Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron filings, and recycled rubber waste
Benamar Balegha, Hamid Sellafb, Adda Hadj Mostefac,
Driss Djafarid, Ali Meksie
a Adrar University, Faculty of Science and Technology,
Civil Engineering Department, LGCE Laboratory,
Adrar, People's Democratic Republic of Algeria,
e-mail: [email protected], corresponding author,
ORCID Ю: https://orcid.org/0000-0002-8529-7063
b Saida University, Faculty of Technology,
Civil Engineering and Hydraulic Department, LGCE Laboratory,
Saida, People's Democratic Republic of Algeria, e-mail: [email protected],
ORCID Ю: https://orcid.org/0009-0006-3943-3024
c Relizane University, Faculty of Technology,
Civil Engineering Department,
Relizane, People's Democratic Republic of Algeria, e-mail: [email protected],
ORCID Ю: https://orcid.Org/0009-0004-0086-9280
d Adrar University, Faculty of Science and Technology,
Civil Engineering Department, LDDI Laboratory,
Adrar, People's Democratic Republic of Algeria, e-mail: [email protected],
ORCID Ю: https://orcid.org/0000-0002-0836-6715
e Mustapha Stambouli University, Faculty of Sciences and Technology, Department of Civil Engineering,
Laboratory for the Study of Structures and Mechanics of Materials, Mascara, People's Democratic Republic of Algeria, e-mail: [email protected],
ORCID Ю: https://orcid.org/0009-0009-0320-3704
doi https://doi.Org/10.5937/vojtehg72-49724
FIELD: chemical technology ARTICLE TYPE: original scientific paper
Abstract:
Introduction/purpose: The use of composite filters made from waste such as granite powder, iron filings, and rubber granules for treating landfill leachate is an innovative approach that can help mitigate the environmental impact of landfill sites.
ACKNOWLEDGEMENT: This work was supported by PRFU project code
A01L02UN010120200004 and the Civil Engineering and Environmental Laboratory of the University of Sidi Bel Abbes, Algeria.
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Methods: The experiment involved assessing the performance of singlelayer and three-layerfilters before and after treatment. To gauge the effectiveness of each filter configuration, the permeability coefficient is calculated for every cell. Calculating the permeability coefficient for singlelayer and three-layer filters is an important aspect of assessing the efficiency of the treatment process for landfill leachate. It is also essential to consider other physical and chemical parameters (e.g. color, pH, oxidation coefficient, conductivity, BOD, COD, Ss, NO4-, NO3-, NH4+, PO4-, and P) to assess the overall treatment efficiency and the removal of specific contaminants.
Results: The results demonstrated a decrease in both physical and chemical factors with the formation of each cell. Notably, cell 5, consisting of a three-layer filter, exhibited favorable outcomes across physical and chemical parameters as well as permeability. Conversely, cell 2, containing granite powder, exhibited the best physical and chemical parameters but performed poorly in terms of the transmittance factor.
Conclusion: These findings suggest that granite powder, iron filings, and rubber granules can serve as cost-effective filter layers for leachate treatment, helping alleviate its adverse environmental and groundwater impact.
Key words: leachate, granite powder, iron filings, rubber waste, permeability, physico-chemical parameters.
Introduction
Landfills are used worldwide for domestic and industrial solid waste disposal. They are greatly advantageous in terms of environmental protection and respect of sanitary and economic norms. Since landfills generally cover large areas, they are liable to rainfall. Thus, this leads to the generation of large amounts of leachate which is created at the bottom of landfills (Izumoto et al, 2019; Liu et al, 2022; Ishaq et al, 2023). This is due to the deterioration of waste resulting from a range of physical, chemical and biological processes (Azougarh et al, 2019; Gan et al, 2023). The inappropriate disposal of leachate substances induces the pollution of water bodies, groundwaters, (Chidichimo et al, 2020; Negi et al, 2020), and green spaces (Alizadeh et al, 2018; Brahmi et al, 2021).
The leachate treatment has seen a lot of interest recently due to leachate varied characteristics which include higher rates of organic and non-organic substances such as salts, ammonia, and minerals (Ahmadzadeh & Dolatabadi, 2018; Dolatabadi et al, 2021). The type of waste, the age of the storage zone, the location, and the climate in the burial zone are only a few of the factors that affect the content and
composition of leachate (Wang et al, 2021; Suknark et al, 2023; Yu et al, 2022). Generally, recently-constructed burials are characterized by higher amounts of organic compounds and non-toxic organisms, thus minimizing leachate over time. Throughout time, organic chemicals dissolve; hence, levels of their concentrations are reduced.
There are many approaches to the leachate processing. The conventional approach relies on reducing the leachate concentration through channeling it towards sanitation stations. Alternatively, the biological treatment is carried out using water pumps for oxygen stabilization, often known as aerobic and anaerobic processes. Moreover, physical and chemical treatments of leachate are supported in landfills and mines by methods such as deposition, chemical oxidation, sintering, vibration, air removal, and coagulation (Trabelsi et al, 2023; Faheem et al, 2022; Da Silva et al, 2022; Zhao et al, 2023). Some approaches, however, proved less effective in diminishing detrimental substances. From a financial perspective, some treating approaches are known to be costly; therefore, local authorities cannot manage such higher budgets. For this reason, it is highly important to introduce an economical and an environmentally-friendly plan to handle this problem.
Bougdour et al. (2022) installed a multi-layered filter of different materials, modeled in a brick-like shape; it was formed by mixing sand with sawdust, iron filings, and a fertilizer including a limited amount of coal. The current approach was promising in reducing all contaminants. The averages for BOD, COD, nitrogen, phosphorus, and ammonia were 92.8%, 88.7%, 81.6%, 72.4%, and 97%, respectively. Reddy et al. (2020) relied on the integration of four different filtration substances - calcite, zeolite, sand, and iron filings. Consequently, they were effective in removing individual contaminants such as cadmium, copper, nickel, chromium, zinc, nitrate, and phosphate in a 24-hour trial. The first-class motor model was applicable only to remove nitrates by iron filings. Sellaf et al. (2017) among others have designed a filter composed of dam deposits and rubber granules which was promising in removing organic and inorganic materials. Balegh & Sellaf (2022) installed a filter of three different layers: rubber, ceramic powder, and geotextile. This model has also demonstrated thriving potential when physical and chemical properties are reduced.
The main objective of this work is to introduce a new approach to leachate filtration by exploiting the results of previous studies. A new filter made up of monolayers (granite powder, iron filings, rubber granules) and multilayers (the same materials but repositioned) is designed to eliminate contaminants and improve the permeability and the physical and chemical
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
parameters of sap drainage, using composite cell filtration systems based on different residual materials. Seven filter cells were filled with layers of leftover rubber granules, iron filings and granite powder of the same thickness, changing the position of the layer each time and ensuring that the permeability of the geotextiles in the lower part of the cells was improved. They were then filled with landfill leachate. This study was designed to determine the effect of the three-layer filter element in the cells, as well as the effect of thickness stratification on various physicochemical parameters of the leachate, including permeability, color, pH, conductivity, redox potential, and carbon pollution by nitrogen and phosphorus. The economic objective is to assess the performance and suitability of the leachate treatment method at landfill sites. The study also aims to eliminate residues of rubber, iron filings, and granite and reuse them as filters for leachate treatment, thereby protecting groundwaters from pollution and preserving the environment.
Materials
Leachate
In our preliminary experiment, leachate samples were collected from the landfill site located in the city El-Keurt in the western region of Mascara in Algeria (see Figure 1): coordinates 35 ° 2 3'40 " North and 0 ° 08'23 East. It is located at 5 km from the province of Mascara along national road N° 06 in western Algeria. The area is characterized by low hills, sparse woodlands and medium regression. The average annual rainfall is estimated at 240 and 300 mm. As for the average temperature, it is about 28 °C and humidity ranges up to 60%.
Leachate is noticeably dark as a result of its complex chemical composition. Furthermore, it is stinky and liquid. In addition, its liquidity allows it to fuse into groundwaters. The samples were gathered daily at 8 a.m. for seven days. Once stabilized, they were placed in glass containers and stored in laboratories at a regular temperature and humidity. The final sample for the experiment was the resulting seven-day mixture of an equal size.
Granite waste is largely abundant in the region. It is also solid and possesses various forms. Granite powder was extracted from granite waste in construction workshops and then placed in a micro-Deval test device to be fragmented and crushed as shown in Figure 2. After that, it was sifted through a 2 mm sieve.
Figure 1 - Location map of the study area and granite waste powder
Figure 2 - Granite powder, scrap rubber, and iron filings
Granite powder underwent several laboratory identification tests based on standard procedures in accordance with international AFNOR standards. (NF P 94-051, NF P 94-054, NF 94-056, NF P 94-057, and NF P 94-068). The particle size distribution of this powder showed liquid limit 32 .00%, sand 2%, silt 38%, clay 60% (see Figure 3), blue color size VB = 0.22 cm3, and specific surface SST = 4.62 m2/g. The chemical analysis of the granite powder was conducted in accordance with NF EN 1744, and the results are presented in Table 1. The results presented in Figure 4 show that the granite powder mostly contained quartz (SiO2), some traces of orthoclase (NaKAlSi3O), and alpite (NaAlSi3Os).
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Figure 3 - Particle size distribution of granite powder and iron filings
Property SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) MgO (%) NaOH (%) Cl (%) SiO3 (%) P.F2 (%)
Granit powder 70.23 16.55 2.63 1.33 0.44 4.74 0.05 0.02 4.01
Iron waste filings
Iron filings represent a fine powder (see Figure 2) obtained from iron cutting and molding workshops, abundantly available in all construction workshops. The iron filings extracted from the construction workshop were sifted through 2 mm sieves, then washed and then dried under 50 °C. The chemical components of the iron filings were: 93.40% iron, 2.67% silicone, 0.03% phosphorus, 0.05% magnesium, 0.01% sulfur, 0.31% manganese, and 3.53% carbon (Olutoge et al, 2016; Kim et al, 2018).
Rubber waste granulate
Rubber granulate can be obtained by mechanical processing through a crush or friction machine. We exhausted the rubber and collected the scattered fragments and then sifted the output through 02 mm sieves (see Figure 2). Rubber granulate consisted of a complex mixture of elastic plastics, polyisoprene, polyptadine, and styrene butadiene. Numerator oil (1.9%), zinc oxide (1.9%), carbon black (31.0%) and fatty acid (1.2%) are also important components in rubber scrap (Sellaf et al, 2014).
The geotextile used in the current study is non-woven. It is made of polypropylene with the estimated tensile strength of 15 kN m-1, the resistance to static punching of 2700 N, the mass per unit area of 2000 gm-2, and the permeability of 40 mms-1 (Sellaf et al, 2017).
Methods
Filtration experiences
The experiment consists of seven cells of 1000 mm PVC columns, 50 mm in diameter. Figure 5 shows the scheme of the experiment. The first cell is left empty from any layer for the purpose of observing the ratio of filtration of the geotextile layer. Cells 02, 03 and 04 were filled each with one layer to a height of 600 mm (granite powder layer, iron filings layer and rubber granule layer), respectively. The remaining cells - 05, 06 and 07 - are equally filled in three layers at 200 mm height.
The position of the layers for each cell was taken into account. The positioning is depicted in Figure 5.
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
The cells are positioned vertically so that they flow naturally and then all cells are fed with leachate through a separate tank placed above the cells with a capacity of 4,000 ml.
The leachate flows for 30 minutes on all cells until they are saturated and then the filtration results are collected for each cell.
Figure 5 - Schematic representation of the apparatus for the loaded soil-geotextile
filtration test
The examination and study of the cell samples are carried out for different aspects: "Color, pH, electrical conductivity (EC) and total suspended solids (SS), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia (NH4+) nitrate (NO3-), phosphate (PO4-), and phosphorus (P) ", based on the international standards for the analysis of water and liquid waste as shown in Table 2.
Parameters Reference Standards
pH pH NF T 90-008
Conductivity EC (|js/cm) NF EN 27888
Dissolved oxygen DO(mg/l) NF T 90-106
Biochemical Oxygen Demand DBO(mg/l) NFT 90-103-10
Suspended solids SS(mg/l) NFT 90-105
Phosphorus P(mg/l) NFT 90-042-01
Nitrite NO2-(mg/l) NF EN ISO 13395
Nitrates NO3-(mg/l) NF EN 26777
Ammonia NH4+(mg/l) NF T 90-015
Results and the discussion
The major elements found in granite powder are Si, Al, Ca, Fe, and Mg in their oxidizing forms such as SiO2, AhO3, CaO, Fe2O3 and MgO, in addition to the metal composition of iron filing: 3.53% carbon, 2.67% silicone, 0.05% magnesium, 0.01% sulfur, 0.03% phosphorus, 0.31% manganese, and 93.40% iron as well as a complex installation of the rubber granules of elastomer (1.9%), zinc oxide (1.9%), carbon black (31.0%), and fatty acid (1.2%). All these diverse and inclusive elements result in the interconnectedness between granules, thus rendering them more effective in the leachate filtration process.
Table 3 shows the physical and chemical factors of the leachate resulting from cell number one. This cell does not contain any layer (geotextiles) and no changes in the physical and chemical factors of the leachate have been observed when compared to the leachate before filtration. This is proved by Balegh & Sellaf (2022) and Koerner & Koerner (2013).
Permeability
Water flows based on Darcy’s law (Darcy, 1856) in a vertically placed porous medium: the test cell can be considered as a cylindrical tube with a size of an S. In addition, this cylindrical tube is filled with porous substances: granite powder, rubber granules and iron filings in a size of an L length. Subsequently, they are rotated with distilled water at a total height of ДИ (fixed). When the medium is saturated with water, consequently, Q is the flow (m3/s). Furthermore, k is the permeability or the hydraulic
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
connectivity (m/s). Moreover, A is the vertical surface of the flow (m), L is the layer length (600mm), and h marks the difference between the upstream and the downstream.
Table 3 - Filtration test results for cell 01
Property Leachate Pre filter Cell 01(Geotextile)
pH 7.5 7.5
EC (ps/cm at 22C°) 3200 3200
Dissolved oxygen 4.11 4.11
COD(mg/l) 27000 27000
BOD(mg/l) 5600 5600
SS (mg/l) 820 820
P (mg/l) 1 .08 1.08
PO4-(mg/l) 3.50 3.50
NO2-(mg/l) 1 .45 1.45
NO3-(mg/l) 7.86 7.86
NH4+(mg/l) 48 48
Figure 6 - Permeability test
The filter encompassing layers made up of granite powder, rubber granules, and iron filings is considered as a porous multi-layered middle barrier designed according to the Darcy permeability model (see Figure 6). The permeability coefficients were compared for all cells taking into account their composition.
As shown in Figure 7, the cell containing a single layer has the weakest permeability such as cell 02 (granite powder layer) - 1.50 mm/s, followed by cell 03 (iron filings layer) - 4.87 mm/s, contrary to cell 04 (layer of rubber granules) - 11.02 mm/s. On the other hand, the results related to the cells with three layers were correlated to the positioning of the granite powder and iron filings layers. The results were as follows: cell 05= 3.55 mm/s, cell 06= 3.07 mm/s, and cell 07= 2.89 mm/s.
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Figure 8 - Values of pH
Color
Before conducting the filtration process, the color of the leachate was dark. After flowing the leachate into the multilayer cells (granite powder layer, iron filings layer, and rubber granules layer), the color of the resulting leachate was light, though the layers were dissimilar (see cells 05, 06, and 07). Likewise, when the leachate was flown through the single layer filtration cells, there was a noticeable change in its color; it was transparent in cell 02 (granite powder layer). Yet, the color is slightly cloudy in cell 03 (iron filings layer). Similarly, it was dark brown in cell 04 (rubber granules layer).
The relevant references have demonstrated that the change in color has three main indications: the value of the hydrogen exponent, the reduction rate of COD, and ammonia. In a similar fashion, Veli et al. (2021) have proved the relationship between the pH value and the COD value besides its effect on color removal. (42% of the COD removal showed the color removal of 97% whereas removing 93% of COD demonstrated the color removal of 98%). Beyazit & Atmaca (2021) have also argued that a maximum of 83.84% COD removal resulted in removing color from the filter material of about 84.46%. Similarly, Onn et al. (2020) succeeded in removing 45.70% of the COD and in lightening the color of the filtered water to 97.30%.
pH
When pH was tested for the filtration results in all cells from 02 to 07, it was observed that the pH values were stable between 7.5 to 7.8 in the filtration of the three-layer cells containing granite powder (see Figure 8), iron filings and rubber granules despite their different position. Unlike single layer cells, different pH values were depicted. Cell 02 showed pH=8.50 while, cell 03 demonstrated pH=8.10 whereas cell 04 has demonstrated pH=7.55.
Xie et al. (2015) have confirmed the correlation between pH and concentrations in dissolved heavy metals (Zn, Cu, Ni, Pb, and Cd). The pH of leachate increases when fewer inorganic ingredients dissolve; thus the concentration of heavy metals will be reduced, 0ygard et al. (2004) and Chen et al. (2020).
Potential conductivity and oxidation
According to Figures 9 and 10, variables in the conductivity potential in addition to the oxidation factor were evident in all cells, especially in single-layer cells in which values varied from 70%, 67%, and 7% (1.24, 1.34, and 3.81 mg/l, respectively) for the oxidation factor. For the conductivity factor, the results dropped to a third or a half (1250, 1850, and 3050 ps/cm).
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
For the three-layered cells, regardless of the positions and the arrangements of layers, the results were approximate in terms of the oxidation conductivity factor. The results of the conductivity factor were 1900, 1950, and 1980 ^s/cm in cells 05, 06 and 07, respectively. For the oxidation factor, the results were 1.42, 1.45, and 1.47 mg/l in cells 05, 06, and 07, respectively.
Figure 10 - Values of dissolved oxygen (mg/l)
Carbon pollution
The results presented in Figure 11 show the BOD and COD values, and the difference appears in the results depending on the cell composition, as they were close in the multilayer cells regardless of their arrangement, and were far apart in the monolayer cell results. The average BOD leachate concentrations were 1220, 2400, 5200, 2600, 2700, 2750 mg/L for cells 02, 03, 04, 05, 06 and 07, respectively.
Although the results obtained were uneven, as it was obtained that the granite powder layer achieved a 78% decrease, in contrast to the iron filings layer which achieved a 21% decrease, the decrease was estimated
at 7%. For the cells containing three layers, regardless of their order, the percentage on bioxygen demand decreased from 50% to 44%.
The chemical oxygen demand values before the filtration were estimated at 27,000 mg/L. After the intracellular filtration, the change was evident as a function of cell compositions from a monolayer to tertiary layers, and the removal curve was similar to the BOD removal curve (elimination curve), where the elimination rate amplitudes in the monolayer cells were 55%, 51%, and 48 % (cells 02, 03 and 04, respectively), while in the trilayer cells the elimination rate ranged from 55% to 49%.
The values of suspended materials ranged from 350 to 720 mg/l based on the composition of each cell. The reduction ratio in the singlelayer cells was 57.4% to 10.9 % while for the three-layer cells, the reduction ratio was between 45% and 43%. These findings are in line with those found by Aziz et al. (2020).
Deng et al. (2020) have built an iron filings-filled electrochemical system (IFES) to improve the removal efficiency of total nitrogen (TN) and the chemical oxygen demand (COD). The current TN removal efficiency is significant.
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Nitrogen pollution
Prior to filtration, the ammonia factor was 33 times higher (48 mg/l, and 1.45 mg/l) (see Figure 12) than the nitrate factor. The nitrite factor is normal and moderate (8.12 mg/l). After the filtration process, the reduction of the three factors in all single-layer and three-layer cells is observed. The three coefficients of the values were analogous in the three-layer cells. The ammonia values were estimated at NH4+ 31.51,32.22, and 33.14 mg/l for cells 05, 06, and 07, and the nitrate values were estimated at NO3- 4.65, 4.71 and 4.77 for cells 05, 06, and 7. The nitrite values NO3- were between 0.87, 0.92, and 0.95 for cells 05, 06, and 07.
The single-layer cells containing granite powder were promising in the removing rate for the three coefficients in which the ratio is estimated at 58% and 71 %, unlike the cell containing iron filings layer where the removal ratio was estimated between 40% and 52%. Nonetheless, the cell containing the rubber granules layer had a very low removal ratio, estimated at 41% to 48 %.
Sun et al. (2020) successfully removed some parameters using EC (electrocoagulation) added to iron powder to lose electrons and produce coagulants in situ, and the removal efficiency was 72.5% for total organic carbon (TOC), 98.5% for ammonia, and 98.6% for carbon and phosphorus. Some heavy metals and hardness were also removed.
Phosphorus pollution
Prior to the filtration process, the value of the phosphorus factor (P) was significantly lower than the value of the phosphate factor (PO4-), where the ratio made up a quarter (25%) (see Figure 13). From cell 06, the difference between the results of the single-layer cells and the three-layer cells is evident.
In the three-layer cells, the results were remarkably similar, and the variation did not surpass 0.04 for phosphate and 0.01 for phosphorus. Unlike the single layer cells, cell 02 containing granite powder layer depicted a higher removal value of 64% to 75 % for the phosphorus agent and the phosphate. Instead, cell 03 containing the iron filings layer demonstrated a weak removal value of 9% to 15 % for the phosphate and phosphorus coefficients.
Figure 13 - Values of phosphorus pollution (mg/l)
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
The removal efficiency of PO4-, total nitrogen (TN), and total phosphorus (TP) in this study is better than the results obtained by Liang et al. (2023), where PO4-, TN, and TP are reduced between 89.25%, 80.64%, and 92.2%, respectively.
Conclusion
In this study, a leachate filtration system consisting of seven cells was tested and divided into two types: single-layer cells and multi-layer cells. The conclusions drawn from this experiment are limited to three branches in accordance with the permeability coefficient, the composition of the single cell, and the arrangement of layers for the permeability coefficient which is affected by the material constituting the cell in this context. Cell 04, which consists of a layer of rubber granules, has the highest permeability coefficient, while cell 02, with a layer of granite powder, has the lowest permeability coefficient. This indicates that the choice of material significantly impacts the permeability of the cell with rubber granules allowing for higher permeability compared to granite powder.
It appears that altering the arrangement or the sequence of layers within the cell had no discernible impact on the permeability coefficient. This implies that the configuration of layers in the multi-layered cell does not exert any influence on its permeability, and the permeability remains consistent irrespective of how the layers are arranged.
When using geotextile alone in the filtration of leachate, there is no change in the physicochemical parameters of the resulting water. This suggests that geotextile alone is not effective in treating leachate.
The cells with granite powder alone show better results in reducing the physicochemical parameters of leachate compared to the cells with the three layers of granite powder, iron filings, and rubber granulate. Significant improvements in various physicochemical parameters of leachate are observed in cells 02, 03, 05, and 06. For cell 04, there is almost no improvement in the physicochemical parameters of leachate.
The current study highlights the use of a three-layer filtration combination comprising granite powder, iron filings, and rubber granulate as a promising alternative to the conventional use of gravel or sand in the drainage layer of leachate collection and treatment systems. Incorporating scrap tires, iron filings, and granite waste in this manner not only offers a sustainable solution but also mitigates the challenges associated with solid waste disposal. This approach transforms waste materials into valuable resources, contributing to environmental conservation and pollution reduction.
References
Ahmadzadeh, S. & Dolatabadi, M. 2018. Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Chemosphere, 212, pp.533-539. Available at: https://doi.org/10.1016/j.chemosphere.2018.08.107.
Alizadeh, M., Mirhoseini, S.A., Dolatabadi, M. & Ebrahimi, A.A. 2018. Evaluation the Effect of Landfill Leachate on the Surface Water Quality: A Case Study in Tonekabon Landfill. Journal of Environmental Health and Sustainable Development, 3(1), pp.472-480 [online]. Available at: http://jehsd.ssu.ac.ir/article-1-102-en.html [Accessed: 10 March 2024].
Aziz, H.A., Noor, A.F.M, Keat, Y.W., Alazaiza, M.Y.D. & Abd Hamid, A. 2020. Heat Activated Zeolite for the Reduction of Ammoniacal Nitrogen, Colour, and COD in Landfill Leachate. International Journal of Environmental Research, 14, pp.463-478. Available at: https://doi.org/10.1007/s41742-020-00270-5.
Azougarh, Y., Abbaz, M., Hafid, N., Benafqir, M., Ez-zahery, M. & El Alem, N. 2019. Characterization and treatment of leachate of the great agadir discharge by infiltration-percolation onto titaniferous sand. Scientific African, 6, e00154. Available at: https://doi.org/10.1016Zj.sciaf.2019.e00154.
Balegh, B. & Sellaf, H. 2022. Treatment of Leachate of Landfills Using Filters of Ceramic Waste and Scrap Rubber Waste. Water, Air, & Soil Pollution, 233, art.number:526. Available at: https://doi.org/10.1007/s11270-022-06004-x.
Beyazit, N. & Atmaca, K. 2021. COD and Color Removal from Landfill Leachate by photo-electro-Fenton Process. International Journal of
Electrochemical Science, 16(5), art.number:210539. Available at: https://doi.org/10.20964/2021.05.65.
Bougdour, N., Radaa, C., Tajat, N., Elhayaoui, W., Zoubir, J., Hamdani, M., Qourzal, S., Nahle, A., Assabbane, A. & Bakas, I. 2022. Treatment for landfill leachate through sequential multi-sand-layering filters coupled with sulfate radical-based advanced oxidation processes. International Journal of Environmental Science and Technology, 20, pp. 135-148. Available at: https://doi.org/10.1007/s13762-022-04036-8.
Brahmi, S., Baali, F., Hadji, R., Brahmi, S., Hamad, A., Rahal, O., Zerrouki, H., Saadali,, B. & Hamed, Y. 2021. Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria. Arabian Journal of Geosciences, 14, art.number:249. Available at: https://doi.org/10.1007/s12517-021-06571-z.
Chen, B., Han, L., Yoon, S., Lee, W., Zhang, Y., Yuan, L. & Choi, Y. 2020. Applying steel slag leachate as a reagent substantially enhances pH reduction efficiency for humidification treatment. Environmental Science and Pollution Research, 27, pp.18911-18923. Available at: https://doi.org/10.1007/s11356-020-08429-5.
Chidichimo, F., De Biase, M. & Straface, S. 2020. Groundwater pollution assessment in landfill areas: Is it only about the leachate. Waste Management, 102, pp.655-666. Available at: https://doi.org/10.1016/j.wasman.2019.11.038.
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Da Silva, V.E.P.S.G., de S. Rollemberg.S.L., da S. e Santos, S.G., Silva, T.F.C.V., Vilar, V.J.P. & Dos Santos, A.B. 2022. Landfill leachate biological treatment: perspective for the aerobic granular sludge technology. Environmental Science and Pollution Research, 29, pp.45150-45170. Available at:
https://doi.org/10.1007/s11356-022-20451-3.
Darcy, H.P.G. 1856. Determination des lois d'ecoulement de l'eau a travers le sable. In: Dalmont, V. (Ed.) Les Fontaines Publiques de la Ville de Dijon, pp.590-594. Paris, Batignolles: Typographie Hennuyer.
Deng, Y., Chen, N., Feng, C., Chen, F., Liu, H. & Chen, Z. 2020. Enhancing electrochemical treatment of nitrogen-containing organic wastewater by iron filings: Performance, inhibition of organochlorine by-products accumulation and cost-effectiveness. Chemical Engineering Journal, 384, art.number:123321. Available at: https://doi.org/10.1016/j.cej.2019.123321.
Dolatabadi, M., Swiergosz, T. & Ahmadzadeh, S. 2021. Electro-Fenton approach in oxidative degradation of dimethyl phthalate - The treatment of aqueous leachate from landfills. Science of The Total Environment, 772, art.number:145323. Available at: https://doi.org/10.1016/j.scitotenv.2021.145323.
Faheem, K., Khan, S.U., Washeem, M. & Khan, S.U. 2022. Energy efficient removal of COD from landfill leachate wastewater using electrocoagulation: parametric optimization using RSM. International Journal of Environmental Science and Technology, 19, pp.3625-3636. Available at:
https://doi.org/10.1007/s13762-021-03277-3.
Gan, P., Sun, Y., Li, Y., Liu, W., Ye, J., Tong, M. & Liang, J. 2023. The degradation of municipal solid waste incineration leachate by UV/persulfate and UV/H2O2 processes: The different selectivity of SO4" and •OH. Chemosphere, 311(1), art.number:137009. Available at:
https://doi.org/10.1016/j.chemosphere.2022.137009.
Ishaq, A., Said, M.I.M., Azman, S.B., Abdulwahab, M.F. & Jagun, Z.T. 2023. Optimizing total ammonia-nitrogen concentration for enhanced microbial fuel cell performance in landfill leachate treatment: a bibliometric analysis and future directions. Environmental Science and Pollution Research, 30, pp.86498-86519. Available at: https://doi.org/10.1007/s11356-023-28580-z.
Izumoto, S., Hamamoto, S., Kawamoto, K., Nagamori, M. & Nishimura, T. 2019. Methane eruptions from landfill final cover soil during rainfall events in laboratory experiments. Soils and Foundations, 59(4), pp. 1052-1062. Available at: https://doi.org/10.1016/j.sandf.2019.05.002.
Kim, Y., Hanif, A., Usman, M., Munir, M.J., Kazmi, S.M.S. & Kim, S. 2018. Slag waste incorporation in high early strength concrete as cement replacement: environmental impact and influence on hydration & durability attributes. Journal of Cleaner Production, 172, pp.3056-3065. Available at:
https://doi.org/10.1016/jJclepro.2017.11.105.
Koerner, R.M. & Koerner, G.R. 2013. Geotextile Filter Failures Under Challenging Field Conditions. In: Stuedlein, A.W. & Christopher, B.R. (Eds.) Sound Geotechnical Research to Practice: Honoring Robert D. Holtz II (BOOK
SET: Geo-Congress 2013), pp.272-289. ASCE-American Society of Civil Engineers. Available at: https://doi.org/10.1061/9780784412770.018.
Liang, X., Wang, D., Li, M., Liu, D., Han, J.,Wei, Q., Huang, Y., Huang, H. & Feng, Q. 2023. Study on the Effect of Iron-Carbon Micro-electrolysis Process on the Removal of Nitrogen and Phosphorus from Rural Domestic Wastewater with Low Carbon to Nitrogen Ratio. Water, Air, & Soil Pollution, 234, art.number:113. Available at: https://doi.org/10.1007/s11270-023-06131-z.
Liu, M., Lu, H., Deng, Q., Ji, S., Qin, L. & Wan, Y. 2022. Shear strength, water permeability and microstructure of modified municipal sludge based on industrial solid waste containing calcium used as landfill cover materials. Waste Management, 145, pp.20-28. Available at:
https://doi.org/10.1016/j.wasman.2022.04.031.
Negi, P., Mor, S. & Ravindra, K. 2020. Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environment, Development and Sustainability, 22, pp.1455-1474. Available at: https://doi.org/10.1007/s10668-018-0257-1.
Olutoge, F.A., Onugba, M.A. & Ocholi, A. 2016. Strength Properties of Concrete Produced With Iron Filings as Sand Replacement. Current Journal of Applied Science and Technology, 18(3), pp.1-6. Available at:
https://doi.org/10.9734/BJAST/2016/29938.
Onn, S.W., Bashir, M.J.K., Sethupathi, S., Abu Amr, S.S. & Nguyen, T.T. 2020. Colour and COD removal from mature landfill leachate using electropersulphate oxidation process. Materials Today: Proceedings, 31(1), pp.69-74. Available at: https://doi.org/10.1016/j.matpr.2020.01.193.
0ygard, J.K., Mage, A. & Gjengedal, E. 2004. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water Research, 38(12), pp.2851-2858. Available at:
https://doi.org/10.1016/j.watres.2004.03.036.
Reddy, K.R., Dastgheibi, S. & Cameselle, C. 2021. Mixed versus layered multi-media filter for simultaneous removal of nutrients and heavy metals from urban stormwater runoff. Environmental Science and Pollution Research, 28, pp.7574-7585. Available at: https://doi.org/10.1007/s11356-020-11120-4.
Sellaf, H., Trouzine, H. & Asroun, A. 2017. Assessment of the Performance of Sediments and Scrap Rubber Layers to Filter the Leachate of Landfills. International Journal of Engineering Research in Africa, 35, pp.162-174. Available at: https://doi.org/10.4028/www.scientific.net/JERA.35.162.
Sellaf, H., Trouzine, H., Hamhami, M. & Asroun, A. 2014. Geotechnical Properties of Rubber Tires and Sediments Mixtures. Engineering, Technology & Applied Science Research (ETASR), 4(2), pp.618-624. Available at:
https://doi.org/10.48084/etasr.424.
Suknark, P., Buddhawong, S. & Wangyao, K. 2023. Investigating the effect of waste age and soil covering on waste characteristics prior to landfill mining using an electrical resistivity tomography technique. Journal of Environmental
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Management, 339, art. number: 117898. Available at:
https://doi.org/10.1016/jJenvman.2023.117898.
Sun, D., Hong, X., Cui, Z., Du, Y., Hui, K.S, Zhu, E., Wu, K. & Hui, K.N. 2020. Treatment of landfill leachate using magnetically attracted zero-valent iron powder electrode in an electric field. Journal of Hazardous Materials, 388, art.number:121768. Available at: https://doi.org/10.1016/j.jhazmat.2019.121768.
Trabelsi, I., Salah S. & Ounaeis, F. 2013. Coupling short-time sequencing batch reactor and coagulation-settling process for co-treatment of landfill leachate with raw municipal wastewater. Arabian Journal of Geosciences, 6, pp.20712079. Available at: https://doi.org/10.1007/s12517-011-0464-7.
Veli, S., Arslan, A., Isgoren, M., Bingol, D. & Demiral, D. 2021. Experimental design approach to COD and color removal of landfill leachate by the electrooxidation process. Environmental Challenges, 5, art.number: 100369. Available at: https://doi.org/10.1016/j.envc.2021.100369.
Wang, Y.-N, Xu, R., Kai, Y., Wang, H., Sun, Y., Zhan, M. & Gong, B. 2021. Evaluating the physicochemical properties of refuse with a short-term landfill age and odorous pollutants emission during landfill mining: A case study. Waste Management, 121, pp.77-86. Available at:
https://doi.org/10.1016/j.wasman.2020.12.001.
Xie, S., Ma, Y., Strong, P.J. & Clarke, W.P. 2015. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms. Journal of Hazardous Materials, 299, pp.577-583. Available at: https://doi.org/10.1016/jJhazmat.2015.07.065.
Yu, F., Wu, Z., Wang, J., Li, Y., Chu, R., Pei, Y. & Ma, J. 2022. Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites. Environmental Pollution, 306, art.number:119366. Available at: https://doi.org/10.1016/j.envpol.2022.119366.
Zhao, Z., Zhang, Y., Yu, L., Hou, D., Wu, X., Li, K. & Wang, J. 2023. Fenton pretreatment to mitigate membrane distillation fouling during treatment of landfill leachate membrane concentrate: Performance and mechanism. Water Research, 244, art.number:120517. Available at:
https://doi.org/10.1016/j.watres.2023.120517.
Mejora de las caracterfsticas ffsicas y qufmicas del lixiviado de vertederos mediante un sistema de filtracion que incorpora granito, limaduras de hierro y residuos de caucho reciclado
Benamar Balegha, autor de correspondencia, Hamid Sellafb,
Adda Hadj Mostefac, Driss Djafaria, Ali Meksid a Universidad de Adrar, Facultad de Ciencias y Tecnologla,
Departamento de Ingenierla Civil, Laboratorio LGCE,
Adrar, Republica Argelina Democratica y Popular
b Universidad de Saida, Facultad de Tecnologla,
Departamento de Ingenierla Civil e Hidraulica, Laboratorio LGCE,
Saida, Republica Argelina Democratica y Popular
c Universidad de Relizane, Facultad de Tecnologla,
Departamento de Ingenierla Civil,
Relizane, Republica Argelina Democratica y Popular
d Universidad Mustapha Stambouli, Facultad de Ciencias y Tecnologla, Departamento de Ingenierla Civil,
Laboratorio para el Estudio de Estructuras y Mecanica de Materiales, Mascara, Republica Democratica y Popular de Argelia
CAMPO: tecnologla quimica
TIPO DE ARTICULO: articulo cientifico original
Resumen:
Introduccion/objetivo: El uso de filtros compuestos hechos a partir de desechos como polvo de granito, limaduras de hierro y granulos de caucho para tratar el lixiviado de los vertederos es un enfoque innovador que puede ayudar a mitigar el impacto ambiental de los vertederos.
Metodos: El experimento implico evaluar el rendimiento de los filtros de una y tres capas antes y despues del tratamiento. Para medir la eficacia de cada configuracion de filtro, se calcula el coeficiente de permeabilidad para cada celda. Calcular el coeficiente de permeabilidad para los filtros de una y tres capas es un aspecto importante para evaluar la eficiencia del proceso de tratamiento del lixiviado de los vertederos. Tambien es esencial considerar los demas parametros fisicos y quimicos (por ejemplo, color, pH, coeficiente de oxidacion, conductividad, DBO, DqO, SS, NO4-, NO3-, NH4+, PO4- y P) para evaluar la eficiencia general del tratamiento y la eliminacion de contaminantes especificos.
Resultados: Los resultados demostraron una disminucion de los factores fisicos y quimicos con la formacion de cada celda. Cabe destacar que la celda 5, que consta de un filtro de tres capas, exhibio resultados favorables en los parametros fisicos y quimicos, as! como en la permeabilidad. Por el contrario, la celda 2, que contiene polvo de granito, exhibio los mejores parametros fisicos y quimicos, pero tuvo un desempeno deficiente en terminos del factor de transmitancia
Conclusion: Estos hallazgos sugieren que el polvo de granito, las limaduras de hierro y los granulos de caucho pueden servir como capas de filtro rentables para el tratamiento de lixiviados, ayudando a aliviar impactos ambientales y de aguas subterraneas adversos.
Palabras claves: lixiviado, polvo de granito, limaduras de hierro, desechos de caucho, permeabilidad, parametros fisicoquimicos.
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
Улучшение физических и химических свойств фильтрата, образующегося на свалках, благодаря системе фильтрации, включающей гранитную пыль, металлическую стружку и переработанные резиновые отходы
Бенамар Балеха, корреспондент, Хамид Селлаф®
Адда Хадж Мостефав, Дрисс Джафари’, Али Мексиг а Адрарский университет, факультет науки и технологии, кафедра гражданского строительства,
г. Адрар, Алжирская Народная Демократическая Республика б Университет Саиды, технологический факультет, Строительно-гидравлический отдел, лаборатория LGCE, г. Саида, Алжирская Народная Демократическая Республика
в Университет Релизане, технологический факультет, кафедра гражданского строительства,
г. Релизане , Алжирская Народная Демократическая Республика г Университет Туши Мустафы Стамбули, факультет науки и технологий, кафедра строительства,
Лаборатория исследования структуры и механики материалов, г. Маскара, Алжирская Народная Демократическая Республика
РУБРИКА ГРНТИ: 61.13.21 Химические процессы,
61.01.94 Охрана окружающей среды ВИД СТАТЬИ: оригинальная научная статья
Резюме:
Введение/цель: Использование композитных фильтров,
изготовленных из таких отходов, как гранитная пыль, металлическая стружка и резиновая крошка для очистки фильтрата, образующегося на свалках, является
инновационным подходом, который может помочь снизить воздействие свалок на окружающую среду.
Методы: В ходе эксперимента оценивались характеристики однослойных и трехслойных фильтров до и после обработки. В целях оценки эффективности каждой конфигурации фильтра для каждой ячейки был рассчитан коэффициент проницаемости. Расчет коэффициента проницаемости для однослойных и трехслойных фильтров является важным аспектом оценки эффективности процесса очистки сточных вод на свалках. Также для оценки общей эффективности очистки и удаления конкретных загрязнений важно учитывать другие физические и химические параметры: цвет, рН, коэффициент окисления, электропроводность, BOD, COD, SS, NO4-, NO3-, NH4+, Р04-,а также Р.
Результаты: Результаты показали снижение как физических, так и химических факторов при формировании каждой ячейки.
Примечательно, что ячейка №5, состоящая из трехслойного фильтра, показала благоприятные результаты по физическим и химическим параметрам, а также по проницаемости. И наоборот, ячейка №2, содержащая гранитную пыль, обладала наилучшими физическими и химическими параметрами, но имела плохие показатели с точки зрения коэффициента пропускания. Выводы: Результаты исследования свидетельствуют о том, что гранитная пыль, металлическая стружка и резиновая крошка могут использоваться как экономичные фильтрующие слои для очистки фильтрата, помогая снизить его негативное воздействие на окружающую среду и грунтовые воды.
Ключевые слова: фильтрат, гранитная пыль, металлическая стружка, резиновая крошка, проницаемость, физико-химические свойства.
Побо^шаваже физичких и хеми|ских карактеристика оцедних вода депонта путем филтрационог система ко]и садржи отпад од гранита, опи^ака гвож^а и рециклиране гуме
Бенамар Балиа, аутор за преписку, Хамид Селафб,
Ада Хау Мустифав, Дрис Цафари3, Али Мексиг а Универзитет Адрар, Факултет науке и технолопф,
Одежеже за графвинарство,
Адрар, Народна Демократска Република Алжир
б Универзитет Саида, Технолошки факултет,
Графвинско-хидраулични одсек, ЛГЦЕ лаборатори)а,
Саида, Народна Демократска Република Алжир в Универзитет Релизане, Технолошки факултет,
Одежеже за графвинарство,
Релизане, Народна Демократска Република Алжир
г Универзитет „Мустафа Стамболи”, Факултет науке и технолопф,
Одсек за графвинарство,
Лаборатори)а за испитиваже структуре и механике материала,
Маскара, Народна Демократска Република Алжир
ОБЛАСТ: хемифке технологи)е
КАТЕГОРИJА (ТИП) ЧЛАНКА: оригинални научни рад Сажетак:
Увод/цип>: КоришПе^е композитних филтера изра^ених од отпада, као што су гранитни прах, опи^ци гвож^а и грануле од гуме, щи служе за третираъе оцедних вода депонта, представка нов приступ щи може да помогне у смаъиваъу утица]а депонта на животну средину.
Методе: Експериментом су се процеъивале карактеристике ]едносло]них и тросло]них филтера пре и после третираъа. За
Balegh, B. et al, Enhancing the physical and chemical characteristics of landfill leachate through a filtration system incorporating granite, iron
filings, and recycled rubber waste, 1369-1394.
VOJNOTEHNICKI GLASNIK / MILITARY TECHNICAL COURIER, 2024, Vol. 72, Issue 3
e
мереже ефикасности сваке конфигураций филтера понаособ израчунат ]е коефици'ент пермеабилности за сваку Пели'у. Израчунаваье коефици'ента пермеабилности за ]едносло]не и тросло]не филтере важан ]е аспект приликом одре^иваьа ефикасности процеса третираьа оцедних вода депонта. Тако^е, важно ]е узети у обзир остале физичке и хемцске параметре попут бо]е, pH фактора, коефици'ента оксидацце, проводъивости, BOD, COD, SS, NO4-, NO3, NH4+, PO4', као и P како би се одредила ефикасност процеса у целини, као и успешност уклаьаьа специфичних зага^ивача.
Резултати: Резултати су показали редуковаье и физичких и хеми'ских фактора са формираьем сваке по]единачне Пели'е. Нарочито ]е Пели'а броj 5, са тросло]ним филтером, показала поже^не резултате у погледу физичких и хеми'ских параметара, као и пермеабилности. Насупрот томе, Пели'а броj 2 са гранитним прахом имала ]е на]бо^е физичке и хеми'ске параметре, али се показало да е слаба у погледу фактора пропусности.
Закъучак: Наведени резултати наводе на закъучак да гранитни прах, опи^ци гвож^а и гумени гранулат могу да буду исплативи филтрира]уПи сло]еви при излуживаьу оцедних вода и да помажу да се смаьи ьихов утица] на животну средину и подземне воде.
К^учне речи: оцедне воде, гранитни прах, опи^ци гвож^а, гумени отпад, пермеабилност, физичко-хеми'ски параметри.
Paper received on: 08.03.2024.
Manuscript corrections submitted on: 25.09.2024. Paper accepted for publishing on: 26.09.2024.
© 2024 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/rs/).