Научная статья на тему 'EM Algorithm for Estimating the Burr XII Parameters in Partially Accelerated Life Tests'

EM Algorithm for Estimating the Burr XII Parameters in Partially Accelerated Life Tests Текст научной статьи по специальности «Математика»

CC BY
75
40
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
partially accelerated life test / acceleration factor / Burr XII distribution / maximum likelihood estimation / EM algorithm

Аннотация научной статьи по математике, автор научной работы — Yung-Fu Cheng

In this paper, I present maximum likelihood estimation via the expectation-maximization algorithm to estimate the Burr XII parameters and acceleration factor in step-stress partially accelerated life tests under multiple censored data. In addition, the asymptotic variance and covariance matrix of the estimators are derived by using the complete and missing information matrices, and confidence intervals of the parameters are obtained. The simulation results show that the maximum likelihood estimation via the expectation-maximization algorithm performs well in most cases in terms of the absolute relative bias, the root mean square error, and the coverage rate. Furthermore, a numerical example is also given to demonstrate the performance of the proposed method.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «EM Algorithm for Estimating the Burr XII Parameters in Partially Accelerated Life Tests»

EM Algorithm for Estimating the Burr XII Parameters in Partially Accelerated Life Tests

Yung-Fu Cheng

Research Center for Testing and Assessment National Academy for Educational Research, Taiwan yfjeng@gmail.com

Abstract

In this paper, I present maximum likelihood estimation via the expectation-maximization algorithm to estimate the Burr XII parameters and acceleration factor in step-stress partially accelerated life tests under multiple censored data. In addition, the asymptotic variance and covariance matrix of the estimators are derived by using the complete and missing information matrices, and confidence intervals of the parameters are obtained. The simulation results show that the maximum likelihood estimation via the expectation-maximization algorithm performs well in most cases in terms of the absolute relative bias, the root mean square error, and the coverage rate. Furthermore, a numerical example is also given to demonstrate the performance of the proposed method.

Keywords: partially accelerated life test, acceleration factor, Burr XII distribution, maximum likelihood estimation, EM algorithm

I. Introduction

Generally, life testing of products under normal conditions usually requires a long period of time. Long-term testing will increase the test cost and will take a lot of time. Accelerated life test (ALT) is one of the solutions that can avoid above problems. ALT has been successfully applied to obtain information about product life quickly and economically under more severe operating conditions. Stress conditions, such as, cycling rate, load, voltage, pressure, vibration, and temperature are the most common methods in practice. The acceleration factor in ALT is usually assumed to be a known value. On the contrary, the acceleration factor in partial accelerated life testing (PALT) is usually assumed as an unknown value. Constant stress, step stress and progressive stress are three major stress types of PALT. Progressive stress is a more complicated PALT approach among these major stress types. In a constant-stress test, test units are run at some unchanged constant level of stress. In a step-stress test, the level of stress can be changed at a specified time, and this kind of test method is called step-stress partially accelerated life test (SS-PALT).

The Burr XII distribution is widely applied in reliability engineering because of its many advantages. Rodriguez (1977) showed that the area in the , ) plane corresponding to the

Burr XII distribution is wide and it covers various well-known distributions. Zimmer et al. (1998) presented the statistical and probabilistic properties of the Burr XII distribution, and described its connection with other distributions used in reliability analysis. The Burr XII distribution has been applied in reliability analysis widely. Wingo (1993) formatted the MLE to fit the Burr XII distribution through the use of multiple censored data. Ali Mousa (1995) estimated the parameters of the Burr XII distribution with Type II censored data for an ALT model by using the Bayes

method. Wang et al. (1996) presented the MLE for obtaining point and interval estimates of the Burr XII parameters. Watkins (1999) developed an algorithm for calculating the MLE of the three-parameter Burr XII distribution. As to the parameter estimation of the Burr XII distribution in SS-PALT, Abd-Elfattah et al. (2008) investigated the maximum likelihood method for the parameters of the Burr XII distribution in SS-PALT under type I censored data. Abdel-Ghaly et al. (2008) considered the estimation problem of the Burr-XII distribution in SS-PALT using censored data. Abdel-Hamid (2009) estimated the parameters of the Burr XII distribution with progressive Type II censoring for a CS-PALT model by using the MLE method. Cheng and Wang (2012) compared the performance of the maximum likelihood estimates of the Burr XII parameters for CS-PALT. So, it has been shown that the Burr XII distribution is a flexible model and is recommended for modeling in the reliability analysis and ALTs.

The MLE via the Newton-Raphson algorithm is very sensitive to its initial parameter estimation value. Other options can be adopted to avoid the above problem, for example, the expectation-maximization (EM) algorithm. EM algorithm is an iterative algorithm approach applied in a variety of incomplete data problems (Dempster et al., 1977). EM algorithm can be used in data sets with missing values, censored and grouped observations, or models with truncated distributions. EM algorithm involves two steps, the E-step and the M-step. In the E-step, the expected values of the complete data sufficient statistics are computed. In the M-step, parameter estimates that maximize the complete data likelihood are solved by using the conditional expected value that computed in the E-step. Both steps of the iterations are repeated until the parameter estimates converge. The development and application of EM algorithms are getting more and more mature. Louis (1982) derived a procedure for extracting the observed information matrix when EM algorithm is used to find maximum likelihood estimates in incomplete data problems. In reliability analysis, EM algorithm has been commonly used. Ng et al. (2002) presented the MLE via EM algorithm to estimate the lognormal and the Weibull parameters with progressively type II censored data. Acusta et al. (2002) proposed an estimator of the probability density function when the data is randomly censored, obtained through an EM algorithm, for solving a maximum likelihood problem. Balakrishnan and Kim (2004) used EM algorithm to find the maximum likelihood estimates under type II right censored samples from a bivariate normal distribution. Park (2005) presented the MLE via EM algorithm to estimate the exponential and lognormal parameters with complex data including: fully-observed, censored, and partially-masked. Cheng and Wang (2012) presented the performance of the maximum likelihood estimates of the Burr XII parameters for CS-PALT by using EM algorithm.

In this paper, I present the performance of the maximum likelihood estimates via EM algorithm for the Burr XII parameters in SS-PALT under multiple censored data in terms of the absolute relative bias, the root mean square error, and the coverage rate. The asymptotic variance and covariance matrix of the estimators are also derived. Then, the confidence intervals of the parameters can be obtained. In addition, an illustrative example is used to demonstrate the proposed method.

II. Model in step-stress PALT under multiple censored data

The probability density function and cumulative distribution function of the two-parameter Burr XII distribution are given by

f (t; c, k)= kCt +1 , t > 0, c > 0, k > 0 (1)

(1 +tc)

F ( t; c, k ) = 1 -

1

(1 +tC )

t > 0, c > 0, k > 0

(2)

where the parameters c and k are the shape parameters of the distribution.

In SS-PALT, the test unit is first run at normal condition and if the unit does not fail or be censored before the specified time, t , the test is switched to a stress condition for testing until the unit fails or be censored. Then, the total lifetime X of the unit in SS-PALT is given by

X =

(3)

T, T <T

z + p-' (T-t), T >T where T is the lifetime of an unit at normal condition, t is the stress change time and P is the acceleration factor (p > 1). I assume that the lifetime of the test unit follows a two-parameter Burr XII distribution. Therefore, the CDF and PDF of total lifetime X of an item are given by

F ( x; c, k, P) =

1 -

1

C\k

(1 + xc )

1 -

k

{1 + [t + p( x-t)] c j

x < 0 0 < x < t

x > t

(4)

where c > 0, k > 0, fi > 1, and

f (x; c, k, P) H

kcx

c—1

c\k+1 '

(1 + xc ) pkc [t + P( x -t)] c-1

{■V k + 1

1 + [t + P(x-t)] j

x < 0 0 < x <t

x >t

(5)

k

0

0

Suppose that there are n_f failures and nlc units with censoring at normal condition. Also, I assume that there are n failures and n units with censoring at stress condition. Let 8, f \, 8.,. , 8.,. f , 8.,. , be indicator functions, which (1, f) of the indicator function

2.(1./)' i,(1,c) ' I,(2,f)' i,(2,c) ' ' J '

denotes that the sample unit fails before the stress change time, t , and (1, c) denotes that the unit is censored before the time, t . Also, (2, f ) denotes that the unit fails after the time, t . (2, c) denotes that the unit is censored after the time, t . Furthermore, the equations are obtained as follows.

1

= n< , Z4,(l,c) = "la , Z4'~ -^ = n

i,(1,f) 'V ' Z i ,(l i=l i=l

a ' Z- i,(2,f) "2f ' Zi,( i=l i=l

, Z4,(2,c) = "2a , "l = "lf + "la , and "2 = "2f + n2a

III. Complete-data likelihood function via EM algorithm

(j, j, \ T /

y1 ,...,y„ ) denote the observed data where y; = (t/ ,) and = 0 (censored) or 1 (failure). As seen in the observations, x is censored or uncensored at d (i = 1,...,n). Then, the probability density function of the Burr XII distribution, given xt > d is calculated as follows: Let a=T+P (x-r) A=T + P (X-r) D =z + P (d-r)

f (^ \xi > d ) =

f ( Xi) 1 - F (d,)

kc (l + dc)

k xc

(1 + <)

x > d, d <t

k+1 ' i i' i

(l + Dc )k ßka

a

c-l

(l + aC )

x > d, d > t

k+l i i i

the complete data likelihood function of the Burr XII distribution can be expressed as

(6)

La (c, k, ß) = n fc (x, ; C, k, ß) = n f (x, )4,(1,f) f (x, )4,(1,c) f (x, )4,(2,f) f (x, )'

i ,(2,c)

(7)

the complete data log-likelihood function of the Burr XII distribution is then expressed as

log [La (c, k, ß)] = Z log \_fc (x,; c, k, ß)]

i=i

= " log (k) + " log (c) + "2 log (ß)

+ (c- 1)Z4,(l,f) log(x,.)-(k + 1)Z4,(l,f) log(1 + <)

i=l i=l

(c -1) ZZ 4,(l,c) log (x,) - (k + 1) ZZ 4,(l,c) log (1 + xc)

i=l i=l

(c -1) ZZ 4.(2,f) log (a,) - (k +1) ZZ 4.(2,f) log (1 + a,)

,=i ,=i

(a -1) ZZ 4,(2,c) log (a,) - (k +1) ZZ 4,(2,a) log (1 + a,)

(8)

+ (c -

+ (c -

then, the Q-function of the Burr XII distribution is obtained as

Yung-Fu Cheng

EM ALGORITHM FOR ESTIMATING THE BURR XII PARAMETERS IN , l^9

PARTIALLY ACCELERATED LIFE TESTS_V°lume 15, D^rnto 2020

E [log Lc (c, k, 0) | y ] = n log (k) + n log (c ) + n2 log (0)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+(c -1)!^ f)log (dt) - (k +1) ! (i,f)log (l + di )

1=1 1=1

+(c -1)!! c) e [log (X, )Xi > di ]-(k+s^E [log (i+X; )Xi > di ] (9)

i=1 1=1

+ ( c - 1)!S ( 2,f) log (Dr ) - (k + 1) ! Si,(2,f) log (1 + D1 )

1=1 1=1

+(c -1)! s,(2,c) E [log (A) IX > d1 ] - (k+1)! s 1,(2,c) E [log (1+a; ) IX > d ]

1=1 1=1

For the E-step, Q (y; y(m)) can be calculated, where y denotes the set of parameters, c, k and ft and y(m) denotes the set of estimates, c(m), k(m) and 0m), in m-th iteration.

Q (y; y (m)) = EyJ log Lc (; k, p)|y ]

= n log (k) + n log (c) + n2 log (0)

(c - 1)!S,(1 f) iog (^) - (k+1)! si{1f) iog (1+d;)

+ (c - ,

1=1

+ (i - 0! S,(1,c)Ey(m) [log (X )| Xt > d1 ]-(k + ^ S,(1,c)Ey(„) [log (1 + Xi )| Xt > d1

1=1 1=1

(10)

(c - 1)S3, ( 2,f) log (D1 ) - (k + 1) ! S1,(2,f) log (1 + D1 )

1=1 1=1

(i - 0! S,(2,c)Ey(m) [log (4 )| X > d ]-(k + 0! S,(2,c)Ey(m) [ log (1 + A )| X > d

For the M-step, y(m+1) is the specific value of y eQ that maximizes Q (y; y^)); that is,

Q (y^+i)' y^)) — Q (yj y^)) . The E and M steps repeatedly iterative compute until the

estimates of parameters converge to the default value. The above term in equation (10), E^^[log(Xi) \Xt > dj, can be directly solved by using Monte Carlo method. However the other

terms, Eyfa) [log (1 + X; ) | Xt > dt ], E^m) [log fa) \Xt > dand E^m) [log(1 + Af) \Xt > dcan

not be directly solved using Monte Carlo method because the unknown parameter, c and ft, exists within the terms, log(1 + Xf), log(Ai) and log(1 + Af), where Ai = t + p(Xt - t). To decompose these terms, Taylor series expansion can be applied to decompose these terms, log(1 + Xf), log(Af) and log(1 + Af), and then Monte Carlo method can be applied to compute the integral.

For the Burr XII distribution, the variance-covariance matrix of parameters c, k and ft is obtained as

Var ( c ) Cov ( c, k ) Cov ( c, ¡) Cov ( c, k ) Var ( k ) Cov ( k, ¡) Cov ( c, ¡) Cov (k, 3) Var (¡)

El d2logL1 jd2 logL I £(d2logL

dc2

dcdk

dcd3

dcdk

E, a^iogL 1 Ef^ I E

dk2

eIEfd!io^, E

dk d3

dcd3 d2 log L dk d3 d2 log L

d3

where E symbolizes expectation and L denotes log-likelihood function. The observed information (Iobs ) can be used to construct the variance-covariance matrix and confidence intervals for c, k and ft. Complete (Icomp) and missing (Imiss) information can be used to calculate the rate of convergence of EM algorithm. Louis (1982) showed that the observed information presents the difference between complete information and missing information within the framework of EM algorithm. The equation is expressed as Iobs Iobs = Icomp -lmiSS. Icomp and Imiss are obtained in Appendix.

Therefore, the variance-covariance matrix of parameters c, k and ft can be obtained by inverting the observed information matrix and is given by

Var(c) Cov(c,k) Cov(c,p) Cov(c,k) Var(k) Cov(k.p) Cov(c,p) Cov(k.p) Var(p)

= VcomP(c, k,P; y) - Imiss(c, k,P; y)]-1 (12)

Thus, an approximate (1- X )100% confidence intervals for c, k and ft are obtained as

c + zu^Jvar ( c ) , k + z^y var ( i ) and 3 ± z„J var (¡) (13)

2 2 2

where z„ is a standard normal variate.

2

IV. Observed-data likelihood function via BFGS algorithm

The MLE based on observed-data likelihood function of the Burr XII distribution with multiple censored data in a SS-PALT is given by

n

L = n f (x;i,f )[1 - F (X;i,c)] f (x,2,f )[1 - F (x,2,c)] (14)

i=1 .

The log-likelihood function is obtained as

n n n

log! = n f log (c) + n f log (k) + (c -1) Z log (%, f)- (k +1) Z log (1 + Xy, f)- k Z log (1 + x^c)

i=1 i=1 i=1

n n n

+n2f log (fi) + n2f log (c) + n2f log (k) + (c -1) Z log (f ) - (k +1) Z log (l + "Uc ) - kZ log ^ + c)

i=1 i=1 i=1

(15)

where arXf =z + fi (x,;2,f - r) and avXc =z + fi (x^ - r)

The estimates of c, k, and ft are obtained by setting the first partial derivatives of the log-likelihood

to zero with respect to c, k , and ft, respectively. The simultaneous equations are given as follows:

n n

5 log L / & = n fc-1 + z log (f) - (k +1)^ log (x,!,f ^f (l + xlxf)

i=1 i=1 n 1 n

-k z log (x;i,c) KXc (! + x°Xc)- + n2 f>+ z log (arx f ) (16)

i=1 i=1

n -1 n I

(k +1) z log (a;2,f ) <2,f (1 + <2,f )- - kz log (arXc) ai=2,c (1 + a°cXc)- = 0,

i=1 i=1 ft n

5 log L5k = nfk- - z log (1 + x-1,f ) - z log (1 + x^^c)

— j

— 1

+ n2 f

i=l i=l

k-1 - z log (1 + <2, f ) -- z log (1 + <2,c ) = 0, (17)

5 log LIdß = n2f ß- + (c - 1) z (X;2,f - 7) a-1,f - (k +1) z c<-1 (X ;2,f - r) (1 + <2,f )-1

i =1 Z=1

n ,

- kz c<Z (*,2,c -r)(1 + <.xc )- = 0. (18)

i =1

BFGS algorithm is then applied for solving these simultaneous equations to obtain the estimated values of c , k , and ft. The initial estimates of the parameters are chosen using pseudo complete estimates which the samples are completely treated as failures. The asymptotic variance-covariance matrix of c, k , and ft is established as

Var (y) = I-s (y; x) = [-52 log L (y)/dydyr ]-1, (19)

where y denotes the set of c, k, and ft. Thus, the approximate (1-^ )100% confidence intervals for c, k, and ft are obtained as

c ± za/2Vvar (c) , k ± z,2Vvar (k) and ¡3 ± z.2>/vctr (¡3) , (20)

where z^ is the 100(1 - « / 2) percentile of the standard normal distribution.

V. Simulation study

The method in Wang, Cheng and Lu (2012) was used for generating multiple censored samples. Censored samples were randomly generated from the Burr XII distribution with specified values of c, k and ft. The simulation included the following conditions: sample sizes n = 100, 200; the stress change time, t = 0.5, 1.5; censoring level CL = 0.2. Here we considered (c, k, ft) = (1, 0.5, 1.25), (1, 0.5, 2), (1, 1, 1.25), (1, 1, 2), (2, 0.5, 1.25), (2, 0.5, 2),(2, 1, 1.25), (2, 1, 2), (2, 2, 1.25) and (2, 2, 2) as true parameter values. For each data set, 1000 replications are simulated. To assess the performance of the MLE via EM algorithm, I consider three major measures including the absolute relative bias (ARB), the root mean squared error (RMSE) , and the coverage rate (CR).

They are defined as follows:

1) ARB(c) = N"^|(¿i -c)/c|, ARB(k) = N-X^|(kt - k)/k| and ARB(\) = N "1Si=1| (\

2) RMSE(c) = N_1 SNi (ci - c)2, RMSE(k) = N_1 SN=\ k - k)2 and

RMSE(\) = N-1 Si=1(\i -\)2,

3) The coverage rate at the 95% confidence intervals for c, k and ft is based on N simulations, where c = N_1S;NiC , k = N'^Ni^ , \ = N_1S;Ni\ , and N = 1,000.

The simulation results for the multiple censored with CL=0.2 for sample sizes 100 and 200 are

presented in Tables 1-2. The following conclusions were observed.

1) For the sample size of 100 in Table 1, EM algorithm provides lower levels of ARB and RMSE for parameters c, k, and ft than BFGS algorithm does in most scenarios. EM algorithm estimates perform better than BFGS algorithm does, the proportion accounting for 68.3% (41 cases/60 cases) for ARB and 71.7% (43 cases/60 cases) for RMSE. This indicates that EM algorithm performs better than BFGS algorithm does in this simulation study.

2) For the sample size of 100 in Table 1, the 95% C.I. is calculated for parameters c, k, and ft. In most scenarios, EM algorithm provides higher levels of CR for parameters c, k, and ft than BFGS algorithm does. EM algorithm estimates perform better than BFGS algorithm does, the proportion accounting for 100% (60 cases/60 cases). The average values of CR are 95.6% for EM algorithm and 72.0% for BFGS algorithm. This indicates that EM algorithm performs better than BFGS algorithm does in this simulation study.

3) For the sample size of 200 in Table 2, the results are similar with those for the sample size of 100. EM algorithm estimates perform better than BFGS algorithm does, the proportion accounting for 58.3% (35 cases/60 cases) for ARB and 65.0% (39 cases/60 cases) for RMSE. EM algorithm estimates perform better than BFGS algorithm does, the proportion accounting for 73.3% (44 cases/60 cases) for CR. The average values of CR are 93.9% for EM algorithm and 88.6% for BFGS algorithm.

4) With the sample size of complete data increasing from 100 to 200, EM algorithm and BFGS algorithm estimates for parameters c, k, and ft are more accurate and have fewer errors, and lower ARB and RMSE.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Table 1: ARB, RMSE and CR of the estimates with n = 100.

k BFGS algorithm EM algorithm

c ft T Parameters ARB RMSE CR (%) ARB RMSE CR (%)

k 0.1480 0.1728 62.4 0.1461 0.1677 90.7

1 0.5 1.25 0.5 c 0.1084 0.0692 89.2 0.1010 0.0652 99.7

ft 0.3148 0.4633 44.9 0.2644 0.4025 87.7

k 0.1479 0.1717 63.0 0.1347 0.1601 91.4

1 0.5 2 0.5 c 0.1036 0.0661 90.6 0.1015 0.0652 99.2

ft 0.2947 0.6911 49.2 0.2544 0.6264 89.2

k 0.1288 0.1505 74.4 0.1265 0.1487 97.4

1 1 1.25 0.5 c 0.1046 0.1384 90.2 0.1021 0.1349 99.5

ft 0.2272 0.3456 64.7 0.2045 0.3117 95.8

k 0.1296 0.1543 72.1 0.1150 0.1407 98.3

1 1 2 0.5 c 0.0981 0.1280 90.9 0.1028 0.1315 99.7

ft 0.2235 0.5401 67.1 0.2299 0.5481 94.2

k 0.1431 0.3294 64.2 0.1505 0.3404 92.0

2 0.5 1.25 0.5 c 0.0871 0.0558 93.4 0.0831 0.0523 99.6

ft 0.2383 0.3631 59.0 0.2080 0.3209 96.3

k 0.1369 0.3176 67.4 0.1217 0.2849 95.3

2 0.5 2 0.5 c 0.0856 0.0549 93.7 0.0903 0.0578 99.3

P 0.2435 0.5978 57.7 0.2433 0.5905 94.5

k 0.1423 0.3341 65.8 0.1340 0.3145 96.9

2 1 1.25 0.5 c 0.0921 0.1204 90.6 0.0879 0.1130 99.8

P 0.2343 0.3538 64.9 0.2020 0.3101 98.3

k 0.1425 0.3354 64.6 0.1128 0.2747 98.1

2 1 2 0.5 c 0.0963 0.1259 88.0 0.1069 0.1385 99.2

P 0.2459 0.5962 64.0 0.2257 0.5507 94.6

k 0.1827 0.4300 55.7 0.1325 0.3338 98.2

2 2 1.25 0.5 c 0.0849 0.2105 92.2 0.1016 0.2526 99.8

P 0.2377 0.4180 79.7 0.1904 0.3279 99.4

k 0.1807 0.4256 54.8 0.1610 0.4157 99.6

2 2 2 0.5 c 0.0805 0.2029 94.2 0.1295 0.3319 99.6

P 0.2329 0.6224 77.9 0.2243 0.5268 95.3

k 0.1605 0.0935 60.0 0.1508 0.0891 91.4

0.5 1 1.25 1.5 c 0.1313 0.1734 82.5 0.1339 0.1712 98.1

P 0.2792 0.4255 55.4 0.2310 0.3533 91.5

k 0.1573 0.0927 62.9 0.1461 0.0874 91.9

0.5 1 2 1.5 c 0.1227 0.1635 85.9 0.1234 0.1628 99.0

P 0.2592 0.6214 59.5 0.2373 0.5795 91.2

k 0.1226 0.0731 77.3 0.1672 0.0981 90.4

0.5 2 1.25 1.5 c 0.0987 0.2407 89.2 0.1331 0.3307 99.5

P 0.2117 0.3364 74.0 0.2007 0.3091 97.9

k 0.1217 0.0723 78.3 0.1489 0.0896 92.6

0.5 2 2 1.5 c 0.0948 0.2315 90.1 0.1333 0.3554 99.5

P 0.2045 0.5196 75.5 0.2186 0.5354 95.1

k 0.1592 0.1822 56.1 0.1542 0.1767 87.5

1 0.5 1.25 1.5 c 0.1066 0.0682 89.9 0.1047 0.0674 98.9

P 0.3348 0.5185 42.8 0.2703 0.4126 88.3

k 0.1481 0.1713 62.5 0.1411 0.1641 90.3

1 0.5 2 1.5 c 0.1019 0.0650 91.4 0.1069 0.0675 99.1

P 0.3152 0.7462 43.4 0.2740 0.6668 88.9

k 0.1511 0.1756 58.7 0.1517 0.1774 89.0

1 1 1.25 1.5 c 0.0927 0.1221 92.7 0.0927 0.1242 99.0

P 0.2241 0.3389 65.0 0.2157 0.3251 96.6

k 0.1499 0.1738 61.3 0.1370 0.1601 92.4

1 1 2 1.5 c 0.0971 0.1256 91.6 0.1046 0.1330 99.5

P 0.2300 0.5519 61.8 0.2238 0.5417 94.7

k 0.1721 0.1883 52.9 0.1706 0.1876 89.0

1 2 1.25 1.5 c 0.0879 0.2233 91.4 0.0852 0.2125 99.1

P 0.2461 0.4011 69.6 0.2206 0.3670 99.1

k 0.1700 0.1872 52.4 0.1534 0.1738 89.8

1 2 2 1.5 c 0.0882 0.2284 92.9 0.0894 0.2292 99.1

P 0.2402 0.6245 66.4 0.2250 0.6059 98.5

Table 2: ARB, RMSE and CR of the estimates with n = 200.

BFGS algorithm EM algorithm

k c P T Parameters ARB RMSE CR (%) ARB RMSE CR (%)

k 0.1508 0.1660 78.2 0.1473 0.1616 81.2

1 0.5 1.25 0.5 c 0.0711 0.0455 99.2 0.0743 0.0478 98.8

P 0.2466 0.3757 85.2 0.1990 0.3043 93.0

k 0.1484 0.1650 76.4 0.1334 0.1496 85.9

1 0.5 2 0.5 c 0.0693 0.0444 99.0 0.0760 0.0479 99.2

P 0.2342 0.5641 85.8 0.2042 0.5030 92.1

k 0.1408 0.1581 100.0 0.1352 0.1515 89.0

1 1 1.25 0.5 c 0.0753 0.0971 98.6 0.0759 0.0974 99.1

P 0.1647 0.2510 97.9 0.1561 0.2368 98.2

k 0.1369 0.1563 99.2 0.1206 0.1410 91.7

1 1 2 0.5 c 0.0716 0.0922 99.0 0.0799 0.1033 99.1

P 0.1650 0.4029 98.6 0.1721 0.4149 95.9

k 0.1426 0.3155 66.7 0.1351 0.2970 81.8

2 0.5 1.25 0.5 c 0.0630 0.0396 97.9 0.0612 0.0379 99.0

ß 0.1960 0.2975 74.1 0.1781 0.2736 97.2

k 0.1441 0.3176 63.5 0.1220 0.2738 88.4

2 0.5 2 0.5 c 0.0612 0.0394 97.9 0.0707 0.0445 98.8

ß 0.1968 0.4826 74.4 0.2002 0.4909 94.5

k 0.1448 0.3255 70.4 0.1244 0.2817 91.8

2 1 1.25 0.5 c 0.0640 0.0830 97.2 0.0641 0.0817 99.4

ß 0.1880 0.2884 89.4 0.1548 0.2302 99.3

k 0.1445 0.3240 72.2 0.1029 0.2425 97.4

2 1 2 0.5 c 0.0650 0.0827 97.8 0.0761 0.0958 98.3

ß 0.1819 0.4532 91.1 0.1733 0.4092 96.5

k 0.1556 0.3650 97.0 0.1130 0.2798 97.6

2 2 1.25 0.5 c 0.0637 0.1588 99.9 0.0790 0.1994 99.2

ß 0.1594 0.2723 99.4 0.1446 0.2255 99.3

k 0.1534 0.3619 96.9 0.1172 0.2882 99.3

2 2 2 0.5 c 0.0651 0.1621 99.7 0.1089 0.2649 98.6

ß 0.1632 0.4386 99.6 0.1880 0.4362 96.8

k 0.1656 0.0921 84.4 0.1525 0.0857 82.7

0.5 1 1.25 1.5 c 0.0931 0.1204 98.9 0.0908 0.1147 98.5

ß 0.2053 0.3156 94.9 0.1715 0.2636 94.0

k 0.1599 0.0896 82.9 0.1475 0.0842 85.5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0.5 1 2 1.5 c 0.0845 0.1135 98.6 0.0966 0.1262 99.3

ß 0.2012 0.4938 94.0 0.1805 0.4461 92.5

k 0.1351 0.0761 90.2 0.1570 0.0884 83.5

0.5 2 1.25 1.5 c 0.0704 0.1716 99.2 0.0823 0.2116 99.6

ß 0.1619 0.2558 95.6 0.1430 0.2146 98.2

k 0.1337 0.0752 92.4 0.1446 0.0827 87.1

0.5 2 2 1.5 c 0.0698 0.1717 99.2 0.0892 0.2341 99.2

ß 0.1427 0.3658 94.2 0.1450 0.3584 96.6

k 0.1569 0.1722 66.2 0.1466 0.1617 75.5

1 0.5 1.25 1.5 c 0.0695 0.0449 98.5 0.0719 0.0448 99.5

ß 0.2454 0.3697 71.9 0.1939 0.3028 95.6

k 0.1616 0.1754 61.3 0.1431 0.1575 83.0

1 0.5 2 1.5 c 0.0686 0.0438 99.0 0.0752 0.0475 99.0

ß 0.2301 0.5617 74.0 0.1996 0.4927 92.8

k 0.1542 0.1683 67.5 0.1509 0.1663 75.6

1 1 1.25 1.5 c 0.0677 0.0871 98.6 0.0688 0.0875 99.1

ß 0.1779 0.2689 83.7 0.1609 0.2451 98.2

k 0.1545 0.1697 66.5 0.1367 0.1544 80.2

1 1 2 1.5 c 0.0666 0.0842 99.1 0.0752 0.0935 99.6

ß 0.1714 0.4153 85.4 0.1796 0.4242 97.3

k 0.1436 0.1596 73.3 0.1347 0.1509 80.4

1 2 1.25 1.5 c 0.0603 0.1521 99.6 0.0616 0.1566 99.8

ß 0.1864 0.2935 85.0 0.1612 0.2483 98.4

k 0.1395 0.1547 75.4 0.1225 0.1384 88.5

1 2 2 1.5 c 0.0641 0.1601 98.6 0.0706 0.1787 99.5

ß 0.1742 0.4363 86.2 0.1722 0.4117 97.5

VI. Illustrative example

To illustrate the proposed MLEs via EM algorithm for the Burr XII distribution in SS-PALT, one data set from a light-emitting diode (LED) life test was used. The life test data with 1,000 hours of unit are as follows:

0.02*, 0.03*, 0.08*, 0.11*, 0.13*, 0.14*, 0.15*, 0.19*, 0.21*, 0.25*, 0.25*, 0.27, 0.28*, 0.31, 0.33, 0.35, 0.37*, 0.42, 0.43*, 0.44*, 0.46, 0.46, 0.49, 0.51, 0.51, 0.55*, 0.56, 0.58, 0.58*, 0.59, 0.59*, 0.6, 0.71, 0.71*, 0.73, 0.73, 0.73, 0.78, 0.79*, 0.81, 0.84, 0.87, 0.89, 0.9, 0.92, 0.92, 0.95, 1.01, 1.02, 1.06, 1.07, 1.08, 1.24, 1.24*, 1.25, 1.26, 1.31, 1.5*, 1.51*, 1.52*, 1.53*, 1.54, 1.55*, 1.56, 1.57*, 1.64, 1.64*, 1.65*, 1.67, 1.69, 1.7*, 1.83, 1.91, 2.03, 2.1*, 2.36, 2.78, 4.67

There are 78 samples with stress change time, t = 1.5 and censoring level CL = 0.4. The samples of failure and censoring in the two phases of SS-PALT, respectively, are 36 failures in phase 1, 21 censoring in phase 1, 11 failures in phase 2 and 10 censoring in phase 2. The symbol "*" denotes multiple censored values. The histogram of the samples is illustrated in Figure 1 and the plot of the probability density function is illustrated in Figure 2. The initial estimates for the parameters were chosen by using pseudo complete estimates. Here, the pseudo complete estimates are computed from the samples which are completely treated as failures. Using the MLE with EM algorithm, the estimates are converged to 2.538 for c, 0.776 for k and 1.795 for ft. The information matrices based on EM algorithm are obtained as

comp

J = J - J =

obs comp miss

17.1297 25.1871 3.9065

25.1871 129.4696 10.3786

3.9065 10.3786 3.5688

" 6.0889 14.6162 1.6656"

14.6162 51.4559 4.4966

1.6656 4.4966 1.4097

11.0408 10.5709 2.2409 10.5709 78.0137 5.8820 2.2409 5.8820 2.1591

Then, the asymptotic variance-covariance matrix based on EM algorithm can be obtained as

/-1 =

J obs

0.1191 -0.0086 -0.1003 -0.0086 0.0168 -0.0367 -0.1003 -0.0367 0.6673

Then, the 95% confidence intervals, (1.862, 3.214) for c, (0.521, 1.031) for k and (0.194, 3.396) for ft are obtained. The rates of convergence of c, k and ft computed by J (vy) = /miss (vy) / /c (vy) 0.355 for c, 0.397 for k and 0.395 for ft, respectively.

are

failure censoring

I II I IIIIII I

0 1 2 3 4 5

Figure 1: Histogram of the samples

12

Figure 2: Probability density plot

VII. Conclusion

The lifetime of products under normal conditions usually requires a long period of time, which makes the test costly. Accelerated life test is used to obtain information about the lifetime of products quickly and economically under more severe operation conditions. In this paper, I present maximum likelihood estimation via EM algorithm to estimate the Burr XII parameters and acceleration factor in SS-PALT under multiple censored data. Simulation results show that the MLE via EM algorithm perform well in most cases in terms of the absolute relative bias, the root mean square, and the coverage rate. The simulation results and a real data analysis show the MLE via EM algorithm is a better alternative for estimating the Burr XII parameter in SS-PALT with multiple censored data.

The second partials of the complete data log-likelihood function for calculating elements of the complete information matrix are calculated. Then, the expected values of the second partials of the complete data log-likelihood function are obtained as

Appendix:

E P2l0g4 ly!--^-(c- 1)Y5 (d "T)2 A, [_ 0 ly J 0 (c ^52,/) D

-( k + 1) c ( c - 1)]T 5 (2/)( dD 2 + ( k + 1) c2 £ 5 )<d

i -1 1 + Di i -1

n (x -t)2 Ac-2

(k +1)c(c- 1)X5,(2,c)E. ( i Jc i X >d,

i-1 1 + Ai

E...

S2 log Lc

SeSk

d:iog(dt) - S e _ L,°i. (l,f ) 1, jc iS, (l,c) EV

^ Dc log (D ) »

_ YS —_ v '' _ VS E

iS.(2.f ) 1 + dc iS.(2.c)

1 + d; ,_1 A log (4 )

X log ( Xt )

1 + Xe

X > d.

1 + Ac

X > d

E,„

S2 log Lc SeSp

_i s k+1) d s,, d _t) Dr'log ( D)

i_1 Di i_1

_(k + 1)ÉS,(2f + (k +1)ci S

i_1 i i_1

■(2.f )

+iS ( 2,c) E

x _t

X > d.

_( k + 1) ciS (2,c) E

1 + dc (dt _t)d2c_mog(d_)

(1+D: )2 "(xt _t) aÇl log(a,)

1 + Ac

X, > d.

_(k+OE S,(2,c) E

( x. _t) a;_1

1 + Ac

X > d

i i

(k+1) ^ S,(2,c) E

(xt _t)A;c 1 log(a,)

(1+Ac )2

X > d

E.,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

S2 log Lc SkSp

-cl S

(2,f ) '

i._r) Dc _1

i / i

1 + dc

_ ci S

e

( x, _t) a; 1

1+a:

X > d

The expected values of the second partials of the complete data log-likelihood function can also be computed by using Monte Carlo integral. Then, the complete information becomes

Ieomp ( V y ) _ E, {Lamp ( V X) |y}

E.

E...

E.

S2 log Lc

v [ Se2

fS2 log Lc v 1 sck

S2 log Lc

|y ! E

|y I E

sep

S2 log Lc

Sck S2 log Lc

v 1 sk2

2

|y| E, |y| E,

S2 log Lc sep

S2 log Lc skp

|y j |y ]

-|yh Ev I E, f^^^os^ I y !

Sk p

spl

Now, the missing information matrix by using the likelihood function of X given Y can be derived and is given as follows

k (x |y;,) _ n f (^ |x, > d ) i (1c) f (x, |x, > di )'

i .(2.c)

Then, the log-likelihood function of X given Y is expressed as

»

i_1

i_1

i_1

i_1

log k ( x|y; y )

n

Z Suc) log (k) + log (c) + k log (l + di ) + (c -1) log (x,) - (k +1) log (l + < )]

i=l n

+Z ^2. c) [log (P) + log (k) + log (c) + k log (l + Di ) + (c -1)log (a,) - (k +1)log (l + < )]

i =l

The second partials of the log-likelihood functions for calculating elements of missing information matrix can be calculated. The expected values of the second partials of the log-likelihood function of X given Y are calculated as

E...

82 log k ( x|y;, )

dc2

+kZ5 ï^OgM_(k+1)£5 A

Z ^(1, c) (1+d; )2 ( )Z ^(1, c) '

x; log ( X, )2

n2c + kv 5 Di log (D ) ( k + A V 5 F

- ~C + kZ 5,(2c) (1 + )2 - (k + 1) Z

i -1

(i+xc )

Ac log ( At )

X > d

2 \ i i

(1 + Ac )

X > d

2ii

E..

E...

82 log k (x|y;,)

5k2 '

82 log k ( x|y;, )

80 '

nic + n2 c

-n2 02

+kc ( c - 1)Z5

(d -r)2 D

c - 2

(1 + D,c )

kc2 Z5

(d -r)2D2

(1+DC )2

-(c - 1)Z5,(2,c)E

(Xi -r)2

X > d

12 I i i

-(k + 1) c ( c - 1)Z5,( 2,c)E

2 c-2

(X -r)2 a, 1 + Ac

X > d

+(k +1) c2 Z5,(2,c)E

( X -r)2 A

2 2c-2

X > d

2 I i i

E...

82 logk(x|y;,)

dcdk

(1 + AÇ )

^ 5 < log (d ) + 5 E

5 d log(D)^5 E

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

+Z5,(2,c) 1 + ^c Z5,(2,c)%

1 + d\

'ac log ( A ) 1 + AC

x; log ( x )

i+xc

X > d

X > d

i-i

i-i

i-i

E...

d2 log k ( x|y; y )

dcdß

- Ccf S. S ( d -t)DC-1

z i,(2,c) i + d z i,(2,c)

i—1

i= 1

i+dc

-kcz S ( d-t) D ^( D) +£ S E

/—I i ,(2, c) „„\2 Z i,(2,c) y

-(k+1) cZS,( 2,c) E i —1

n

-( k + 1)ZS,(2,c ) Ey

(1 + DC )

A-1 ( X -t) log ( A )

X -t

X > d

i —1

1 + Ai

(X -t) AC-1 1 + AC

X > d

X > d

+ ( k + 1) cZS,( 2,c) Ey

i —1

( x -t) a C-1 log ( A )

(1+AC )

X > d

E...

d2 log k (x|y; y )

|y

—cZS,

dk dß

'( d-t) d; -1

i—1

1 + Dc

- CZS,(2,c)Ey

i=1

"(XiTc -1

1 + Ac

■\Xt >d

n

The expected values of the second partials of the log-likelihood functions can also be computed by using Monte Carlo integral. Thus, the missing information matrix can be computed from equations (22-26) and is expressed as following:

!miss ( y; y )— Ey {Imiss ( y;x ) |y}

— H)'

ja2log k( x|y; y ^ [ [a2 log k ( x|y; y I [ JaMog^x^y)

Ey 1 dc2 |y J Ey { dck |y j Ey [ dcß |y|

,d2log k ( x|y; y ) 1 [d2log k ( x|y; y ) 1 [d2log k ( x|y; y ) ,

Ey1 dck |yJ Ey 1 dk2 |y j Ey [ dkß |yi

j d2logk(x|y;y) [ j a2logk(x|y;y) [ j a2l°gk(x|y;yV j

Ey 1 dcß |y | Ey 1 dkß |y [ Ey 1 dß2

References

[1] Abd-Elfattah, A. M., Hassan, A. S. and Nassr, S. G. (2008). Estimation in step-stress partially accelerated life tests for the Burr type XII distribution using type I censoring. Statistical Methodology, 5:502-514.

[2] Abdel-Ghaly, A. A., Amin, Z. H. and Omar, D. A. (2008). Estimation of the Burr-XII distribution for partially accelerated life tests using censored data. Model Assisted Statistics and Applications, 3:317-334.

[3] Abdel-Hamid, A. H. (2009). Constant-partially accelerated life tests for Burr type-XII distribution with progressive type-II censoring. Computational Statistics & Data Analysis, 53:2511-2523.

[4] Acusta, A., Eggermont, P. and Lariccia, V. (2002). An EM algorithm for density estimation with randomly censored data. Journal of Statistical Computation and Simulation, 73:223-232.

[5] Ali Mousa, M. A. M. (1995). Empirical bayes estimators for the Burr type XII accelerated life testing model based on type-2 censored data. Journal of Statistical Computation and Simulation, 52:95-103.

[6] Balakrishnan, N. and Kim, J. A. (2004). EM algorithm for Type-II right censored bivariate normal data. In Nikulin MS, Balakrishnan N, Mesbah M, Limnios N. (Eds.), Advances in Parametric and Semi-Parametric Inference with Applications in Reliability, Survival Analysis and Quality of Life. Boston: Birkhauser, 177-210.

[7] Cheng, Y.-F. and Wang, F.-K. (2012). Estimating the Burr XII parameters in constant-stress partially accelerated life tests under multiple censored data. Communications in Statistics -Simulation and Computation, 41:1711-1727.

[8] Dempster, A. P., Laird, N. M and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39:1-38.

[9] Louis, T. A. (1982). Finding the observed information matrix when using the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 44:226-233.

[10] Ng, H. K. T., Chan, P. S. and Balakrishnan, N. (2002). Estimation of parameters from progressively censored data using EM algorithm. Computational Statistics and Data Analysis, 39:371-386.

[11] Park, C. (2005). Parameter estimation of incomplete data in competing risks using the EM algorithm. IEEE Transactions on Reliability, 54:282-290.

[12] Rodriguez, R. N. (1977). A guide to the Burr type XII distributions. Biometrika, 64:129-134.

[13] Wang, F.-K., Cheng, Y.-F. and Lu, W.-L. (2012). Partially accelerated life tests for the Weibull distribution under multiply censored data. Communications in Statistics - Simulation and Computation, 41:1667-1678.

[14] Wang, F. K., Keats, J. B. and Zimmer, W. J. (1996). Maximum likelihood estimation of the Burr XII parameters with censored and uncensored data. Microelectronics and Reliability, 36:359-362.

[15] Watkins, A. J. (1999). An algorithm for maximum likelihood estimation in the three parameter Burr XII distribution. Computational Statistics and Data Analysis, 32:19-27.

[16] Wingo, D. (1993). Maximum likelihood methods for fitting the burr type XII distribution to multiple (progressively) censored life test data. Metrika, 40:203-210.

[17] Zimmer, W. J., Keats, J. B. and Wang, F. K. (1998). The Burr XII distribution in reliability analysis. Journal of Quality Technology, 30:386-394.

Received: September 11, 2020 Accepted: November 25, 2020

i Надоели баннеры? Вы всегда можете отключить рекламу.