Научная статья на тему 'EPOXIDATION OF OLEFINS WITH MOLECULAR OXYGEN IN THE PRESENCE OF PETROLEUM METAL PORPHYRINS'

EPOXIDATION OF OLEFINS WITH MOLECULAR OXYGEN IN THE PRESENCE OF PETROLEUM METAL PORPHYRINS Текст научной статьи по специальности «Химические науки»

CC BY
19
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
НефтеГазоХимия
ВАК
Область наук
Ключевые слова
transition metals / porphyrin complexes / olefin oxygenation / molecular oxygen / нефтяные металлопорфирины / бифункциональные экстрагенты / асфальтены / дикислородные аддукты / эпоксидирование алкенов

Аннотация научной статьи по химическим наукам, автор научной работы — Агагусейнова Минира Магомед Али

This article presents data on the synthesis of oil metal porphyrin complexes of transition metals by separating mixtures of metal porphyrins of Azeri oil. The isolated mixture of metalloporphyrins is first subjected to demetallization with hydrochloric acid (pH = 1–2), turning into a mixture of porphyrins, then, to obtain individual metal porphyrin complexes, the required transition metal ions are introduced into the porphyrin ring by treating the mixture with these metal salts. It was shown that the yield of synthesized oil porphyrins is 42–85%, depending on the nature of the metal. The composition and structure of the synthesized oil metalloporphyrins containing iron, cobalt, nickel, manganese are established by modern methods of physicochemical analysis. The catalytic properties of synthesized metalloporphyrins in the epoxidation of unsaturated alkenes have been investigated.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЭПОКСИДИРОВАНИЕ ОЛЕФИНОВ МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ В ПРИСУТСТВИИ НЕФТЯНЫХ МЕТАЛЛОПОРФИРИНОВ

В данной статье представлены данные по синтезу нефтяных металлопорфириновых комплексов переходных металлов путем разделения смесей металлопорфиринов азербайджанской нефти. Выделенная смесь металлопорфиринов вначале подвергается деметаллизации соляной кислотой (pH = 1–2), превращаясь в смесь порфиринов, затем для получения индивидуальных по металлу порфириновых комплексов, требуемые ионы переходного металла вводятся в порфириновое кольцо путем обработки смеси солями данных металлов. Показано, что выход синтезированных нефтяных порфиринов составляет 42–85% в зависимости от природы металла. Методами ИК-, УФ-спектроскопии и элементного анализа установлены состав и строение синтезированных нефтяных металлопорфиринов, содержащих железо, кобальт, никель, марганец. Исследованы каталитические свойства синтезированных металлопорфиринов в реакции эпоксидирования непредельных алкенов.

Текст научной работы на тему «EPOXIDATION OF OLEFINS WITH MOLECULAR OXYGEN IN THE PRESENCE OF PETROLEUM METAL PORPHYRINS»

УДК: 543.272.72

https://doi.org/10.24412/2310-8266-2022-4-40-42

EPOXIDATION OF OLEFINS WITH MOLECULAR OXYGEN IN THE PRESENCE OF PETROLEUM METAL PORPHYRINS

Agaguseynova Minira M.

Azerbaijan State University of Oil and Industry, AZ1010, Baku, Azerbaidjan Republic ORCID: http://orcid.org/000-0003-2471-2136, E-mail: Minira_baku@yahoo.com

Abstract: This article presents data on the synthesis of oil metal porphyrin complexes of transition metals by separating mixtures of metal porphyrins of Azeri oil. The isolated mixture of metalloporphyrins is first subjected to demetallization with hydrochloric acid (pH = 1-2), turning into a mixture of porphyrins, then, to obtain individual metal porphyrin complexes, the required transition metal ions are introduced into the porphyrin ring by treating the mixture with these metal salts. It was shown that the yield of synthesized oil porphyrins is 42-85%, depending on the nature of the metal. The composition and structure of the synthesized oil metalloporphyrins containing iron, cobalt, nickel, manganese are established by modern methods of physico-chemical analysis. The catalytic properties of synthesized metalloporphyrins in the epoxidation of unsaturated alkenes have been investigated.

Keywords: transition metals, porphyrin complexes, olefin oxygenation, molecular oxygen. For citation: Agaguseynova M.M. EPOXIDATION OF OLEFINS WITH MOLECULAR OXYGEN IN THE PRESENCE OF PETROLEUM METAL PORPHYRINS. Oil & Gas Chemistry. 2022, no. 4, pp. 40-42.

DOI:10.24412/2310-8266-2022-4-40-42

ЭПОКСИДИРОВАНИЕ ОЛЕФИНОВ МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ В ПРИСУТСТВИИ НЕФТЯНЫХ МЕТАЛЛОПОРФИРИНОВ

Агагусейнова М.М.

Азербайджанский государственный университет нефти и промышленности, AZ1010, г. Баку, Азербайджанская Республика

ORCID: http://orcid.org/000-0003-2471-2136, E-mail: Minira_baku@yahoo.com Резюме: В данной статье представлены данные по синтезу нефтяных металлопор-фириновых комплексов переходных металлов путем разделения смесей металлопор-фиринов азербайджанской нефти. Выделенная смесь металлопорфиринов вначале подвергается деметаллизации соляной кислотой (pH = 1-2), превращаясь в смесь пор-фиринов, затем для получения индивидуальных по металлу порфириновых комплексов, требуемые ионы переходного металла вводятся в порфириновое кольцо путем обработки смеси солями данных металлов. Показано, что выход синтезированных нефтяных порфиринов составляет 42-85% в зависимости от природы металла. Методами ИК-, УФ-спектроскопии и элементного анализа установлены состав и строение синтезированных нефтяных металлопорфиринов, содержащих железо, кобальт, никель, марганец. Исследованы каталитические свойства синтезированных металлопорфиринов в реакции эпоксидирования непредельных алкенов.

Ключевые слова: нефтяные металлопорфирины, бифункциональные экстрагенты, асфальтены, дикислородные аддукты, эпоксидирование алкенов. Для цитирования: Агагусейнова М.М. Эпоксидирование олефинов молекулярным кислородом в присутствии нефтяных металлопорфиринов // НефтеГазоХимия. 2022. № 4. С. 40-42.

D0I:10.24412/2310-8266-2022-4-40-42

Introduction

Among natural metal porphyrins, petroleum metal porphyrin complexes are of particular interest because they are easy to obtain and widely used in petrochemical processes [13]. Among natural metalloporphyrins, oil metalloporphyrin complexes are particularly interesting, which are distinguished by their simplicity of preparation and potential applications in petrochemical processes. Literature sources [4-15] provide information on their use for producing high-octane gasolines as antiknock agents to gasolines in the catalytic purification of natural gas from hydrogen sulfide and to create a membrane material for purifying natural gas from radon.

Oil metalloporphyrins are extremely interesting objects for creating supramolecular formations of various structures that exhibit unique photophysical and chemical properties [16-20]. This work is devoted to the current research topic of oil porphyrins, the interest in which has been steadily growing in the last two decades. The main task and merit of the presented work is its practical orientation, which is lacking in the vast majority of other works in this area carried out by well-known foreign and domestic teams.

It is no secret that the study of the applied properties of oil porphyrins is inhibited by the complexity of their isolation in pure form. The study is aimed at solving the problem of extracting oil porphyrins and studying their catalytic properties by the example of the epoxidation of olefins, well studied for synthetic metalloporphyrin catalysts.

In this paper, let's present the results of studies onthe development of a method for the synthesis of catalytic systems based on extracted porphyrins, and their study as catalysts for the alkene oxidation reaction.

40 НефтеГазоХимия

4•2022

НАШ САЙТ В ИНТЕРНЕТЕ: WWW.NEFTEGAZOHIMIYA.RU

(ИМИЧЕСКИЕ ТЕХНОЛОГИИ И ПРОДУКТЫ

*о-

Experimental part

A mixture of petroleum metalloporphyrins was obtained from petroleum by extraction with acetone, ethanol, and other selective extractants. The isolated mixture cannot be used for catalytic oxygenation of hydrocarbons, because different metals direct reactions in different ways. In this regard, a mixture of metalloporphyrin complexes of oil containing different metals is converted into a mixture of metalloporphyrins having only one required metal. To carry out this transformation, a method was used, according to which a mixture of metalloporphyrin compounds isolated from oil was treated with hydrochloric acid (pH 1-2), the reaction mass was neutralized with alkali, then washed with water, dried over Na2SO4, and distilled in a vacuum. Received a mixture of petroleum porphyrins, having b.p. 138-1430C/1.5 mmHg

The desired transition metal cation was introduced into the porphyrin ring by metalation. The essence of the method lies in the fact that in petroleum porphyrin (H2P) two active hydrogens at the nitrogen atoms of the porphyrin ring are replaced by an alkali metal by the action of benzyl sodium according to the reaction:

H2P + 2phCH2Na ^ Na2P + 2phCH3

Treatment of a sodium derivative of petroleum porphyrin (H2P) with transition metal salts results in the formation of the corresponding metalloporphyrins (MPs):

Na2P + MX2 ^ MP + 2NaX M = Fe, Co, Mn, Cu, Ni

Results and its discussion

The formation of metal porphyrin complexes (MPs) as a result of these transformations was established by studying their electronic spectra. In the electronic spectra of these compounds, absorption bands were found at 509-517 NM, 556-569 NM, and 523-534 NM, which characterize the presence of coordination bonds between transition metal ions and nitrogen atoms in the cavity of the porphyrin ring.

In the IR spectra of metalloporphyrins obtained on the basis of petroleum porphyrin concentrate, characteristic bands were found confirming the presence of a heme ring. Thus, pyrrole fragments are characterized by absorption bands at vibration frequencies equal to 1503, 1526, and 1604 cm-1. The absorption band at 854 cm-1 corresponds to out-of-plane bending vibrations of the methine

bridges of the porphyrin ring. The absorption band at 632 cm-1 corresponds to the signals of the out-of-plane bending vibrations of the = NH groups in the -C - N and C = N complex, the groups are characterized by absorption bands at 1376 cm-1 and 1441 cm-1, respectively.

In the IR spectrum, functional groups in the side branches of petroleum metalloporphyrins: -COOR, -NH2, -OH, C=O, etc. appear at 1733-1726 cm-1, 3251-3245 cm-1, 3382-3369 cm-1 and 1710-1703 cm-1, respectively. When the synthesized complexes are treated with hydrochloric acid, they decompose. As expected, the specific absorption bands in the electronic spectra of these compounds disappear.

To evaluate the catalytic effect of metalloporphyrins obtained on the basis of an oil porphyrin concentrate, they were tested as a catalyst for the decomposition of hydrogen peroxide.

Decomposition was carried out by adding an H2O2 solution to prepared solutions of metalloporphyrins and KOH in dimethylformamide. The concentrations of metaloporphyrins, KOH, and H2O2 varied within different limits. The decomposition rate of perhydrol was determined volumetrically by measuring the volume of released oxygen:

2H2O2 ^ 2H2O + O2

Table 1 shows the catalytic activity (A) of petroleum metaloporphyrin compounds, obtained by dividing the decomposition rate (W) of H2O2 by a known catalyst concentration: A = W/Ccat.

As can be seen from this table 1, manganese-porphyrin (MnP) and cabalt porphyrin (CoP) complexes have the most effective catalytic action. Due to the natural ligand environment, these complexes are highly soluble in hydrocarbons and organic media compared to synthetic metalloporphyrins.

Taking into account the effective catalytic properties of the obtained metalloporphyrins, we used these substances as a catalyst for the epoxidation of unsaturated hydrocarbons with molecular oxygen.

It turned out that the oxygenation of cyclohexene in the presence of catalytic amounts of petroleum metal porphyrin

Таблица 1

H2O2 disproportionation rate (W) and catalytic activity (A) ofcatalyst - 0.025 mol/lmetalmetalloporphyrins at temperature 250 °C

Рetroleummetalloporphyrins W, ml O2/min. A, с-1

FeP 1.89±0.12 75.6

SoP 2.47±0.11 98.8

MnP 2.96±0.2 118.4

NiP 0.969±0.02 38.4

withoutcatalyst 0.68±0.15 27.2

Таблица 2

Epoxidation of olefins with molecular oxygen in the presence of petroleum metal porphyrins

Olefins Yields of the corresponding olefin oxides during their epoxidation in the presence of NPK, % Physical constants of obtained olefin oxides

FeP T-r epoxidation SoP MnP

Trimethylethylene 24.8 650 s 29.6 42.6 Trimethylethyleneoxide, bp 73-74, a|° 0.80

Cyclopentene 32.8 720С 35.2 43.5 Cyclopenteneoxide, bp 1020

Cyclohexene 21.4 750C 36.7 45.3 Cyclohexene oxide, b.p. 129-130 °C, 1.4552

1 -Methylcyclohexne 28.6 800C 22.4 46.4 1 -Methylcyclohexene oxide b.p. 140-143 °C

Styrene 25.8 770С 28.6 46.5 Styreneoxide b.p.132 °C

Penten-1 20.3 640C 18.9 47.0 Pentene-1 oxide, b.p. 83-85, n§0 1.3963

4 • 2022

НефтеГазоХимия 41

complex (NPK) at room temperature yields cyclohexene oxide in 27-47%. Epoxidation of trimethylethylene, cyclopentene, 1-methylcyclohexene, and styrene was also carried out using a similar procedure. The results of the experimental data are shown in table 2.

The obtained epoxy compounds were identified by GLC and specific chemical transformations characterizing the oxirane ring [18-20]. As can be seen from the data in table 2, the petroleum metal porphyrins CoP and MnP are the most epoxidizing catalysts in the oxygenation of olefins.

СПИСОК ЛИТЕРАТУРЫ

1. Лен Ж.-М. Супрамолекулярная химия.Концепциии перспективы. Новосибирск: Наука, 1998. 334 с.

2. Groves K., Lee J. Oxometalloporphyrins in Oxidative Catalysis. The porphyrin handbook, 2000, vol. 4, p.17-39.

3. Suslick K.S. Shape-Selective Oxidation by Metalloporphyrins. The porphyrin handbook, 2000, vol 4, p. 41-63.

4. Marchon J.C.R. Oxometalloporphyrins in Oxidative Catalysis. The porphyrin handbook, 2003, vol. 11, p. 75-132.

5. Sheldon R.A. Marcel Dekker New York. Metalloporphyrins in catalytic oxidation, 1994, p. 390.

6. Barona J.C., Carmona Ch.C., Brocksom T.J., Oliveira K.T. Porphyrins as catalysts in scalable organic reactions. Molecules, 2016, 21(3) 10, p. 310.

7. Lesage S. Xu H., Rurhom L. The occurrence and roles of porphyrins in the environment. Hydrological sciences Journal, vol. 38.4. pp. 343-354

8. imran M., Ramran M., Qureshi A.K., Khan M.A., TarigM.Emering applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors, 2018, vol. 8, pp. 95-112.

9. Meunier B. Metalloporphyrins as Versatile catalysts for oxidation. Chemical review, 1992, vol. 92, no. 6, p.1411.

10.Achugasim O., Ojinnaka Ch., Osuji L. Management of petroporphyrins in a crude oil polluted environment. Eur. Chem. Bull, 2013, vol. 2(10), p p. 794-796.

11.Garcia-Arellano H., Buenrostro-GonralerE., Varguez-Duhalt R. Biocatalytic Transformation of petroporphyrins by chemical modified cytochomec. Willey Interscience. Biotechnology and Bioengineering, 2004, vol. 85.7. pp. 697-798

12.Маравин Г.Б., Авдеев М.В., Багрий Е.И. Окислительная функционализа-

ция насыщенных углеводородов на металлокомплексных катализаторах порфириного ряда // Нефтехимия. 2000. Т. 40. № 1. С.1-21.

13.Мираламов Г.Ф. Каталитическая очистка природного газа и углеводородных газовых выбросов нефтехимической промышленности отсероводоро-да // Нефтехимия. 2005. Т. 45. № 5. С. 397-399.

14.Birnboum T., Hahn T., Martin C., Kortus J., Fronk M., Lungwitz F., Zahn D.R.T., Salvan G. Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. J. Phys. Condens Matter, 2014, vol. 26. pp. 104201.

15.Freeman D.H., O'Haver T.C. Derivative spectrophotometry of petroporphyrins. Energy and fuels, 1990, vol. 4, pp. 688-694.

16.Агагусейнова M.M., Абдуллаева Г.Н.. Салманова Н.И. Супрамолекулярные металлопорфириновые каталитические системы для нефтехимического синтеза // Нефтепереработка и нефтехимия, 2010. № 1. С.172- 175.

17.Серебряков А.О. Особенности состава, свойств и переработки нефтей азербайджанской акватории Каспийского моря // Геология, география и глобальная энергия, 2012. № 3 (46). С. 7.

18.Милордов Д.В. Сопоставительный анализ экстракционных методов выделения порфиринов из асфальтенов тяжелой нефти // Химия и технология топлив и масел, 2013. № 3. С. 29-33.

19.Alben J.O. Infrared Spectroscopy of Porphyrins. In the Porphyrins Dolphin D Ed Academic Press. New York NY USA, 1978, vol. 3, pp. 323-345.

20.Teizo Kitagawa, Yukihiro Ozaki Infraredand Raman Spectra of Metalloporphyrins Metal Complexes with Tetrapyrrol Ligands, 2005, vol. 64, pp. 98-102.

REFERENCES

1. Len ZH.-M. Supramolekulyarnaya khimiya. Kontseptsii iperspektivy [Supramolecular chemistry. Concepts and perspectives]. Novosibirsk, Nauka Publ., 1998. 334 p.

2. Groves K., Lee J. Oxometalloporphyrins in oxidative catalysis. The porphyrin handbook, 2000, vol. 4, pp. 17-39.

3. Suslick K.S. Shape-selective oxidation by metalloporphyrins. The porphyrin handbook, 2000, vol. 4, pp. 41-63.

4. Marchon J.C.R. Oxometalloporphyrins in oxidative catalysis. The porphyrin handbook, 2003, vol. 11, pp. 75-132.

5. Sheldon R.A. Metalloporphyrins in catalytic oxidation. New-York, Marcel Dekker Publ., 1994. p. 390.

6. Barona J.C., Carmona Ch.C., Brocksom T.J., Oliveira K.T. Porphyrins as catalysts in scalable organic reactions. Molecules, 2016, vol. 21(3) 10, p. 310.

7. Lesage S. Xu H., Rurhom L. The occurrence and roles of porphyrins in the environment. Hydrological sciences Journal, vol. 38.4. pp. 343-354.

8. imran M., Ramran M., Qureshi A.K., Khan M.A., Tarig M. Emering applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors, 2018, vol. 8, pp. 95-112.

9. Meunier B. Metalloporphyrins as Versatile catalysts for oxidation. Chemical review, 1992, vol. 92, no. 6, p. 1411.

10.Achugasim O., Ojinnaka Ch., Osuji L. Management of petroporphyrins in a crude oil polluted environment. Eur. Chem. Bull, 2013, vol. 2(10), pp. 794-796.

11.Garcia-Arellano H., Buenrostro-GonralerE., Varguez-Duhalt R. Biocatalytic transformation of petroporphyrins by chemical modified cytochomec. Willey Interscience. Biotechnology and Bioengineering, 2004, vol. 85.7. pp. 697-798.

12.Maravin G.B., Avdeyev M.V., Bagriy YE.I. Oxidative functionalization of

saturated hydrocarbons on metal complex catalysts of the porphyrin series. Neftekhimiya, 2000, vol. 40, no. 1, pp. 1-21 (In Russian).

13.Miralamov G.F. Catalytic purification of natural gas and hydrocarbon gas emissions from the petrochemical industry of hydrogen sulfide. Neftekhimiya, 2005, vol. 45, no. 5, pp. 397-399 (In Russian).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

14.Birnboum T., Hahn T., Martin C., Kortus J., Fronk M., Lungwitz F., Zahn D.R.T., Salvan G. Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. J. Phys. Condens Matter, 2014, vol. 26. pp. 104201.

15.Freeman D.H., O'Haver T.C. Derivative spectrophotometry of petroporphyrins. Energy and fuels, 1990, vol. 4, pp. 688-694.

16.Agaguseynova M.M., Abdullayeva G.N.. Salmanova N.I. Supramolecular metal porphyrin catalytic systems for petrochemical synthesis. Neftepererabotka i neftekhimiya, 2010, no. 1, pp. 172- 175 (In Russian).

17.Serebryakov A.O. Features of the composition, properties and processing of oils in the Azerbaijani water area of the Caspian Sea. Geologiya, geografiya i global'naya energiya, 2012, no. 3 (46), p. 7 (In Russian).

18.Milordov D.V. Comparative analysis of extraction methods for the isolation of porphyrins from heavy oil asphaltenes. Khimiya i tekhnologiya topliv i masel, 2013, no. 3, pp. 29-33 (In Russian).

19.Alben J.O. Infrared spectroscopy of porphyrins. In the Porphyrins Dolphin D Ed Academic Press. New-York, NY USA Publ., 1978, vol. 3, pp. 323-345.

20.Teizo Kitagawa, Yukihiro Ozaki. Infrared and Raman spectra of metalloporphyrins Metal Complexes with Tetrapyrrol Ligands, 2005, vol. 64, pp. 98-102.

ИНФОРМАЦИЯ ОБ АВТОРЕ / INFORMATION ABOUT THE AUTHOR

Агагусейнова Минира Магомед Али, д.х.н., проф. кафедры химии и технологии неорганических веществ, Азербайджанский государственный университет нефти и промышленности

Minira M. Agaguseynova, Dr. Sci (Chem.). Prof. of the Department of Chemistry and Technology of Inorganic Substances, Azerbaijan State University of Oil and Industry.

42 НефтеГазоХимия

4 • 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.