УДК 631. 41
A. F. Sabrekov, I. E. Kleptsova, M. V. Glagolev, Sh. Sh. Maksyutov, T. Machida METHANE EMISSION FROM MIDDLE TAIGA OLIGOTROPHIC HOLLOWS OF WESTERN SIBERIA
The paper presents experimental data on the methane emissions from West Siberian middle taiga oligotrophic hollows. Studied fluxes vary considerably from -0.08 to 58 mgCm-2h-1 (median is 2.76 mgCm-2h-1). Received data are consolidated in the scope of «standard model» Bc8 conception of methane emission. The model contains medians of CH4 flux distributions on seven different microlandscape types depending on their area and duration of methane emission in the respective zones. The total flux from the middle taiga oligotrophic hollows is 0.37 TgC or approximately 70 % of CH4 total flux from middle taiga mires. Version Bc8 of this model estimates the value of yearly CH4 emission from mires of whole Western Siberia as 2.93 TgCyr-1 that accounts for around 2.4 % of the total mire methane emission.
Key words: methane emission, mires, oligotrophic hollows, middle taiga, West Siberia.
Introduction
Methane is an important greenhouse gas contributing as much as 20 % of the anthropogenic radiative forcing in the contemporary atmosphere [1]. Therefore estimation of the relative contribution of different methane sources to the atmosphere is a crucial task in addressing the problem of global warming.
Wetlands comprise the largest and most variable natural source of CH4 released to the atmosphere (estimations of emission are varied from 100 to 231 TgCH4yr-1 [2]. West Siberia gains the especial importance in this respect as one of the most paludified regions in the world with the mire area of 68.5 Mha or 27 % of this region area [3]. However the question about regional methane flux from this territory remains open: the previously published estimations varied considerably from 2 to 22 MtCH^yr-1 [4-6]. Thereby the goal of this research was to evaluate the contribution of mire landscapes to the regional Western Siberia CH4 emission. The middle taiga oligotrophic hollows were chosen as the case study of present research. The objectives of the study were:
- to define the values of specific methane fluxes from middle taiga oligotrophic hollows of Western Siberia;
- to evaluate the relative contribution of different middle taiga microlandscapes to the regional flux from this zone.
Research methods
The field experiments were carried out during 2007-2010 summer-autumn periods. Primarily the variety of wetland types was reduced to 8 microlandscape types: palsas, ryams (pine-shrub-sphagnum communities), ridges, fens, poor fens, oligotrophic hollows, peat mats (lakeside quagmires) and wetland ponds. Further the measurements were concentrated on oligotrophic hollows of Western Siberia middle taiga zone. Key sites in a quantity of 6 were investigated over such period of time [7-9].
Measurements were made by a static chamber method. The chamber consisted of two parts: i) a permanent stainless steel square collar (40 * 40 cm) with
a channel for water seal, and ii) a removable plexiglas box (30 or 40 cm height). To minimize the changes of chamber temperature, the plexiglas box was covered with reflecting aluminum fabric. Mechanical disturbances of peat layer were prevented by using of the portable or permanent footbridges.
The air inside the chamber was circulated by the battery-operated internal fen. The bottom of the collar was inserted into the soil at the depth of 10 cm at the time of about 15 minutes before the starts of measurements. Gas were sampled at the times to = 0, t1, t2 and t3 to the nylon syringes («SFM», Germany). Exposition time (At = t3 - t0) were chosen correspondingly with the microlandscape type and usually varied from 30 to 60 min on the sites with a probably high and low fluxes respectively. Syringes were sealed by rubber stoppers and delivered to the laboratory. The leakage from syringes also was tested in a special experiment: as it turned out an initial CH4 concentration of 5 ppm was decreased with the rate of 0.02 % per hour.
Methane concentrations were measured by a gas chromatographs “KhPM-4” (“Hromatograf” Co., Moscow, Russia) and “Crystal-5000” (“Chromatec” Co., Yoshkar-Ola, Russia) with a flame-ionization detectors.
At each site following environmental characteristics were measured: air and peat temperatures (at the depths of 0, 5, 15, 45 cm) by temperature sensors “TERMOCHRON” iButton DS 1921-1922 (DALLAS Semiconductor, USA), pH and electroconductivity by Combo “Hanna 98129” and concentration of dissolved oxygen by “Ecotest-2000” (“ECONYX”, Russia). Botanical descriptions also were made.
The intensity of methane emissions was calculated from linear regression with weights [10]. Nonparamet-ric estimations of the density functions for methane flux probability were obtained by equal-probability interval histograms method.
Received data are consolidated in the scope of “standard model” Bc8 conception of methane emission. The model contains medians of CH4 flux distri-
butions on 8 different microlandscape types depending on their area (by [3]) and duration of methane emission in the respective zones [11].
Results and discussion
Up to the present moment only a few measurements of methane emissions in oligotrophic hollows were made in West Siberian middle taiga zone [8]. The main data array about CH4 fluxes was received over the last four years during the current research (see Tables 1-8).
Generally CH4 fluxes vary considerably from -0.08 to 58 mgCm-2h-1. Probability density distribution of
1,2
. . Methane flux. mgC-m*2-ir1 ..
-1 6 13
Fig . 1. Probability density distribution of methane fluxes from middle taiga oligotrophic hollows
CH4 emission values (see Fig. 1) has several peaks though the only one is significant having a regard to
accuracy. The figure 1 shows the most probable values of emission at 2.87 mgCm-2h-1 while the median is 2.76 mgCm-2h-1.
At the present time methodology of the “standard model” use an approach under which measurements have been provided in a number of individual wetlands to determine typical CH4 flux values. It is opposed to another approach supposing that the detail stationary measurements of the sole wetland are sufficient for a quite good estimation of spatial emission variability within the zone.
Such robust estimator as interquartile range was used for analysis of methodology correctness. It was found that the interquartile ranges were 1.81, 1.74 and 2.14 mgCm-2h-1 for all wetlands, the sole wetland (“Mukhrino” mire) and the wetlands without “Mukhri-no” mire, respectively. Data set of “Mukhrino” mire has the lowest interquartile range of CH4 fluxes, so the natural variability of fluxes in this data set is shown worst. It confirms that even the detail stationary measurements can not be an alternative to numerous investigations of the individual wetlands and methodology is quite correct.
A general result of the study is a statistical modeling on a base of the “standard model” conception which gives a logical picture of contribution of different microlandscapes to the regional CH4 flux from Western Siberia mires (see Fig. 2).
Table 1
CH4 emission from middle taiga oligotrophic hollows of Western Siberia (further - CH4 emission) in 2007
№ of point Date Temperature, °C WTL, cma) pH Botanical descriptions^ CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD
0 | 5 [ 15 | 45
T.Su. - N61.4 E73.3, 2007
1.H 16.08 12.1 - 15.0 12.3 11.4 2 3.9 Sch, And, Oxy 0.73 0.05
1.H 16.08 12.1 - 15.0 12.3 11.4 2 3.9 Sch, And, Oxy 0.66 0.09
2.H 18.08 19.7 - 14.5 12.8 11.2 0 4.1 Eri, Car, Sha 0.79 0.13
2.H 18.08 19.7 - 14.5 12.8 11.2 3 4.1 Eri, Car, Sha 1.56 0.14
2.H 18.08 21.7 - 15.0 13.3 11.3 0 4.1 Eri, Car, Sha 0.95 0.17
2.H 18.08 21.7 - 15.0 13.3 11.3 0 4.1 Eri, Car, Sha 0.25 0.32
3.H 18.08 20.3 - 21.3 16.0 11.8 -6 4.6 Car, Sha 0.86 0.16
3.H 18.08 20.3 - 21.3 16.0 11.8 -5 4.6 Car, Sha 0.88 0.19
3.H 18.08 18.9 - 20.7 16.0 11.8 3 4.6 Car, Sha 0.52 0.11
3.H 18.08 18.9 - 20.7 16.0 11.8 4 4.6 Car, Sha 1.35 0.35
T.Lem.GMK.H (11-13) - N60.903 E71.326, 2008
11 1.09 19.5 19.2 16.4 13.6 11.7 10 3.6 And, Ros, Bal 1.95 0.12
12 1.09 19.5 19.2 16.4 13.6 11.7 8 3.6 And, Ros, Bal 1.36 0.06
13 1.09 19.5 19.2 16.4 13.6 11.7 12 3.6 And, Ros, Bal 1.90 0.09
T.Dem.GMK.H (14-16) - N59.677 E69.976, 2008
14 4.09 8.7 9.6 12.8 14.2 14.0 10 3.9 Sch, Lim, Sph 1.78 0.07
15 4.09 8.7 9.6 12.8 14.2 14.0 10 3.9 Sch, Lim, Sph 3.70 0.15
16 4.09 8.7 9.6 12.8 14.2 14.0 10 3.9 Sch, Lim, Sph 1.87 0.08
a) And - Andromeda polifolia; Ang - Sphagnum angustifolium; Bal - Sphagnum balticum; Car - Carex sp.; Cha -Chamaedaphne calcylata; Eri - Eriophorum sp.; Jen - Sphagnum jensenii; Las - Carex lasiocarpa; Lim - Carex limosa; Lin - Sphagnum lindbergii; Maj - Sphagnum majus; Oxy - Oxycoccus microcarpus; Pap - Sphagnum papillosum; Ros - Carex rostrata; Sch - Scheuchzeria palustris; Vag - Eriophorum vaginatum.
b) Positive and negative values mean situations, when water table level (WTL) is lower and higher than mean level of moss surface respectively.
Table 2
CH4 emission in 2008 (without “Mukhrino” mire)
№ of point Date Temperature, °C WTL, cm pH Botanical descriptions CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD
0 | 5 | 15 | 45
T.Sh - N61.06 E69.46, 2008
07a 15.08 19.1 14.6 14.1 14.0 12.3 8 3.9 Cha, Vag, Ang 0.80 0.05
07b 15.08 21.1 16.3 14.7 14.0 12.3 5 3.9 Cha, Vag, Ang 58.00 19.4
07 12.08 23.3 19.5 15.0 14.3 13.3 35 4.0 Cha, Vag, Ang 0.22 0.09
08 15.08 19.0 16.2 14.8 13.8 12.7 4 3.6 Cha, Vag, Ang 13.88 9.91
08 12.08 22.8 18.2 16.3 14.3 12.8 25 3.5 Cha, Vag, Ang 34.44 14.2
09a 15.08 20.2 16.3 16.1 15.3 13.5 1.5 4.2 Cha, Vag, Ang 2.61 0.28
09b 15.08 19.4 16.2 16.0 15.3 13.4 0 4.2 Cha, Vag, Ang 1.49 0.07
09 12.08 24.4 18.2 16.3 14.7 13.8 15 3.9 Cha, Vag, Ang 7.20 2.22
10 14.08 13.8 14.2 15.3 15.0 15.4 0 4.0 Maj 44.10 4.31
10 15.08 16.8 18.2 18.1 16.4 14.5 -10 4.2 Maj 0.37 0.03
11 14.08 13.4 14.9 14.9 14.7 14.1 0 3.8 Maj 2.98 0.70
11 15.08 16.8 18.2 18.1 16.4 14.5 -20 3.9 Maj 43.02 3.78
12 14.08 12.7 14.1 14.1 14.1 13.6 0 3.9 Maj 0.92 0.09
12 15.08 17.9 17.1 17.0 15.8 14.4 -2 4.2 Maj 1.22 0.43
13 15.08 18.0 17.0 16.8 15.8 14.4 -10 4.0 Maj 1.64 0.10
14a 16.08 28.1 21.2 15.9 13.7 11.3 7 4.0 Cha, Vag, Bal 0.19 0.02
14b 16.08 27.4 23.9 21.9 13.2 11.7 12 4.0 Cha, Vag, Bal 0.31 0.02
14 16.08 28.7 22.3 17.7 13.7 11.3 7 4.0 Cha, Vag, Bal 2.47 0.15
15 16.08 25.2 21.5 17.6 14.0 11.5 9 3.5 Cha, Las, Ang 0.21 0.07
15 16.08 26.6 22.2 18.4 14.0 11.5 8 3.8 Cha, Las, Ang 0.55 0.03
16 16.08 24.2 20.6 16.6 15.1 12.1 14 3.8 Vag, Bal 1.49 0.80
16 16.08 24.9 19.8 17.2 15.1 12.1 8 3.8 Vag, Bal 1.88 0.12
11 16.08 19.3 16.2 12.9 11.2 11.9 -4 3.9 Maj 0.56 0.04
11 09.09 20.3 17.0 13.6 11.1 11.8 -6 3.9 Maj 0.36 0.04
11 09.09 21.5 17.3 14.6 11.2 11.8 -3 3.9 Maj 16.80 1.80
11 09.09 13.0 17.1 15.5 11.4 11.8 -5 3.9 Maj 10.21 11.3
09 09.09 12.0 11.5 11.9 11.5 11.3 10 4.2 Cha, Vag, Ang 11.50 2.87
09 09.09 11.9 14.4 12.5 11.3 10.6 6 4.2 Cha, Vag, Ang 2.28 0.14
T.Sh - N61.06 E69.46, 2009
8.1 26.08 24.7 20.1 14.9 13.7 10.5 2.5 3.9 Cha, Vag, Ang 1.06 0.03
8.2 26.08 32.3 26.4 22.2 15.7 12.7 25 3.9 Cha, Vag, Ang 3.55 2.06
17 26.08 38.6 19.2 13.7 12.3 9.0 7 3.9 Sch, Sph 1.37 1.91
17 26.08 28.0 25.3 21.9 14.4 10.5 37 3.9 Sch, Sph 3.23 2.38
a), b): see table 1.
Table 3
CH4 emission in 2008 on “Mukhrino” mire (N60.89 E68.68)
№ of point Date Temperature, °C WTL, cma) pH Botanical descriptions^ CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD
0 | 5 1 15 | 45
T.Mu.GMK.H; 2009
1 30.06 12.2 10.2 - - - 10 3.9 Sch, L m, Sph 2.36 0.13
1 30.06 11.2 10.0 - - - 10 3.9 Sch, L m, Sph 2.86 0.18
2 10.07 41.1 31.6 26.3 18.2 12.7 4 3.8 Sch, L m, Sph 1.85 0.12
2 10.07 28.2 30.0 27.2 18.4 12.7 5 3.8 Sch, L m, Sph 4.55 0.90
2 10.07 28.7 23.7 23.8 19.9 12.8 -3 3.8 Sch, L m, Sph 1.01 0.33
2 11.07 28.7 26.9 26.8 19.6 13.2 5 3.8 Sch, L m, Sph 3.56 0.22
2 11.07 33.5 27.0 26.7 19.8 13.2 12 3.8 h, c S m, Sph 1.44 0.12
2.1 11.07 33.7 27.0 26.7 19.9 13.2 -5 3.9 h, c S m, Sph 0.80 0.05
2.1 11.07 29.5 26.2 26.3 20.0 13.2 0 3.9 Sch, L m, Sph 1.88 0.12
2.1 12.07 17.0 19.1 19.3 18.7 13.6 -10 3.9 h, c S m, Sph 11.33 3.01
2.1 12.07 16.3 18.8 19.1 18.7 13.6 10 3.9 h, c S m, Sph 5.72 0.41
2.1 12.07 15.9 18.6 18.9 18.7 13.7 -10 3.9 h, c S m, Sph 5.87 0.37
2.2 12.07 15.4 17.9 18.2 18.4 13.7 -10 4.1 h, c S m, Sph 13.38 1.64
2.2 13.07 20.3 18.4 17.5 16.0 14.6 -10 4.1 Sch, L m, Sph 10.01 4.47
2.2 13.07 20.9 18.9 17.9 15.6 14.2 5 4.1 Sch, L m, Sph 2.65 0.28
2.2 13.07 20.8 19.3 18.3 15.7 14.1 10 4.1 Sch, L m, Sph 3.51 0.48
2.2 13.07 21.6 19.6 18.6 15.8 14.1 13 4.1 Sch, L m, Sph 0.70 0.04
Continuation of table 3
№ of point Date Temperature, °C WTL, cma) pH Botanical descriptions^ CH4 fluxes, mgCm 2 h 1
Air Soil on depth h (cm) Mean STD
0 | 5 1 15 | 45
T.Mu.GMK.Hb; 2009
4 11.08 10.9 13.0 12.5 12.9 12.0 5 3.8 She, Lim, Sph 1.55 0.22
4 11.08 10.9 13.0 12.5 12.9 12.0 5 3.8 She, Lim, Sph 1.71 0.08
4 11.08 12.6 13.4 12.5 12.9 12.0 5 3.8 She, Lim, Sph 0.83 0.08
4 11.08 12.6 13.4 12.5 12.9 12.0 5 3.8 She, Lim, Sph 1.76 0.09
4 11.08 16.4 14.4 12.5 12.9 12.0 5 3.8 She, Lim, Sph 0.71 0.04
4 11.08 16.4 14.4 12.5 12.9 12.0 5 3.8 She, Lim, Sph 1.76 0.09
4 11.08 19.1 15.1 12.6 12.9 12.0 5 3.8 She, Lim, Sph 0.15 0.06
4 11.08 19.1 15.1 12.6 12.9 12.0 5 3.8 She, Lim, Sph 1.89 0.10
4 11.08 17.6 15.4 12.7 12.9 12.0 5 3.8 She, Lim, Sph 0.39 0.13
4 11.08 17.6 15.4 12.7 12.9 12.0 5 3.8 She, Lim, Sph 1.83 0.09
4 11.08 12.7 14.6 13.6 12.9 12.0 5 3.8 She, Lim, Sph 1.94 0.10
4 11.08 12.7 14.6 13.6 12.9 12.0 5 3.8 She, Lim, Sph 1.53 0.35
4 11.08 11.6 14.4 13.6 12.9 12.0 5 3.8 She, Lim, Sph 1.86 0.09
4 11.08 11.6 14.4 13.6 12.9 12.0 5 3.8 She, Lim, Sph 0.64 0.03
4 11.08 11.1 14.1 13.8 13.0 12.0 5 3.8 She, Lim, Sph 1.91 0.10
4 11.08 11.1 14.1 13.8 13.0 12.0 5 3.8 She, Lim, Sph 1.39 0.07
4 11.08 11.9 14.1 13.8 13.0 12.0 5 3.8 She, Lim, Sph 1.83 0.09
a)- b): see table 1.
Table 4
CH4 emission in 2009 on “Mukhrino” mire (N60.89E68.68)
Temperature, °C CH4 fluxes, mgCm-2h-1 Temperature, °C CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD Air Soil on depth h (cm) Mean STD
0 1 5 | 15 0 1 5 | 15
T.Mu.GMK.Hb.4; 11.08.2009; WTL = 5 cm; pH = 3.8; T(soil on depth 45 cm) = 12.0 °C; botanical descri ption: Sch, Lim, Sph.
11.9 14.1 13.8 13.0 -0.04 0.01 10.9 | 14.0 | 13.7 | 13.0 0.70 | 0.07
10.9 14.0 13.7 13.0 1.77 0.11
T.Mu.GMK.Hb.6; 14.08.2009; WTL = 5 cm; pH = 4.0; T(soil on depth 45 cm) = 12.5 °C; botanical descri ption: Sch, Lim, Sph.
24.4 22.3 14.7 14.1 1.56 0.08 28.2 26.1 16.2 13.5 1.28 0.06
24.8 22.3 14.8 13.8 -0.08 0.01 27.4 21.2 16.9 13.9 1.43 0.11
24.9 22.5 14.9 13.7 1.28 0.08 25.9 20.5 16.9 13.9 0.41 0.02
25.4 22.9 15.3 13.5 1.26 0.06 25.9 20.3 16.9 13.9 1.48 0.07
25.5 23.0 15.3 13.5 0.05 0.03 25.9 19.8 16.8 14.0 1.37 0.07
26.1 23.8 15.6 13.5 1.37 0.07 25.9 19.6 16.8 14.0 0.33 0.02
27.3 24.8 15.9 13.5 0.41 0.04 25.1 19.2 16.7 14.0 1.42 0.07
27.6 25.1 16.0 13.5 1.27 0.06 19.3 18.3 16.6 14.1 1.35 0.07
28.4 26.1 16.2 13.5 0.08 0.04 19.1 18.3 16.5 14.1 0.76 0.04
T.Mu.GMK.Hb.7; 15.08.2009; WTL = 15 cm; pH = 4.1; T(soil on depth 45 cm) = 11.5 °C; botanical description: Sch, Lim, Sph.
26.3 18.1 13.6 13.6 7.50 0.59 30.1 18.8 14.8 13.2 2.69 0.14
26.6 18.4 13.6 13.4 1.00 0.06 29.3 18.5 14.8 13.3 2.04 0.14
26.8 18.4 13.7 13.4 6.39 0.60 29.0 18.4 14.8 13.3 2.63 0.16
27.8 18.9 13.8 13.3 6.42 0.59 26.4 18.1 14.8 13.3 2.39 0.13
28.5 19.1 13.9 13.3 1.26 0.26 25.4 18.0 14.8 13.3 1.70 0.08
28.9 19.2 13.9 13.3 5.24 0.26 21.8 17.6 14.8 13.3 3.51 0.18
29.8 19.4 14.1 13.3 4.44 0.34 19.5 17.2 14.8 13.3 3.98 0.36
29.9 19.5 14.1 13.3 0.41 0.15 18.9 17.2 14.8 13.3 1.78 0.09
30.4 19.5 14.2 13.2 3.23 0.17 14.7 16.7 14.8 13.3 2.92 0.29
30.5 19.6 14.3 13.2 0.67 0.06
a)- b): see table 1.
Oligotrophic hollows of middle taiga are found to be the most significant methane source with the annually emission rate at 0.37 TgC when the total flux from this zone is 0.53 TgC. It is attributed to the
great area covering for about 17 % of whole mire area in this region by [3] as well as to the high flux values (1st quartile/median/3rd quartile =
1.78/2.76/3.59 mgCm-2h-1).
Table 5
CH4 emission in 2009 on “Mukhrino” mire (continuation)
Temperature, °C CH4 fluxes, mgCm-2h-1 Temperature, °C CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD Air Soil on depth h (cm) Mean STD
0 1 5 | 15 0 1 5 | 15
T.Mu.GMK.Hb.5.1; 11.08.2009; WTL = 6 cm; pH = 3.6; T(soil on depth 45 cm) = 12.5 °C; botanical description: Sch, Lim, Sph.
13.6 13.6 12.9 13.0 2.75 0.06 17.3 16.0 13.3 13.0 2.79 0.06
14.1 13.5 12.9 13.0 2.72 0.06 18.9 16.6 13.5 13.0 2.86 0.06
14.9 13.7 12.9 13.0 2.80 0.06 17.2 16.6 13.8 13.0 2.91 0.07
13.3 13.1 13.0 13.0 2.79 0.06 15.8 15.3 14.0 13.0 2.85 0.09
11.6 12.5 13.0 13.0 2.73 0.06 12.8 13.5 14.0 13.0 2.77 0.06
10.6 12.0 13.0 13.0 2.91 0.07 13.7 13.4 14.0 13.0 2.79 0.06
10.9 12.0 13.0 13.0 2.76 0.06 15.6 14.3 14.0 13.0 2.68 0.06
10.5 11.9 13.0 13.0 2.85 0.06 15.6 14.7 14.1 13.0 2.74 0.06
11.9 12.3 13.0 13.0 2.79 0.06 12.9 13.2 14.1 13.0 2.82 0.06
15.1 14.2 13.1 13.0 2.70 0.06 11.9 12.6 14.1 13.0 2.76 0.06
10.9 12.1 14.0 13.0 2.70 0.06 10.6 11.7 13.8 13.0 2.61 0.06
11.1 12.2 13.9 13.0 2.52 0.16 10.3 11.4 13.7 13.0 2.69 0.06
11.4 12.3 13.9 13.0 2.67 0.06
T.Mu.GMK.Hb.5.2; 11.08.2009; WTL = 7 cm; pH = 3.6; T(soil on depth 45 cm) = 12.5 °C; botanical description: Sch, Lim, Sph.
13.6 13.6 12.9 13.0 3.27 0.12 17.3 16.0 13.3 13.0 2.91 0.07
14.1 13.5 12.9 13.0 2.79 0.06 18.9 16.8 13.6 13.0 2.96 0.07
14.9 13.7 12.9 13.0 2.96 0.07 17.0 16.4 13.9 13.0 2.96 0.07
13.2 13.1 13.0 13.0 2.92 0.07 15.8 15.3 14.0 13.0 2.99 0.07
11.6 12.5 13.0 13.0 2.91 0.07 12.8 13.5 14.0 13.0 2.86 0.06
10.6 12.0 13.0 13.0 2.86 0.06 13.7 13.4 14.0 13.0 2.86 0.06
10.9 12.0 13.0 13.0 2.89 0.07 15.6 14.7 14.1 13.0 2.97 0.07
10.6 11.9 13.0 13.0 2.85 0.06 15.6 14.3 14.0 13.0 3.03 0.07
11.9 12.3 13.0 13.0 2.82 0.06 12.9 13.2 14.1 13.0 2.88 0.06
15.1 14.2 13.1 13.0 2.88 0.06 11.9 12.6 14.1 13.0 2.96 0.07
10.7 12.0 14.0 13.0 2.90 0.07 10.6 11.7 13.8 13.0 2.73 0.06
11.1 12.2 13.9 13.0 2.90 0.07 10.2 11.3 13.5 13.0 2.85 0.06
11.4 12.3 13.9 13.0 2.88 0.06
T.Mu.GMK.Hb.8; 16.08.2009; WTL = 5 cm; pH = 4.3; T(soil on depth 45 cm) = 8.0 °C; botanical description: Sch, Lim, Sph.
22.0 16.4 12.3 11.0 4.91 0.25 25.5 17.4 12.6 10.2 2.45 0.13
22.7 16.5 12.3 10.7 3.87 0.20 25.6 17.5 12.7 10.1 4.98 0.26
22.9 16.7 12.3 10.6 5.07 0.26 25.7 17.5 12.8 10.1 2.90 0.82
23.7 17.0 12.3 10.4 4.40 0.23 25.2 17.6 12.9 10.1 4.01 0.20
24.1 17.0 12.4 10.4 2.84 0.14 24.8 17.6 12.9 10.0 2.76 0.14
24.7 17.0 12.4 10.3 4.75 0.24 24.5 17.5 13.0 10.0 4.92 0.26
25.4 17.3 12.5 10.2 6.11 0.31
a), b): see table 1.
Table 6
CH4 emission in 2009 on “Mukhrino” mire (continuation)
Temperature, °C CH4 fluxes, mgCm-2h-1 Temperature, °C CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD Air Soil on depth h (cm) Mean STD
0 1 5 | 15 0 1 5 | 15
T.Mu.GMK.Hb.3.1; 28-29.08.2009; WTL = 2 cm; pH = 4.0; T(soil on depth 45 cm) = 14.5 °C; botanical description: Sch, Lim, Sph.
35.5 19.1 17.2 17.8 6.75 0.97 22.6 16.9 17.0 17.5 2.64 0.08
37.8 19.4 17.3 17.6 3.39 0.10 20.0 17.3 17.0 17.5 2.64 0.08
39.3 19.8 17.4 17.4 3.22 0.10 20.5 17.5 17.0 17.5 2.51 0.08
40.4 20.1 17.5 17.4 3.50 0.10 21.4 17.7 17.1 17.4 2.51 0.08
40.8 20.3 17.8 17.3 3.70 0.11 21.3 17.9 17.1 17.4 2.80 0.12
40.3 20.5 17.9 17.3 3.85 0.12 28.3 18.4 17.2 17.4 3.03 0.09
33.4 20.4 18.3 17.3 2.71 0.08 25.9 18.5 17.4 17.3 4.95 0.15
29.1 20.1 18.5 17.3 3.51 0.26 34.7 19.1 17.5 17.3 5.91 0.18
23.4 19.9 18.6 17.3 1.94 0.38 11.7 17.9 18.3 17.6 4.21 0.13
19.4 19.7 18.8 17.4 2.21 0.07 12.3 17.8 18.2 17.6 4.28 0.13
15.4 19.4 18.8 17.4 3.05 0.09 12.4 17.7 18.1 17.6 4.29 0.13
13.0 19.1 18.9 17.4 3.86 0.43 12.0 17.6 17.9 17.6 4.38 0.13
12.0 18.8 18.8 17.5 3.95 0.32 11.9 17.4 17.8 17.6 4.46 0.13
11.8 18.5 18.8 17.5 7.18 2.71 12.1 17.3 17.7 17.6 4.61 0.14
Continuation of table 6
Temperature, °C CH4 fluxes, mgCm-2h-1 Temperature, °C CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD Air Soil on depth h (cm) Mean STD
0 5 15 0 5 15
13.5 18.4 18.5 17.6 4.08 0.12 11.3 16.9 17.3 17.6 4.50 0.23
12.9 18.3 18.5 17.6 4.36 0.13 12.5 16.7 17.2 17.6 3.22 0.10
11.6 18.1 18.4 17.6 4.31 0.45 17.3 16.8 17.1 17.6 3.20 0.10
T.Mu.GMK.Hb.3.2; 28-29.08.2009; WTL = 5 cm; pH = 4.0; T(soil on depth 45 cm) = 14.5 °C; botanical description: Sch, Lim, Sph.
35.5 19.1 17.2 17.8 3.23 0.81 15.4 19.4 18.8 17.4 1.86 0.13
37.8 19.4 17.3 17.6 3.51 0.11 13.0 19.1 18.9 17.4 1.91 0.11
39.3 19.8 17.4 17.4 3.36 0.10 12.0 18.8 18.8 17.5 1.93 0.07
40.4 20.1 17.5 17.4 3.36 0.10 11.8 18.5 18.8 17.5 2.41 0.37
40.8 20.3 17.8 17.3 3.71 0.11 12.9 18.3 18.5 17.6 3.59 0.33
40.3 20.5 17.9 17.3 3.68 0.11 11.6 18.1 18.4 17.6 4.32 0.13
33.4 20.4 18.3 17.3 2.64 0.31 11.7 17.9 18.3 17.6 3.73 0.11
29.1 20.1 18.5 17.3 3.32 0.10 12.3 17.8 18.2 17.6 4.04 0.12
23.4 19.9 18.6 17.3 1.90 0.50 12.4 17.7 18.1 17.6 3.88 0.12
19.4 19.7 18.8 17.4 1.97 0.08 12.0 17.6 17.9 17.6 3.77 0.17
11.9 17.4 17.8 17.6 3.72 0.11 20.0 17.3 17.0 17.5 2.70 0.11
12.1 17.3 17.7 17.6 3.59 0.11 20.5 17.5 17.0 17.5 2.97 0.15
11.3 16.9 17.3 17.6 2.97 0.14 21.4 17.7 17.1 17.4 2.83 0.30
12.5 16.7 17.2 17.6 3.03 0.09 21.3 17.9 17.1 17.4 2.32 0.18
17.3 16.8 17.1 17.6 2.13 0.09 28.3 18.4 17.2 17.4 2.93 0.34
22.6 16.9 17.0 17.5 2.53 0.13 25.9 18.5 17.4 17.3 3.88 0.12
34.7 19.1 17.5 17.3 4.11 0.12
a)- b): see table 1.
Table 7
CH4 emission in 2009 on “Mukhrino” mire (continuation)
Temperature, °C CH4 fluxes, mgCm-2h-1 Temperature, °C CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD Air Soil on depth h (cm) Mean STD
0 1 5 | 15 0 1 5 | 15
T.Mu.GMK.Hb.3.3; 28-29.08.2009; WTL = 10 cm; pH = 4.1; T(soil on depth 45 cm) = 14.5 °C; botanical description: Sch, Lim, Sph.
35.5 19.1 17.2 17.8 1.98 0.06 15.4 19.4 18.8 17.4 2.86 0.09
37.8 19.4 17.3 17.6 1.89 0.06 13.0 19.1 18.9 17.4 2.40 0.29
39.3 19.8 17.4 17.4 1.85 0.06 12.0 18.8 18.8 17.5 2.39 0.23
40.4 20.1 17.5 17.4 1.67 0.05 11.8 18.5 18.8 17.5 2.81 0.27
40.8 20.3 17.8 17.3 1.73 0.06 13.5 18.4 18.5 17.6 1.47 0.04
40.3 20.5 17.9 17.3 1.81 0.05 12.9 18.3 18.5 17.6 2.29 0.38
33.4 20.4 18.3 17.3 2.44 0.07 11.6 18.1 18.4 17.6 1.50 0.14
29.1 20.1 18.5 17.3 1.14 0.11 11.7 17.9 18.3 17.6 1.59 0.06
23.4 19.9 18.6 17.3 0.73 0.02 12.3 17.8 18.2 17.6 1.63 0.09
19.4 19.7 18.8 17.4 2.51 0.08 12.4 17.7 18.1 17.6 1.58 0.15
12.0 17.6 17.9 17.6 1.71 0.12 20.0 17.3 17.0 17.5 2.78 0.08
11.9 17.4 17.8 17.6 1.48 0.13 20.5 17.5 17.0 17.5 2.58 0.08
12.1 17.3 17.7 17.6 1.51 0.05 21.4 17.7 17.1 17.4 2.52 0.08
11.3 16.9 17.3 17.6 3.35 0.14 21.3 17.9 17.1 17.4 3.12 0.09
12.5 16.7 17.2 17.6 2.96 0.26 28.3 18.4 17.2 17.4 2.33 0.11
17.3 16.8 17.1 17.6 2.60 0.08 25.9 18.5 17.4 17.3 2.46 0.29
22.6 16.9 17.0 17.5 2.68 0.08 34.7 19.1 17.5 17.3 2.19 0.23
T.Mu.GMK.Hb.3.4; 28-29.08.2009; WTL = 0 cm; pH = 4.1; T(soil on depth 45 cm) = 14.5 °C; botanical description: Sch, Lim, Sph.
35.5 19.1 17.2 17.8 2.53 0.12 15.4 19.4 18.8 17.4 3.72 0.24
37.8 19.4 17.3 17.6 2.51 0.11 13.0 19.1 18.9 17.4 4.01 0.15
39.3 19.8 17.4 17.4 2.38 0.07 12.0 18.8 18.8 17.5 4.46 0.57
40.4 20.1 17.5 17.4 2.55 0.09 11.8 18.5 18.8 17.5 3.68 0.58
40.8 20.3 17.8 17.3 2.62 0.08 13.5 18.4 18.5 17.6 6.33 0.63
40.3 20.5 17.9 17.3 2.66 0.08 12.9 18.3 18.5 17.6 6.62 0.20
33.4 20.4 18.3 17.3 4.12 0.12 11.6 18.1 18.4 17.6 7.44 0.39
29.1 20.1 18.5 17.3 3.20 0.30 11.7 17.9 18.3 17.6 7.35 0.38
23.4 19.9 18.6 17.3 1.48 0.04 12.3 17.8 18.2 17.6 7.09 0.21
19.4 19.7 18.8 17.4 2.79 0.13 12.4 17.7 18.1 17.6 6.80 0.20
12.0 17.6 17.9 17.6 6.31 0.19 20.0 17.3 17.0 17.5 4.40 0.13
11.9 17.4 17.8 17.6 6.29 0.19 20.5 17.5 17.0 17.5 4.93 0.15
Continuation of table 7
Temperature, °C CH4 fluxes, mgCm-2h-1 Temperature, °C CH4 fluxes, mgCm-2h-1
Air Soil on depth h (cm) Mean STD Air Soil on depth h (cm) Mean STD
0 5 15 0 5 15
12.1 17.3 17.7 17.6 5.41 0.26 21.4 17.7 17.1 17.4 4.57 0.14
11.3 16.9 17.3 17.6 4.29 0.13 21.3 17.9 17.1 17.4 4.97 0.52
12.5 16.7 17.2 17.6 4.35 0.13 28.3 18.4 17.2 17.4 4.56 0.29
17.3 16.8 17.1 17.6 4.06 0.27 25.9 18.5 17.4 17.3 2.89 0.11
22.6 16.9 17.0 17.5 5.20 0.25 34.7 19.1 17.5 17.3 2.78 0.08
a) b): see table 1.
Table 8
CH4 emission in 2010 on “Mukhrino” mire (continuation)
№ of point Date Temperature, °C WTL, cm pH Botanical descriptions CH4 fluxes, mgCm-2h-1
Air Soil on de m) (c th p Mean STD
0 5 15 45
1 14.07 - - - - - 10 4.1 Sch, Lim, Sph 3.05 0.21
2 15.07 - - - - - 10 4.1 Sch, Lim, Sph 3.22 0.19
3 15.07 - - - - - 10 4.1 Sch, Lim, Sph 4.26 0.23
4 15.07 - - - - - 10 4.1 Sch, Lim, Sph 3.15 0.30
5 19.07 - - - - - 10 4.1 Sch, Lim, Sph 2.59 0.08
6 7.08 15.9 16.9 16.7 16.1 13.0 15 4.0 And, Pap, Bal 1.02 0.04
7 7.08 15.8 16.4 16.7 16.1 13.0 15 4.0 And, Pap, Bal 2.87 0.09
8 7.08 14.9 15.6 16.2 16.3 13.0 15 4.0 And, Pap, Bal 1.96 0.10
9 7.08 14.3 14.8 15.9 16.3 13.0 15 4.0 And, Pap, Bal 1.42 0.05
10 7.08 15.8 15.5 15.5 16.1 13.0 3.5 4.0 Sch, Lin, Maj 4.82 0.17
11 7.08 17.4 16.3 16.2 16.1 13.0 3.5 4.0 Sch, Lin, Maj 4.02 0.12
12 7.08 16.7 16.8 16.8 17.5 14.5 3.5 4.0 Sch, Lin, Maj 6.83 0.60
13 7.08 16.9 17.3 16.9 17.5 14.5 3.5 4.0 Sch, Lin, Maj 7.05 2.09
14 8.08 17.0 16.5 16.5 16.6 13.2 5 4.0 Sch, Lim, Lin 4.02 0.12
15 8.08 16.9 16.5 16.5 16.5 13.1 5 4.0 Sch, Lim, Lin 4.04 0.12
16 8.08 16.3 16.1 16.5 16.5 13.0 5 4.0 Sch, Lim, Lin 2.15 0.18
17 8.08 16.3 16.0 16.5 16.5 13.0 5 4.0 Sch, Lim, Lin 3.79 0.13
18 8.08 15.9 16.1 16.5 16.5 13.4 1 4.1 Sch, Lin, Maj 3.93 0.15
19 8.08 15.6 16.3 16.5 16.5 13.5 1 4.1 Sch, Lin, Maj 3.17 0.21
20 8.08 15.8 16.8 16.5 16.1 13.3 1 4.1 Sch, Lin, Maj 4.21 0.17
21 8.08 15.9 16.9 16.5 16.0 13.2 1 4.1 Sch, Lin, Maj 2.87 0.14
22 8.08 15.8 16.4 16.5 16.0 13.0 13 4.1 Sch, Lin, Maj 2.87 0.29
23 8.08 14.9 15.6 16.2 16.0 13.0 13 4.1 Sch, Lin, Maj 3.19 0.15
24 8.08 14.3 14.8 15.9 16.0 13.0 1 4.1 Sch, Pap, Maj 3.48 0.10
25 8.08 15.8 15.5 15.5 15.6 15.4 1 4.1 Sch, Pap, Maj 5.85 0.18
26 9.08 17.2 17.1 16.2 16.1 15.6 1 4.0 Sch, Lim, Maj 2.75 0.18
27 9.08 15.8 16.7 15.8 16.0 15.6 1 4.0 Sch, Lim, Maj 3.18 0.10
28 9.08 15.5 16.3 15.5 16.0 15.6 0 4.0 Sch, Lin, Maj 1.62 0.26
29 9.08 16.2 16.9 15.1 15.3 15.7 0 4.0 Sch, Lin, Maj 2.39 0.11
30 9.08 15.6 16.4 15.1 14.5 15.3 0 4.0 Sch, Maj, Jen 5.39 0.16
31 9.08 14.6 15.3 14.4 13.8 14.2 0 4.0 Sch, Maj, Jen 7.36 0.70
a), b): see table 1.
The latest version Bc8 of emission model estimates the total flux from all Western Siberia mires at 2.93 TgCyr-1. It accounts for about 2.4 % of emission from all mires or 0.7 % of global methane emission from all CH4 sources (calculated using results from [2]).
Acknowledgments
We thank all participants of field measurements of 2007-2010 summer-autumn periods.
CH4 flux from Western Siberia mires
Fig .2 . Contribution of different microlandscape types to the regional
References
I. Etiope G . , Lassey K . R ., Klusman R . W. , Boschi E . 2008. Reappraisal of the fossil methane budget and related emission from geologic sources // Geophys. Res . Lett. V. 35, L09307, doi:10. 1029/2008GL033623.
2 . Denman K . L . 2007 . Climate change 2007: the physical science basis . Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change; [edited by Solomon et al . ] . Cambridge: Cambridge University Press . Chapter 7 . P. 499-588.
3 . Peregon A ., Maksyutov S . , Kosykh N . , Mironycheva-Tokareva N . Map-based inventory of wetland biomass and net primary production in Western
Siberia // J . Geophys . Res . 2008. V. 113, G011007, doi:10 . 1029/2007JG000441.
4 . Andronova N . G ., Karol I . L . 1993. The contribution of USSR sources to global methane emission // Chemosphere . № 26 . P. 111-126 .
5 . Panikov N . S . , Titlyanova A. A. , Paleeva M . V., Semenov A . M . , Mironycheva-Tokareva N . P. et al . Methane emission from the Western Siberia
south mires // Doklady Earth Sciences . 1993. V. 330 . № 3 . P. 345-348.
6 . Panikov N . S . 1995. Are taiga mires a global source of atmospheric CH4? // Priroda. № 6 . P. 14-25.
7 . Bleuten W., Filippov I . 2008. Hydrology of mire ecosystems in central West Siberia: the Mukhrino Field Station // Transactions of UNESCO depart-
ment of Yugorsky State University “Dynamics of environment and global climate change” / Glagolev M . V. , Lapshina E . D . (eds . ) . Novosibirsk: NSU . P. 208-224. Available at http://www. ugrasu . ru/international/unesco/publications/journal/documents/Sbornic . pdf
8 . Glagolev M . V. , Shnyrev N . A. 2008. Methane Emission from Mires of Tomsk Oblast in the Summer and Fall and the Problem of Spatial and
Temporal Extrapolation of the Obtained Data // Moscow University Soil Science Bulletin . V. 63 . № 2 . P. 67-80, doi:10 . 3103/S014768740802004X .
9 . Kleptsova I . E . , Glagolev M . V., Filippov I . V. , Maksyutov S . S . 2010 . Methane emission from middle taiga ridges and ryams of Western Siberia //
Dynamics of Environment and Global Climate Change . V. 1. № 1. P. 56-64.
10 . Kahaner D . et al . 1989 . Numerical methods and software . N . J . : Prentice-Hall, 1989 . 575 p .
II. Glagolev M . V., Kleptsova I . E ., Filippov I . V. et al . 2010 . Methane Emissions from Subtaga Mires of Western Siberia: The “Standard model” Bc5 // Moscow University Soil Science Bulletin . V. 65 . No 2 . P. 86-93.
Sabrekov A. F.
Moscow State University.
Leninskiye gory, 1, building 12, GSP-1, Moscow, Russia, 119991.
E-mail: misternickel@mail.ru
Kleptsova I. E.
Yugra State University.
Ul. Chekhova, 16, Khanty-Mansiysk, Tyumen region, Khanty-Mansi Autonomous Okrug - Yugra, Russia, 628011.
E-mail: kleptsova@gmail.com
Glagolev M. V Moscow State University.
Leninskiye gory, 1, building 12, GSP-1, Moscow, Russia, 119991.
Yugra State University.
Ul. Chekhova, 16, Khanty-Mansiysk, Tyumen region, Khanty-Mansi Autonomous Okrug - Yugra, Russia, 628011.
E-mail: m_glagolev@mail.ru
Maksyutov Sh. Sh.
National Institute for Environmental Studies.
Onogava, 16-2, Tsukuba, Ibaraki, Japan, 305-8506.
E-mail: shamil@nies.go.jp
Machida T.
National Institute for Environmental Studies.
Onogava, 16-2, Tsukuba, Ibaraki, Japan, 305-8506.
E-mail: tmachida@nies.go.jp
А. Ф. Сабреков, И. Е. Клепцова, М. В. Глаголев, Ш. Ш. Максютов, Т. Мачида
эмиссия метана из олиготрофных мочажин средней ТАЙГИ ЗАПАДНОЙ СИБИРИ
Представлены экспериментальные данные об эмиссии метана из олиготрофных мочажин средней тайги Западной Сибири. Измеренные значения удельного потока CH4 варьируют в широких пределах от 0.08 до 58 мгСм-2ч-1 (медиана - 2.7б мгСм-2ч-1). Полученные данные рассматриваются в контексте «стандартной модели» эмиссии метана (версия Вс8). Эта модель содержит медианы распределений удельного потока метана для семи различных микроландшафтов, их площади и продолжительность периода эмиссии метана для каждой из 7 географических зон. Суммарный поток метана из олиготрофных мочажин равен 0.37 ТгСгод-1, что составляет примерно 70 % от общего потока метана из болот средней тайги Западной Сибири. Версия Вс8 этой модели оценивает значение потока метана со всех болот Западной Сибири в 2.93 ТгСгод-1, что составляет около 2.4 % потока метана в атмосферу со всех болот мира.
Ключевые слова: эмиссия метана, болота, олиготрофные мочажины, средняя тайга, Западная Сибирь.
Сабреков А. Ф., студент.
Московский государственный университет.
Ленинские горы, 1, стр. 12, ГСП-1, г. Москва, Россия, 119991.
E-mail: misternickel@mail.ru
Клепцова И. Е., аспирант.
Югорский государственный университет.
Ул. Чехова, 1б, г. Ханты-Мансийск, Тюменская область, ХМАО-Югра, Россия, б28011.
E-mail: kleptsova@gmail.com
Глаголев М. В., кандидат биологических наук, младший научный сотрудник, инженер.
Московский государственный университет.
Ленинские горы, 1, стр. 12, ГСП-1, г. Москва, Россия, 119991.
Югорский государственный университет.
Ул. Чехова, 1б, г. Ханты-Мансийск, Тюменская область, ХМАО-Югра, Россия, б28011.
E-mail: m_glagolev@mail.ru
Максютов Ш. Ш., кандидат физико-математических наук, зав. сектором моделирования биогеохимических циклов.
Национальный институт экологических исследований.
Оногава, 1б-2, Цукуба, Ибараки, Япония, ЗО5-85Об.
E-mail: shamil@nies.go.jp
Мачида Т., доктор философии (Ph.D.), заведующий сектором мониторинга парниковых газов.
Национальный институт экологических исследований.
Оногава, 1б-2, Цукуба, Ибараки, Япония, ЗО5-85Об.
E-mail: tmachida@nies.go.jp
Материал поступил в редакцию 29.11.2010.