Научная статья на тему 'Electrotechnical complexes of heliotechnical devices: a generalized classification'

Electrotechnical complexes of heliotechnical devices: a generalized classification Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
103
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ELECTROTECHNICAL COMPLEXES / HELIOTECHNICAL DEVICES / SOLAR PANELS / COLLECTORS / ROTARY MECHANISM / ELECTRIC MOTOR / SUN-TRACKING SENSOR / CONTROL SYSTEM / SYSTEMATIZATION / CLASSIFICATION / ГЕЛИОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ / СОЛНЕЧНЫЕ БАТАРЕИ / КОЛЛЕКТОРЫ / ПОВОРОТНЫЙ МЕХАНИЗМ / ЭЛЕКТРОДВИГАТЕЛЬ / ДАТЧИК СЛЕЖЕНИЯ ЗА СОЛНЦЕМ / СИСТЕМА УПРАВЛЕНИЯ / СИСТЕМАТИЗАЦИЯ / КЛАССИФИКАЦИЯ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Sologubov A.Yu., Kirpichnikova I.M.

The need to systematize the existing electrotechnical complexes of heliotechnical devices (ECHD) is due to their growing quantity, diversity, and element base. In the proposed publication, a generalized classification of the ECHD is made over a wide range of parameters that characterize the ECHD as a separate class of devices, as their diversity and features are sufficient to describe the ECHD as such. The classification herein proposed analyzes in detail the whole structure and possible layout solutions, an effort enabled by the well-developed modern elemental base for the design of the ECHD. Using this classification enables a more precise, detailed and verified structural synthesis of the ECHD, which will help the solar engineering engineer to better understand and justify a set of technical solutions in the design, construction and operation of ECHD classes. Only electric drives are considered.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ ГЕЛИОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК: ОБОБЩЕННАЯ КЛАССИФИКАЦИЯ

Необходимость систематизации существующих электротехнических комплексов гелиоэнергетических установок (ЭТК ГУ) обусловлена ростом их количества, разнообразия, а также элементной базы. В предлагаемой публикации сформирована обобщенная классификация ЭТК ГУ по широкому спектру параметров, характеризующих ЭТК ГУ как отдельный класс устройств благодаря их многообразию и особенностям. Рассматриваемая в статье классификация в достаточно широком объеме анализирует всю структуру и возможные компоновочные решения благодаря развитой современной элементной базе для проектирования ЭТК ГУ. С использованием этой классификации станет возможным более точный, детальный и выверенный структурный синтез ЭТК ГУ, что поможет инженеру-гелиотехнику наиболее четко осознать и обосновать совокупность технических решений в области проектирования, создания и эксплуатации новых классов ЭТК ГУ.

Текст научной работы на тему «Electrotechnical complexes of heliotechnical devices: a generalized classification»

Альтернативные источники энергии

DOI: 10.14529/power190104

ELECTROTECHNICAL COMPLEXES OF HELIOTECHNICAL DEVICES: A GENERALIZED CLASSIFICATION

A.Yu. Sologubov, [email protected],

I.M. Kirpichnikova, [email protected]

South Ural State University, Chelyabinsk, Russian Federation

The need to systematize the existing electrotechnical complexes of heliotechnical devices (ECHD) is due to their growing quantity, diversity, and element base. In the proposed publication, a generalized classification of the ECHD is made over a wide range of parameters that characterize the ECHD as a separate class of devices, as their diversity and features are sufficient to describe the ECHD as such. The classification herein proposed analyzes in detail the whole structure and possible layout solutions, an effort enabled by the well-developed modern elemental base for the design of the ECHD. Using this classification enables a more precise, detailed and verified structural synthesis of the ECHD, which will help the solar engineering engineer to better understand and justify a set of technical solutions in the design, construction and operation of ECHD classes. Only electric drives are considered.

Keywords: electrotechnical complexes, heliotechnical devices, solar panels, collectors, rotary mechanism, electric motor, sun-tracking sensor, control system, systematization, classification.

Introduction

The need to systematize and classify the ECHD at the present stage is due to the growth of their quantity, diversity, and also the element base. Until now, there has been no generalized and most detailed classification of the huge diversity of the ECHD. There have been attempts to classify ECHD both in our country and abroad [1-14]. However, in the process of studying them, incompleteness of these classifications was revealed: they consider either a single classification feature or a narrow group of classification characteristics.

Thus, in [2] a classification is considered only in terms of power. The need to systematize and classify the ECHD as of today is due to their growing quantity, diversity, and element base. Until now, there has been no generalized and sufficiently detailed classification of the diverse ECHD available. Both Russian and non-Russian scientists have made attempts to classify the ECHD [1-15]. However, thorough analysis reveals the incompleteness of such classifications, as they consider either a single classification feature or a narrow group of classification characteristics. Thus, paper [2] presents a classification based solely on power. Only rotary mechanisms are considered in [1, 5, 7]. Papers [3, 4, 6, 12, 14, 15-18] present a rather broad review of literature, while still being obsolete as of today as they do not include a number of new classification characteristics (type of rotary mechanism, type of sensor and algorithm). Papers [10, 19] present only a sensor classification, whereas paper [19] ignores some of the new developments that existed at the time of writing it. Paper [11] presents a rather narrow classification of some mathematical algorithms for con-

trolling the positioning of the receiving surface of the ECHD by means of stepper motors.

Statement of Problem

The authors hereof attempt to classify all the diversity of the ECHD existing both in Russia and abroad, to expand and supplement the existing classifications.

The paper presents the basic groups, into which electric drives may be divided by the 14 most common criteria:

1. Power [2].

2. Trigger type [20].

3. Support-rotary mechanism type [7, 21].

4. Coordinate motion type [20].

5. Gearbox use [20].

6. Type of servomotor-to-actuator transmission (gear drives only) [20].

7. Type of electric machine used [4, 12, 21-31].

8. Sun-tracking sensor type [14].

9. Sensor-signal type [14].

10. Spatial position control algorithm type (for controlling the electric drive coordinates) [2, 32-38].

11. Type of communication with the main control computer (if any) [39].

12. Place of installation [18].

13. Foundation type [18].

14. Environment type [18].

Theory

According to GOST R 57229-2016 (IEC 62817: 2014) Photo-Electric Systems. Devices for Tracking the Sun. Technical Specifications [18], the photovoltaic system is a system that converts solar energy

into electrical energy by direct conversion and uses it to partially or completely cover the electrical loads of the consumer and / or transmit it to the grid.

Each of the photovoltaic solar tracking systems can be divided into categories by the number and direction of the axes, actuator layout solutions, drive types, climatic version, the type of vertical installation and foundation, control type, type of sun-vector signal generation, etc., including the characteristics below [18].

The aforementioned GOST, despite its relative completeness, does not extend to the non-mechanical factors of the ECHD and does not cover the structural features of the ECHD.

As there are increasingly more ECHD, and they are becoming ever more diverse while their elementbase available to developers is expanding, it is imperative to somehow classify this diversity.

Practice

What makes creating a detailed classification imperative is the rapid growth of engineering develop-

ments in this field and the creation of numerous laboratory specimen that could potentially go to mass production. These developments are made by designers, but they also use the products of progress in adjacent fields (photovoltaics is interlaced with electric drives and the theory of automatic drive control).

To appropriately evaluate the novelty and quality of the proposed design developments, we have made this classification that enables a full and detailed analysis into the basic engineering, technical, and structural features of the ECHD. In addition, such a classification can be used for making a database of the existing technology, which will help avoid duplicating the existing designs in the future while enable specialists to focus on advanced developments, which is also the classification authors' plan.

Problems that may arise when producing even a single specimen of such technology are quite obvious. Design and operation problems are not yet solved [39]. Table 1 presents a generalized classification that covers the maximum range of parameters for evaluating

Table 1

Electrotechnical complexes of heliotechnical devices: a generalized classification

№ Classification feature Characteristics

1 Power a) Small (power output from fractions of kW to 1 MW)

b) Average (from several MW to 10 MW)

c) Large (> 10 MW)

2 Trigger type a) Individual ECHD

b) Combined ECHD (e.g. as part of a solar farm)

3 Support-rotary mechanism type 1. Uniaxial:

a) Horizontal-axis

b) Vertical-axis

c) Inclined

2. Biaxial:

a) Horizontal main axis

b) Vertical main axis

c) Inclined main axis

3. Modified biaxial mechanisms:

a) With passive supports and posts

b) Rotary

c) Coordinate-interdependent

4 Coordinate motion type a) Rotational

b) Translational (linear)

5 Gearbox use a) Gear drive

b) Gearless drive

6 Type of servomotor-to-actuator transmission (gear drives only) a) Worm drive

b) Cylindrical drive

c) Bevel gear

d) Planetary gear

e) Eccentric gear

f) Screw (screw-nut gear)

7 Type of electric machine used a) DC (commutator) motor

b) Stepper motor;

c) Brushless DC motor (switched reluctance motor)

d) Asynchronous motor with squirrel-cage rotor

e) Linear electric motors

Table 1 (end)

№ Classification feature Characteristics

8 Sun-tracking sensor type a) Differential four-quadrant

b) Collimator

c) Pyramidal

d) Spatial multi-channel

e) Video and web camera with a vision system

9 Sensor-signal type a) Analog

b) Digital

10 Spatial position control algorithm type (for controlling the electric drive coordinates) 1. Open-loop (astronomical and mathematical algorithms for calculating the solar position)

2. Closed loop:

a) Linear algorithms

b) With artificial intelligence methods (neural networks, fuzzy logic etc.)

c) Automatic optimization systems (terminal control)

3. Combined control algorithms

11 Type of communication with the main control computer (if any) a) Wired

b) Wireless

12 Place of installation a) on the ground

b) on the water;

c) on a building (roof, wall) or another facility

d) integrated in the building/facility

13 Foundation type a) deep foundation

b) on-surface foundation

14 Environment type a) clean

b) conditionally pure

c) industrial

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

d) maritime

e) maritime-industrial

the great ECHD diversity. Note that only electric drives are covered.

This classification fully covers and structures the entire diversity of the ECHD. Using this classification enables more precise, detailed, and verified structural synthesis of the ECHD in an objective manner, helping the solar technician to better understand and justify the set of solutions used in designing, creating, and operating new ECHD classes.

The generalized classification helps to systematically formulate the requirements to the performance characteristics and design features of the ECHD being developed while drafting the statement of work (SoW) and specifications. Apparently, the classification will be useful for testing and evaluating both the existing and future specimen. Besides, such evaluation can be done at any stage of creating an ECHD.

The classification can be fundamental to new targeted developments in specific areas, such as ECHD motors, safety requirements to all ECHD groups, etc.

The principles and some points of this classification have already become topics of specific research and engineering development both in the field of ECHD and in adjacent scientific disciplines and developments. The classification is necessary for streamlining the matters of standardization and certification

of related products while furthering the ECHD production. This classification can be fundamental to developing the ECHD principles and codes, or any necessary additions and amendments to the existing standards [20].

The structure of this classification can serve as a basis for preparing a curriculum for the related engineering majors, training programs in all related majors of different levels, teaching aids, textbooks, and study guides.

When analyzing different approaches to classifying innovations, it should be borne in mind that generalizing and systematizing classification features to create a scientifically robust classification of innovations is of considerable practical significance, as such an effort can potentially detail all the characteristics of this or that progressive innovations. This in its turn is necessary for micro- and macro-level innovations It is such classifications that enable more specific evaluation of the innovations created by economic actors, an assessment of performance, and further determination of innovation areas that need readjustments or additional support; besides, classifications help reveal the non-homogeneity of innovations and choose such management methods that better suit each specific innovation process.

Conclusion draft SoW and specifications for designing and devel-

The proposed generalized classification can used oping future ECHD. It can also be used for creating to analyze and study the existing designs, as well as to curricula to train specialists in related majors.

References

1. Ngo Xuan Cuong., Nguyen Thi Hong., Nhu Y. Do Analysis of the Sun Tracking Systems to Optimize the Efficiency of Solar Panels. European Journal of Technology and Design, 2016, vol. 14, no. 4, pp.144-151.

2. Abbasova TS [Enhancing the Uninterruptible Power Supply System for Computer Equipment]. Electrotechnical and Information Systems, 2011, vol. 1, no. 7, pp. 3-11. (in Russ.)

3. Demenkova T.A., Finenko A.A. Analysis and Methodology for Selecting Algorithms for Solar-Panel Control Systems. International Scientific and Technical Conference on Informatics and Technology. Innovative Technologies in Industry and Informatics (MNTK FTI-2017), 2017, pp. 306-309.

4. Sumathi V., Jayapragash R., Bakshi A., Akella P.K. Solar Tracking Methods to Maximize PV System Output. Renewable and Sustainable Energy Reviews, 2017, vol. 74, no. February 2016, pp. 130-138. DOI: 10.1016/j.rser.2017.02.013

5. Lee C.-Y., Chou P.-C., Chiang C.-M., Lin C.-F. Sun Tracking Systems: A Review. Sensors, 2009, vol. 9, no. 5, pp. 3875-3890. DOI: 10.3390/s90503875

6. Mousazadeh H., Keyhani A., Javadi A., Mobli H., Abrinia K., Sharifi A. A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output. Renewable and Sustainable Energy Reviews, 2009, vol. 13, no. 8, pp. 1800-1818. DOI: 10.1016/j.rser.2009.01.022

7. Racharla S., Rajan K. Solar Tracking System - a Review. International Journal of Sustainable Engineering, 2017, vol. 7038, pp. 1-10.

8. Ya'u M.J. A Review on Solar Tracking Systems and Their Classifications. Journal of Energy, Environmental & Chemical Engineering, 2017, vol. 2, no. 3, pp. 46-50.

9. Gill F.J.G., Miguel De Simón M., Vara J.P., Calvo J.R. A Review of the Solar Tracker Patents in Spain. Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Resources, 2009, pp. 292-297.

10. Nsengiyumva W., Chen SG, Hu L., Chen X. Recent Advancements and Challenges in Solar Tracking Systems (STS): a Review. Renewable and Sustainable Energy Reviews, 2018, vol. 81, pp. 250-279. DOI: 10.1016/j.rser.2017.06.085

11. Ngo Xiang Kyong [Analysis of Structural Circuits of Solar-Panel Electromechanical Systems]. Bulletin of Tula State University. Technical Science, 2013, vol. 1, pp. 322-325. (in Russ.)

12. Liang W., Wang Z. Several Experiences on Automatic Sun Tracking System. Proceedings of ISES World Congress, 2007, vol. 1-4, pp. 1768-1772. DOI: 10.1007/978-3-540-75997-3_362

13. Arzhanov V.V., Mishin V.N., Rakitin G.A., Arzhanov K.V. [Control of Positional Electric Drive Units for Measuring Illumination Thermal Vacuum Chamber]. Reports of TUSUR, 2013, vol. 1, no. 27, pp. 20-23. (in Russ.)

14. Salgado-Conrado L. A Review on the Sun Position of Sensors used in Solar Applications. Renewable and Sustainable Energy Reviews, 2017, no. February, pp. 1-19. DOI: 10.1016/j.rser.2017.08.040

15. Singh R., Kumar S., Gehlot A., Pachauri R. An Imperative Role of Sun Trackers in Photovoltaic Technology: a Review. Renewable and Sustainable Energy Reviews, 2018, vol. 82, pp. 3263-3278. DOI: 10.1016/j.rser.2017.10.018

16. Al-Rousan N., Isa N.A.M., Desa M.K.M. Advances in Solar Photovoltaic Tracking Systems: a Review. Renewable and Sustainable Energy Reviews, 2018, vol. 82, no. Januar, pp. 2548-2569. DOI: 10.1016/j.rser.2017.09.077

17. Loschi HJ, Iano Y., León J., Moretti A., Daibert FC, Braga H. A Review on Photovoltaic Systems: Mechanisms and Methods for Irradiation Tracking and Prediction. Smart Grid and Renewable Energy, 2015, vol. 6, no. 7, pp. 187-208. DOI: 10.4236/sgre.2015.67017

18. GOST R 57229-2016 (IEC 62817: 2014). Sistemy fotoelektricheskie. Ustroystva slezheniya za Solntsem. Tekhnicheskie usloviya [Photovoltaic Systems. Devices for Tracking the Sun. Specifications]. Moscow, Publishing Standards Publ., 2016. 68 p.

19. Barker L., Neber M., Lee H. Design of a Low-Profile Two-Axis Solar Tracker. Solar Energy, 2013, vol. 97, pp. 569-576. DOI: 10.1016/j.solener.2013.09.014

20. Prinsloo G., Dobson R. Solar Tracking - Sun Position, Sun Tracking, Sun Following. Stellenbosch, SolarBooks, 2015. 542 p.

21. Xinhong Z., Zongxian W., Zhengda Y. Intelligent Solar Tracking Control System Implemented on an FPGA. Nios II Embedded Processor Design Contest, 2007, pp. 217-246.

22. Khan T.A., Tanzil S.M.S., Rahman R., Alam S.M.S. Design and Construction of an Automatic Solar Tracking System. 6th International Conference on Electrical and Computer Engineering ICECE 2010, 2010, pp. 326-329. DOI: 10.1109/icelce.2010.5700694

23. Shinyakov Yu.A., Shurygin Yu.A., Arzhanov V.V., Osipov A.V., Teuschakov O.A., Arzhanov K.V. [Automated Photovoltaic System of Improved Energy Efficiency]. Reports of Tomsk State University of Control Systems andRadioelectronics, 2011, vol. 2 (24), no. 24, pp. 282-287. (in Russ.)

24. Shinyakov Yu.A., Shurygin Yu.A., Arzhanov V.V., Teuschakov O.A., Osipov A.V. A.K.V. [Autonomous Photovoltaic Power Plant]. Proceedings of Tomsk Polytechnic University, 2012, vol. 4, no. 320, pp. 133-138. (in Russ.)

25. Arzhanov V.V., Shurygin Yu.A., Shinyakov Yu.A., Arzhanov K.V. [Minimizing the Power Consumption of Electric Drives in a Photovoltaic Power Plant]. Proceedings of Tomsk Polytechnic University, 2013, vol. 4, no. 322, pp. 146. (in Russ.)

26. Fontani D., Sansoni P., Francini F., Jafrancesco D., Mercatelli L., Sani E. Pointing Sensors and Sun Tracking Techniques. International Journal of Photoenergy, 2011, vol. 2011, pp. 9. DOI: 10.1155/2011/806518

27. Arzhanov K.V., Arzhanova A.V. [A Stepper Electric Drive Design for Photovoltaic Power Plant Guidance Exposed to Heavy Wind]. Power Engineering: Efficiency, Reliability, Safety, 2000, pp. 4-6. (in Russ.)

28. Fathabadi H. Novel, High Accurate Sensorless Dual-Axis Solar Tracking System. Applied Energy, 2016, vol. 173, pp. 448-459. DOI: 10.1016/j.apenergy.2016.03.109

29. Kitaeva M.V., Yurchenko A.V., Skorokhodov A.V. [Sun-Tracking Systems]. Bulletin of Science in Siberia, 2012, vol. 3, no. 4, pp. 61-67. (in Russ.)

30. Cheng L., Wang B. Design and Experiment of a New Solar Automatic Tracking System. 2nd International Conference on Control, Automation, and Artificial Intelligence (CAAI 2017), 2017, vol. 134, pp. 142-145. DOI: 10.2991/caai-17.2017.29

31. Kitaeva M.V., Okhorzina A.V., Skorokhodov Yu.A. [Optimizing a Biaxial Sun-Tracking System]. III Nauchno-prakticheskaya konferenciya "Informatsionno-izmeritel'naya tekhnika i tekhnologii" [III Scientific and Practical Conference "Information and Measuring Equipment and Technologies"], 2012, pp. 114-124. (in Russ.)

32. Al-Naima F.M., Yaghobian N.A. Design and Construction of a Solar Tracking System. Solar & Wind Technology, 1990, vol. 7, no. 5, pp. 611-617. DOI: 10.1016/0741-983X(90)90072-A

33. Sallaberry F., Pujol-Nadal R., Larcher M., Rittmann-Frank M.H. Direct Tracking Error Characterization on a Single-Axis Solar Tracker. Energy Conversion and Management, 2015, vol. 105, pp. 1281-1290. DOI: 10.1016/j.enconman.2015.08.081

34. Felske J.D. The Effect of Off-South Orientation on the Performance of Flat-Plate Solar Collectors. Solar Energy, 1978, vol. 20, no. 1, pp. 29-36. DOI: 10.1016/0038-092X(78)90138-X

35. Camacho E.F., Berenguel M., Rubio F.R., D. Martinez. Control of Solar Energy Systems. Londond, Springer Publ., 2012. 426 p.

36. Cositore F., Manfredi S., Pagano M., Roscia M. A Cascade Control Scheme for the Hybrid Photovoltaic Power System. 2015 International Conference on Clean Electrical Power (ICCEP), 2015, pp. 441-447. DOI: 10.1109/iccep.2015.7177535

37. Tkhein Lin U., Batyrev E.V. [Generating an Automatic-Tracking Loop for a Solar Power Plant]. Oboronnyy Kompleks - Nauchno-tekhnicheskie Progressy Rossii [Defense Complex - Scientific and Technical Progress of Russia], 2009, pp. 38-41. (in Russ.)

38. Lukichev D.V., Demidova G.L. [Fuzzy System to Control the Positioning of Servomotors Used in Supporting and Rotary Devices with Non-Rigid Axes]. Bulletin of ISEU, 2013, vol. 6, pp. 1-5. (in Russ.)

39. Pearson J., Chen-Golden B. An Assessment of Heliostat Control System Methods (Technical Report). Colorado, 1986. 42 p.

Received 16 May 2018

УДК 621.383 DOI: 10.14529/power190104

ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ ГЕЛИОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК: ОБОБЩЕННАЯ КЛАССИФИКАЦИЯ

А.Ю. Сологубов, И.М. Кирпичникова

Южно-Уральский государственный университет, г. Челябинск, Россия

Необходимость систематизации существующих электротехнических комплексов гелиоэнергетиче-ских установок (ЭТК ГУ) обусловлена ростом их количества, разнообразия, а также элементной базы. В предлагаемой публикации сформирована обобщенная классификация ЭТК ГУ по широкому спектру параметров, характеризующих ЭТК ГУ как отдельный класс устройств благодаря их многообразию и особенностям. Рассматриваемая в статье классификация в достаточно широком объеме анализирует всю структуру и возможные компоновочные решения благодаря развитой современной элементной базе для проектирования ЭТК ГУ. С использованием этой классификации станет возможным более точный, детальный и выверенный структурный синтез ЭТК ГУ, что поможет инженеру-гелиотехнику наиболее четко осознать и обосновать совокупность технических решений в области проектирования, создания и эксплуатации новых классов ЭТК ГУ.

Ключевые слова: гелиоэнергетические установки, солнечные батареи, коллекторы, поворотный механизм, электродвигатель, датчик слежения за Солнцем, система управления, систематизация, классификация.

Литература

1. Ngo Xuan Cuong. Analysis of the sun tracking systems to optimize the efficiency of solar panels / Ngo Xuan Cuong., Nguyen Thi Hong., Nhu Y. Do // European Journal of Technology and Design. - 2016. - Vol. 14, no. 4. -P. 144-151.

2. Аббасова, Т.С. Совершенствование системы бесперебойного электропитания для компьютерного оборудования / Т.С. Аббасова // Электротехнические и информационные комплексы и системы. - 2011. -Т. 1, № 7. - С. 3-11.

3. Деменкова, Т.А. Анализ и методика выбора алгоритмов для систем управления солнечными установками / Т.А. Деменкова, А.А. Финенко // Международная научно-техническая конференция «Информатика и Технологии. Инновационные технологии в промышленности и информатике» («МНТК ФТИ-2017)». - 2017. -С. 306-309.

4. Solar tracking methods to maximize PV system output - A review of the methods adopted in recent decade / V. Sumathi, R. Jayapragash, A. Bakshi, P.K. Akella //Renewable and Sustainable Energy Reviews. - 2017. - Vol. 74, no. February 2016. - P.130-138.

5. Sun Tracking Systems: A Review / C.-Y. Lee, P.-C. Chou, C.-M. Chiang, C.-F. Lin //Sensorsw - 2009. - Vol. 9, no. 5. - P. 3875-3890. DOI: 10.3390/s90503875

6. A review of principle and sun-tracking methods for maximizing solar systems output / H. Mousazadeh,

A. Keyhani, A. Javadi et al. //Renewable and Sustainable Energy Reviews - 2009. - Vol. 13, no. 8 - P. 1800-1818.

7. Racharla, S. Solar tracking system - a review / S. Racharla, K. Rajan // International Journal of Sustainable Engineering. - 2017. - Vol. 7038. - P. 1-10.

8. Ya 'u, M.J. A Review on solar tracking systems and their classifications / M.J. Ya 'u // Journal of Energy, Environmental & Chemical Engineering. - 2017. - Vol. 2, no. 3 - P. 46-50.

9. A review of solar tracker patents in Spain / F.J.G. Gill, M. Miguel de Simón, J.P. Vara, J.R. Calvo // Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Resources. - 2009. - P. 292-29 7.

10. Recent advancements and challenges in Solar Tracking Systems (STS): A review / W. Nsengiyumva, S.G. Chen, L. Hu, X. Chen // Renewable and Sustainable Energy Reviews. - 2018. - Vol. 81. - P. 250-279. DOI: 10.1016/j. rser.2017.06.085

11. Нго Суан Хыонг. Анализ конструктивных схем электромеханических систем солнечных батарей / Нго Суан Хыонг //Известия ТулГУ. Технические науки. - 2013. - Т. 1. - С. 322-325.

12. Liang, W. Several experiences on automatic sun tracking system / W. Liang, Z. Wang // Proceedings of ISES World Congress. - 2007. - Vol. 1-4. - P. 1768-1772.

13. Управление позиционными электроприводами блока измерения освещенности для термобарокамеры /

B.В. Аржанов, В.Н. Мишин, Г.А. Ракитин, К.В. Аржанов. - 2013. - Т. 1, № 27. - С. 20-23.

14. Salgado-Conrado, L. A review on sun position sensors used in solar applications / L. Salgado-Conrado // Renewable and Sustainable Energy Reviews. - 2017, no. February. - P. 1-19. DOI: 10.1016/j.rser.2017.08.040

15. An imperative role of sun trackers in photovoltaic technology: A review / R. Singh, S. Kumar, A. Gehlot, R. Pachauri // Renewable and Sustainable Energy Reviews. - 2018. - Vol. 82. - P. 3263-3278. DOI: 10.1016/j. rser.2017.10.018

16. Al-Rousan, N. Advances in solar photovoltaic tracking systems: A review / N. Al-Rousan, N.A.M. Isa, M.K.M. Desa //Renewable and Sustainable Energy Reviews - 2018. - Vol. 82, no. January. - P. 2548-2569. DOI: 10.1016/j.rser.2017.09.077

17. A Review on Photovoltaic Systems: Mechanisms and Methods for Irradiation Tracking and Prediction / H.J. Loschi, Y. Iano, J. León, A. Moretti, F.C. Daibert, H. Braga // Smart Grid and Renewable Energy. - 2015. -Vol. 6, no. 7. - P. 187-208.

18. ГОСТ Р 57229-2016 (МЭК 62817:2014). Системы фотоэлектрические. Устройства слежения за солнцем. Технические условия. - M.: Изд-во стандартов, 2016. - 68 с.

19. Barker, L. Design of a low-profile two-axis solar tracker / L. Barker, M. Neber, H. Lee // Solar Energy. -2013. - Vol. 97. - P. 569-576.

20. Prinsloo, G. Solar tracking - Sun Position, Sun Tracking, Sun Following / G. Prinsloo, R. Dobson. - Stellenbosch: SolarBooks, 2015. - 542 p.

21. Xinhong, Z. Intelligent Solar Tracking Control System Implemented on an FPGA / Z. Xinhong, W. Zongxian, Y. Zhengda //Nios II Embedded Processor Design Contest. - 2007. - P. 217-246.

22. Design and Construction of an Automatic Solar Tracking System / T.A. Khan, S.M.S. Tanzil, R. Rahman, S.M.S. Alam // 6th International Conference on Electrical and Computer Engineering ICECE 2010. - 2010. -P. 326-329. DOI: 10.1109/icelce.2010.5700694

23. Автоматизированная фотоэлектрическая установка с повышенной энергетической эффективностью /Ю.А. Шиняков, Ю.А. Шурыгин, В.В. Аржанов и др. //Доклады Томского государственного университета систем управления и радиоэлектроники. - 2011. - Т. 2 (24), № 24. - С. 282-287.

24. Автономная фотоэлектрическая энергетическая установка / Ю.А. Шиняков, Ю.А. Шурыгин, В.В. Аржанов и др. //Известия Томского политехнического университета. - 2012. - Т. 4, № 320. - С. 133-138.

25. Минимизация энергопотребления электроприводами в фотоэлектрической энергетической установке / В.В. Аржанов, Ю.А. Шурыгин, Ю.А. Шиняков, К.В. Аржанов // Известия Томского политехнического университета. - 2013. - Т. 4, № 322. - С. 146.

26. Pointing Sensors and Sun Tracking Techniques /D. Fontani, P. Sansoni, F. Francini et al. //International Journal of Photoenergy. - 2011. - Vol. 2011. - P. 9.

27. Аржанов, К.В. Разработка структуры шагового электропривода для системы наведения фотоэлектрической установки при действии ветровой нагрузки /К.В. Аржанов, А.В. Аржанова // Энергетика: Эффективность, надежность, безопасность. - 2000. - С. 4-6.

28. Fathabadi, H. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems / H. Fathabadi // Applied Energy. - 2016. - Vol. 173. -P. 448-459.

29. Китаева, М.В. Системы слежения за солнцем / М.В. Китаева, А.В. Юрченко, А.В. Скороходов // Вестник науки Сибири. - 2012. - Т. 3, № 4. - С. 61-67.

30. Cheng, L. Design and Experiment of a New Solar Automatic Tracking System / L. Cheng, B. Wang // 2nd International Conference on Control, Automation, and Artificial Intelligence (CAAI2017). - 2017. - Vol. 134. -P. 142-145. DOI: 10.2991/caai-17.2017.29

31. Китаева, М.В. Оптимизация двухосевой системы слежения за Солнцем / М.В. Китаева, А.В. Охорзина, А.В. Скороходов //III Научно-практическая конференция «Информационно-измерительная техника и технологии». - 2012. - С. 114-124.

32. Al-Naima, F.M. Design and construction of a solar tracking system / F.M. Al-Naima, N.A. Yaghobian // Solar & Wind Technology. - 1990. - Vol. 7, no. 5. - P. 611-617.

33. Direct tracking error characterization on a single-axis solar tracker / F. Salaberry, R. Pujol-Nadal, M. Larcher, M.H. Rittmann-Frank // Energy Conversion and Management. - 2015. - Vol. 105. - P. 1281-1290.

34. Felske, J.D. The effect of off-south orientation on the performance of flat-plate solar collectors / J.D. Felske //Solar Energy. - 1978. - Vol. 20, no. 1. - P. 29-36.

35. Control of Solar Energy Systems / E.F. Camacho, M. Berenguel, F.R. Rubio, D. Martínez. - Londond: Springer, 2012. - 426p.

36. A Cascade Control Scheme for Hybrid Photovoltaic Power System / F. Cositore, S. Manfredi, M. Pagano, M. Roscia // 2015 International Conference on Clean Electrical Power (ICCEP). - 2015. - P. 441-447. DOI: 10.1109/iccep.2015.7177535

37. Теин Лин У. Формирование контура автоматического слежения на солнечной энергетической установке / Теин Лин У., Э.В. Батырев // Оборонный комплекс - научно-техническому прогрессу России. -2009. - С. 38-41.

38. Лукичев, Д.В. Нечеткая система управления позиционным следящим электроприводом опорно-поворотных устройств с нежесткими осями / Д.В. Лукичев, Г.Л. Демидова // Вестник ИГЕУ. - 2013. -

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

39. Pearson, J. An Assessment of Heliostat Control System Methods (Technical Report) / J. Pearson, B. Chen. -Golden (Colorado), 1986. - 42 p.

Сологубов Андрей Юрьевич, аспирант, кафедра «Электрические станции, сети и системы электроснабжения», энергетический факультет, Политехнический институт, Южно-Уральский государственный университет, г. Челябинск; [email protected].

Кирпичникова Ирина Михайловна, д-р техн. наук, заведующий кафедрой «Электрические станции, сети и системы электроснабжения», энергетический факультет, Политехнический институт, Южно-Уральский государственный университет, г. Челябинск; [email protected].

Т. 6. - С. 1-5.

Поступила в редакцию 16 мая 2018 г.

ОБРАЗЕЦ ЦИТИРОВАНИЯ

FOR CITATION

Sologubov, A.Yu. Electrotechnical Complexes of Heliotechnical Devices: a Generalized Classification / A.Yu. Sologubov, I.M. Kirpichnikova // Вестник ЮУрГУ. Серия «Энергетика». - 2019. - Т. 19, № 1. - С. 35-42. DOI: 10.14529/power190104

Sologubov A.Yu., Kirpichnikova I.M. Electrotechnical Complexes of Heliotechnical Devices: a Generalized Classification. Bulletin of the South Ural State University. Ser. Power Engineering, 2019, vol. 19, no. 1, pp. 35-42. DOI: 10.14529/power190104

i Надоели баннеры? Вы всегда можете отключить рекламу.