivadze A.Yu. The first example of a structurally characterized sandwich double-deck complex of a rare earth element with crown-substituted phthalocyanine. Synthesis and structure of bis [tetra- (15-crown-5) phthalocyaninate] -ytterbium (III) complex. Izv. RAN. Ser. Khim. 2003. N 7. P. 1548-1551.
23. Borisov A.V., Mayzlish V.E., Shaposhnikov G.P. Tetraan-thraquinonoporphyrazines: II. Synthesis and Properties of Metal Complexes of Substitute. Russ. J. Gen. Chem. 2005. V. 75. N 10. P. 1579-1583.
24. Birin K.P., Gorbunova Yu.G., Tsivadze A.Yu. Cerium (IV) Tetra-15-crown-5-phthalocyaninate: synthesis and investigation. J. Porph. Phthal. 2004. V. 8. N 4-6. P. 610.
25. Liu W., Jiang J., Du D., Arnold D.P. Synthesis and Spec-troscopic Properties of Homoleptic Bis[octakis(oc-tyloxy)phthalocyaninato] Rare Earth(III) Sandwich Complexes. Aust. J. Chem. 2000. V. 53. N 2. P. 131.
26. Kriushkina M.A., Borisov A.V., Shaposhnikov G.P. Amino-substituted tetraanthraquinonoporphyrazines. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2009. V. 52. N 7. P. 21-26.
27. Borisov A.V., Maizlish V.E., Shaposhnikov G.P., Kor-zhenevskii A.B., Shikova T.G., Sokolova V.V., Koifman
O.I. Tetraanthraquinonoporphyrazines: III. Synthesis and Physicochemical Properties of Metal Complexes of Hy-droxy-Substituted Tetraanthraquinonoporphyrazines. Russ. J. Gen. Chem. 2012. V. 82. N 10. P. 1740-1747. DOI: 10.1134/S1070363212100180.
28. Lebedeva N., Yakubov S., Kinchin A., V'yugin A. A software-hardware unit for measuring signals from a 1000d deri-vatograph and computer-assisted processing of thermogravi-metric data. Russ. J. Phys. Chem. 2005. V. 79. N 5. P. 827.
29. Zheltov A.Ya. Workshop on the use of dyes. M.: RKhTU im. D.I. Mendeleeva. 2009. 94 p.
30. Melnikov B.N., Shcheglova T.L., Vinogradov G.I. The use of dyes. M.: BINOM. Laboratoriya znaniy. 2014. 331 p.
31. Borisov A.V., Mayzlish V.E., Shaposhnikov G.P. Tetraanthra-quinonoporphyrazines: I. substituted 2,3-dicarboxyanthraqui-onones. Russ. J. Gen. Chem. 2005. V. 75. N 7. P. 1151-1156. DOI: 10.1007/s11176-005-0384-x.
Поступила в редакцию 15.12.2020 Принята к опубликованию 19.01.2021
Received 15.12.2020 Accepted 19.01.2021