Научная статья на тему 'Embedded discrete fracture model on structured grids'

Embedded discrete fracture model on structured grids Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
21
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Embedded discrete fracture model on structured grids»

32 Mini.symposium

Multiscale Finite Element Method, where we construct a multiscale space using solution of the local spectral

problems on the snapshot space related to the coarse grid edges.We present numerical results for the Helmholtz

problem in perforated domain with Dirichlet boundary condition on perforations. Proposed method are

studied for a different wave numbers and numbers of the edge multiscale basis functions.

Embeddeddiscrete fracture model on structured grids

D. Y. Nikiforov

M. K. Ammosov North.Eastern FederalUniversity, Yakutsk

Email: [email protected]

DOI 10.24412/cl.35065.2021.1.02.82

An approximation of the embedded discrete fracture model EDFM by the finite element method is considered.

The paper proposes to use exponential functions instead of the Dirac delta function [1]. With this approach,

instead of a separate computational mesh for fractures, a mesh for a porous medium can be used. The

results of numerical experiments demonstrate the efficiency of the proposed approach.

This work was supported by the Ministry of science and higher education of the Russian Federation, supplementary

agreement N075.02.2020.1542/1, April 29, 2020.

References

1. Nikiforov D. Y., Stepanov S. P. Numerical simulation of the embedded discrete fractures by the finite element

method //J. of Physics: Conference Series.�IOP Publishing, 2019.Vol. 1158. No. 3. P. 032038.

Multiscale finite element technique for mathematical modelling of multi.physics processes

in the near.wellbore region

E. P. Shurina1,2, N. B. Itkina1,3, D. A. Arhipov1,2, D. V. Dobrolubova1,2, A. Yu. Kutishcheva1,2, S. I. Markov1,2,

N. V. Shtabel1,2, E. I. Shtanko1,2

1The Trofimuk Institute of Petroleum Geology and Geophysics SB RAS

2Novosibirsk State Technical University

3Institute of Computational Technologies SBRAS

Email: [email protected]

DOI 10.24412/cl.35065.2021.1.00.56

In borehole physic, the results of the direct mathematical modelling of multi.physical phenomena are

used to controldrilling and well operation. Electromagnetic and acoustic measurements are the most accessible

indirect methods for determining the thermal, transport and mechanical properties of rock samples in the

near.wellbore zone.Mathematical modelling is one of the technologies used for solving multi.physical problems.

A multi.physical problem is formulated as a system of partialdifferential equations with special interface

conditions coupling mathematical models of physical processes. The near.wellbore region is characterized by a

multi.scale geometric structure,high contrast and anisotropy of physical parameters. The discretization method

should take into account the specifics of the problem and preserve the global regularity of mathematical

models at a discrete level. The paper presents modified variational formulations of multiscale non.conforming

finite element methods for mathematical modelling of electromagnetic and acoustic fields in fluid.saturated

media at various temperatures and mechanical loads. To solve the discretized mathematical models, special

multilevel solvers are developed. The results of three.dimensional mathematical modelling using model rock

samples from the near.wellbore zone are presented.

i Надоели баннеры? Вы всегда можете отключить рекламу.