Научная статья на тему 'ELECTRICAL CONDUCTIVITY OF COMPOSITES BASED ON ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE MODIFIED WITH A MIXTURE OF GRAPHENE NANOPLATES AND IODIZED CARBON NANOTUBES'

ELECTRICAL CONDUCTIVITY OF COMPOSITES BASED ON ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE MODIFIED WITH A MIXTURE OF GRAPHENE NANOPLATES AND IODIZED CARBON NANOTUBES Текст научной статьи по специальности «Нанотехнологии»

CC BY
16
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Advanced Materials & Technologies
ВАК
CAS
Область наук
Ключевые слова
NANOMATERIALS / CARBON NANOTUBES / GRAPHENE / MODIFICATION / IODINE / NANOCOMPOSITES / POLYMERS / ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE / ELECTRICAL CONDUCTIVITY

Аннотация научной статьи по нанотехнологиям, автор научной работы — Chapaksov Nikolay A., Dyachkova Tatyana P., Stolyarov Roman A., Yagubov Viktor S., Tkachev Aleksey G.

In this work, a series of samples of composite materials based on ultra-high molecular weight polyethylene and a hybrid filler containing graphene nanoplates and iodized multi-walled carbon nanotubes (MWCNTs) were obtained by pressing followed by sintering. The resulting nanocomposites were studied by X-ray phase analysis and Raman spectroscopy. The iodine concentration in the modified MWCNTs was determined by energy dispersive X-ray fluorescence analysis. Assessment of the structural features of nanomaterials using X-ray phase analysis indicates the absence of iodine in the interlayer space of graphene sheets, while a change in the surface is observed. Raman spectroscopy data indicate an insignificant destructive effect of iodine on the surface of the nanomaterial. The study of electrical conductivity showed that when using iodine-modified MWCNTs as a filler, the percolation threshold shifts to lower filler concentrations, in comparison with nanocomposite samples containing unmodified nanotubes. An increase in the concentration of graphene nanoplates contributes to a twofold decrease in the percolation threshold. The maximum electrical conductivity of 5.4×10-4 S×cm-1 was achieved in ultra-high molecular weight polyethylene nanocomposites containing 3 wt. % iodinated multi-walled carbon nanotubes and 1 wt. % graphene nanoplates.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ELECTRICAL CONDUCTIVITY OF COMPOSITES BASED ON ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE MODIFIED WITH A MIXTURE OF GRAPHENE NANOPLATES AND IODIZED CARBON NANOTUBES»

Original papers Nanostructured, nanoscale materials and nanodevices

УДК 678.046 DOI: 10.17277/jamt.2022.04.pp.246-255

Electrical conductivity of composites based on ultra-high molecular weight polyethylene modified with a mixture of graphene nanoplates and iodized carbon nanotubes

© Nikolay A. Chapaksov^, Tatyana P. Dyachkova", Roman A. Stolyarov", Viktor S. Yagubov", Aleksey G. Tkachev", Anastasia E. Memetova", Nariman R. Memetov", Tatyana V. Pasko", Igor N. Burmistrovb

a Tambov State Technical University, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000, Russian Federation, b Russian University of Economics named after G. V. Plekhanov, Stremyannyper., 36, Moscow, 117997, Russian Federation

И tchapaxov.nikolaj@yandex.ru

Abstract: In this work, a series of samples of composite materials based on ultra-high molecular weight polyethylene and a hybrid filler containing graphene nanoplates and iodized multi-walled carbon nanotubes (MWCNTs) were obtained by pressing followed by sintering. The resulting nanocomposites were studied by X-ray phase analysis and Raman spectroscopy. The iodine concentration in the modified MWCNTs was determined by energy dispersive X-ray fluorescence analysis. Assessment of the structural features of nanomaterials using X-ray phase analysis indicates the absence of iodine in the interlayer space of graphene sheets, while a change in the surface is observed. Raman spectroscopy data indicate an insignificant destructive effect of iodine on the surface of the nanomaterial. The study of electrical conductivity showed that when using iodine-modified MWCNTs as a filler, the percolation threshold shifts to lower filler concentrations, in comparison with nanocomposite samples containing unmodified nanotubes. An increase in the concentration of graphene nanoplates contributes to a twofold decrease in the percolation threshold. The maximum electrical conductivity of 5.4* 10-4 S-cm-1 was achieved in ultra-high molecular weight polyethylene nanocomposites containing 3 wt. % iodinated multi-walled carbon nanotubes and 1 wt. % graphene nanoplates.

Keywords: nanomaterials; carbon nanotubes; graphene; modification; iodine; nanocomposites; polymers; ultrahigh molecular weight polyethylene; electrical conductivity.

For citation: Chapaksov NA, Dyachkova TP, Stolyarov RA, Yagubov VS, Tkachev AG, Memetova AE, Memetov NR, Pasko TV, Burmistrov IN. Electrical conductivity of composites based on ultra-high molecular weight polyethylene modified with a mixture of graphene nanoplates and iodized carbon nanotubes. Journal of Advanced Materials and Technologies. 2022;7(4):246-255. D0I:10.17277/jamt.2022.04.pp.246-255

Электропроводность композитов на основе сверхвысокомолекулярного полиэтилена, модифицированного смесью графеновых нанопластинок и йодированных углеродных нанотрубок

© Н. А. ЧапаксоваИ, Т. П. Дьячковаа, Р. А. Столяров3, В. С. Ягубова, А. Г. Ткачева, А. Е. Меметоваа, Н. Р. Меметова, Т. В. Паськоа, И. Н. Бурмистровь

а Тамбовский государственный технический университет, ул. Советская, 106/5, пом. 2, Тамбов, 392000, Российская Федерация, Российский экономический университет имени Г.В. Плеханова, Стремянный пер., 36, Москва, 117997, Российская Федерация

И tchapaxov.nikolaj@yandex.ru

Аннотация: Получены серии образцов композиционных материалов на основе сверхвысокомолекулярного полиэтилена и гибридного наполнителя, содержащего графеновые нанопластинки и йодированные многостенные углеродные нанотрубки (МУНТ) посредством методов прессования с последующим спеканием. Полученные

нанокомпозиты исследованы методами рентгенофазового анализа и рамановской спектроскопии. Концентрацию йода в модифицированных МУНТ определяли посредством энергодисперсионного рентгенофлуоресцентного анализа. Оценка структурных особенностей наноматериалов при помощи рентгенофазового анализа указывает на отсутствие йода в межслоевом пространстве графеновых листов, при этом наблюдается изменение поверхности. Данные рамановской спектроскопии указывают на незначительное деструктивное воздействие йода на поверхность наноматериала. Исследование электрической проводимости показало, что при использовании в качестве наполнителя модифицированных йодом МУНТ происходит смещение перколяционного порога в область меньших концентраций наполнителя, в сравнении с образцами нанокомпозитов, содержащих немодифицированные нанотрубки. Увеличение концентрации графеновых нанопластин способствует снижению перколяционного порога в два раза. Максимума электрической проводимости 5.4 х10-4 См/см удалось достичь в нанокомпозитах сверхвысокомолекулярного полиэтилена, содержащих 3 масс. % йодированных многостенных углеродных нанотрубок и 1 масс. % графеновых нанопластинок.

Ключевые слова: наноматериалы; углеродные нанотрубки; графен; модифицирование; йод; нанокомпозиты; полимеры; сверхвысокомолекулярный полиэтилен; электропроводность.

Для цитирования: Chapaksov NA, Dyachkova TP, Stolyarov RA, Yagubov VS, Tkachev AG, Memetova AE, Memetov NR, Pasko TV, Burmistrov IN. Electrical conductivity of composites based on ultra-high molecular weight polyethylene modified with a mixture of graphene nanoplates and iodized carbon nanotubes. Journal of Advanced Materials and Technologies. 2022;7(4):246-255. DOI:10.17277/jamt.2022.04.pp.246-255

1. Introduction

Polymers filled with electrically conductive particles are a promising material for obtaining composites that reduce the impact of electromagnetic fields on electronic components of computer technology and biological objects [1-8]. The high resistance of polymers to external influences (temperature, humidity, etc.) allows them to be used as parts of household appliances, structural blocks and assemblies in equipment for air, sea and land applications.

Carbon nanomaterials, due to their high electrical conductivity, mechanical strength, and chemical resistance, are effective fillers for electrically conductive polymer composites [9]. In this case, the intrinsic conductivity of the nanodispersedfiller and the tunneling magnetic resistance between its individual dispersed particles limit the conductivity of the composite material. In this regard, it is very important to develop new modifications of nanocarbon fillers, the composition and structure of which will contribute to the formation of a conducting cluster with the lowest electrical resistance in the volume of the polymer matrix.

Previously, the authors of [10] compared the electrical conductivity, percolation threshold, and dielectric properties of epoxy composites filled with graphene nanoplates (GNPs) and multi-walled carbon nanotubes (MWCNTs). It is shown that the percolation network, regardless of the type of filler and matrix, is formed at a filler concentration of 3.0 wt. %.

The electrical and mechanical properties of composites are also determined by the methods of

combining the carbon filler (MWCNTs and graphene) and the polymer matrix. In [11], the electrically conductive and mechanical properties of composites based on carbon nanostructures (MWCNTs, GNPs, and their mixtures) and polylactide obtained by extrusion, 3D printing, and hot pressing were studied. At the same time, the samples obtained by extrusion and hot pressing showed the highest electrical conductivity. The authors of the work believe that with these methods of forming composites, the distance between the filler particles turns out to be noticeably smaller, the contribution of the tunnel effect decreases, and the overall electrical conductivity of the materials increases. Attention should be paid to the large difference between the electrical percolation threshold values, which for composites with MWCNTs and GNPs in this work are 1.5 and 6-9 wt. %, respectively.

Works [12-15] present the facts that additionally indicate that the type of matrix and filler, as well as the nature of their interaction, affect the value of the percolation threshold.

The authors of [16] focused their attention on the study of conductive and mechanical properties of epoxy composites with MWCNTs / GNP hybrid fillers. It has been established that at a mass ratio of MWCNTs : GNPs equal to 8 : 2, the bending strength of the composite increases and the electrical percolation threshold decreases. The authors believe that the presence of oxygen-containing functional groups on the surface of GNPs contributes to the uniform distribution of the filler in the matrix. In addition, based on the data on the electrical conductivity of composites containing GNPs (2.1x10-5 S-m-1), MWCNTs (4.3x10-3 S-m-1) and

hybrid filler MWCNTs/GNP (9.1x10 3 S-m 1), a synergistic effect of a mixture of carbon nanostructures on the properties of materials has been demonstrated.

The authors of [17] note that one-dimensional MWCNTs bridge the gaps between GNPs in a thermoplastic polyurethane (TPU) matrix, contributing to the formation of additional pathways. Therefore, the addition of GNPs can improve the electrical conductivity of the resulting nanocomposite and lower the percolation threshold. The MWCNTs/ GNP(3 : 1)/TPU composite shows better electrical performance compared to MWCNTs/TPU and GNP/TPU nanocomposites with the same content of the same type of filler.

The above information can be summarized as follows:

- the formation of a percolation cluster in polymer nanocomposites is affected by the nature of the polymer matrix and filler, as well as the nature of the filler distribution;

- the synergistic effect of hybrid fillers on the properties of composites is observed only at a certain ratio of MWCNTs and GNPs;

- electrophysical properties depend on the formation method of composites filled with MWCNTs and GNPs.

Taking into account numerous data, it can be assumed that the possibilities of the original (unmodified) MWCNTs to increase the electrical conductivity of composites are practically exhausted.

Modification of MWCNTs with silver [18, 19], nitrogen [20, 21], polyaniline [22-28], halogens [2932], etc., makes it possible to achieve better performance in this respect.

In this work, ultra-high molecular weight polyethylene (UHMWPE) was chosen as a polymer matrix, which is characterized by wear resistance, resistance to aggressive media, low friction coefficient, high impact strength and low embrittlement temperature, which makes it possible to use products based on it, including under extreme operating conditions [33]. The aim of the research was to obtain composites with antistatic properties based on this polymer. Mixtures of GNPs with original and iodine-modified MWCNTs were tested as fillers. Composites were obtained by pressing followed by sintering.

2. Materials and Methods 2.1. Characteristics of initial materials and reagents

Powdered UHMWPE (Hi-zex, China) and isopropyl alcohol (Laverna Co., Russia) were used to obtain samples of polymer composites. The filler components were GNPs Taunit GM and MWCNTs Taunit-M (NanoTechCenter Ltd., Tambov). Their electronic images are shown in Fig. 1.

GNPs Taunit-GM were obtained by a modified Hummers method by treating crystalline graphite with a solution of ammonium persulfate in sulfuric

Fig. 1. Electronic images of Taunit GM graphene nanoplates (a, b) and Taunit-M carbon nanotubes (c, d) [36]

Table 1. Characteristics of GNPs Taunit GM [36]

Parameter Value

Number of graphene layers 3 - 5

Thickness of nanoplates, nm 2 - 3

Size of nanoplates in plane, ^m 2 - 10

Oxygen content, wt. % 9 - 13

Sulfur content, wt. % < 0.7

Table 2. Characteristics of MWCNTs

Taunit-M [36]

Parameter Value

Outerdiameter, nm 10 - 30

Inner diameter, nm 5 - 15

Length, ^m > 2

Total amount of impurities, %

- initial < 5

- after cleaning < 1

Specific surface, m2-g-1 > 270

Bulk density, g-cm-3 0.025 - 0.06

acid followed by washing and ultrasonic dispersion in an aqueous solution of surfactant (aminocumulene) [34]. MWCNTs were obtained by CVD synthesis on a Co,Mo/MgO,Al2O3 catalyst [35].

Characteristics of GNPs Taunit GM and MWCNTs Taunit-M are presented in Tables 1 and 2, respectively. Crystalline iodine (Component-Reaktiv, Russia) was used to modify MWCNTs.

2.2. Method for modifying MWCNTs with iodine

MWCNTs powder was mixed with crystalline iodine. The content of I2in the resulting mixture in different experiments ranged from 5 to 15 wt. %.

Then it was placed in a sealed glass container and kept in a heating cabinet for 2 hours at a temperature of 120 °C. The iodine-modified carbon nanotubes are hereinafter referred to as MWCNTs-I.

2.3. Method for obtaining nanocomposites

GNPs, MWCNTs, and MWCNTs-I were added to 1 g of UHMWPE at the concentrations indicated in Table 3. 1 mL of isopropyl alcohol was added to the resulting composition, after which it was stirred until homogeneous. The mixture was dried in an oven at 40 °C. The dried material was pressed on a tablet press (FluxanaVaneox, Germany). Pressing was carried out at 25 °C with a load of 5 tons. Compressed pellets with a diameter of ~12 mm and a height of about 3 mm were sintered at a temperature of 170 °C for 2 h. Series of composite samples were obtained. Composites of the first series contained 0.5 wt. % GNPs and 0.1-3 wt. % MWCNTs. MWCNTs-I were used in the composites of the second series. Composites of the third and fourth series contained 1 wt. % GNPs. The designations and compositions of the obtained series of nanocomposite samples are given in Table 3.

2.4. Characterization of MWCNTs and composites

The iodine concentration in the modified Taunit M MWCNTs was determined by energy dispersive X-ray fluorescence analysis using an ARL QUANTX spectrometer (Thermo Fisher Scientific, Switzerland).

X-ray phase analysis of the samples was carried out using an ARL Equinox 1000 diffractometer (Thermo Fisher Scientific, USA) with a radiation wavelength of 1.5406 A. Shooting time - 600 s.

Raman spectra were obtained on a DXR Raman Microscope (Thermo Fisher Scientific, USA) with an excitation laser wavelength of 532 nm.

Table 3. Designation of nanocomposite sample series

Designation of a Concentration, wt. %

sample series MWCNTs MWCNTs-I GNPs

1 0.1; 0.2; 0.5; 1; 2; 3 - 0.5

2 - 0.1; 0.2; 0.3; 0.4; 0.5; 1; 2; 3 0.5

3 0.1; 0.2; 0.5; 1; 2; 3 - 1

4 - 0.1; 0.2; 0.3; 0.4; 0.5; 1; 2; 3 1

The electrical conductivity of nanocomposites was measured according to Russian Standard R50499-93 using an E6-13A teraohmmeter (Punane-Ret, Estonia). The value of electrical conductivity (a) was calculated by the formula: a = 4h/nd R, where h, d are the thickness and diameter of the sample, respectively, R is the electrical resistance.

3. Results and Discussion

3.1. The study of the properties of iodine-modified MWCNTs

The X-ray diffraction patterns of the original and iodine-modified MWCNTs (Fig. 2) are similar.

The shift in the position of the (002) peak for MWCNTs-I samples is insignificant (Table 4). The interplanar distances can also be considered unchanged, which indicates that iodine molecules and atoms do not penetrate between the graphene layers of nanotubes, but cause surface changes.

0 10 20 30 40 50 60 70 80 90 100 26

Fig. 2. X-ray diffraction patterns of native (1) and iodine-modified (2 - 4) MWCNTs. The concentration of iodine in the initial mixture with MWCNTs (wt. %):

2 - 5; 3 - 10; 4 - 15

Table 4. Peak characteristics of X-ray diffraction patterns of original and iodine-modified MWCNTs

Concentration of iodine in the initial mixture, wt. % Peakposition 002, deg. Interplanar distance (d002), A

0 25.7 3.46

5 25.5 3.49

10 26 3.43

15 26 3.42

Raman spectroscopy data (Fig. 3 and Table 5) allow a more detailed analysis of the nature of the change in the MWCNTs structure upon treatment with iodine. All MWCNTs-I samples are characterized by destructive changes compared to the original nanotubes, as indicated by an increased value of the intensity ratio of characteristic D/G peaks for them.

The destruction of graphene layers and amorphization of the material are indicated by the position shift of the 2D peak towards short-wavelength values. In this case, according to the calculated values of the intensity ratio 2D/G, the sample obtained from a mixture containing 15 wt. % iodine consists of nanotubes with a smaller number of layers.

A sample of MWCNTs-I obtained from a 10 % mixture is characterized by a lower defectiveness from modified materials.

Due to the volatility of iodine, its content in finished MWCNTs-I is noticeably lower than in the initial mixtures. According to energy dispersive analysis from mixtures containing 5, 10 and 15 wt. % I2, MWCNTs-I containing 0.576, 0.990 and 0.911 wt. % of this element, respectively, were obtained.

To prepare composites with UHMWPE, MWCNTs-I with the maximum iodine content were selected according to the data of energy dispersive analysis. These are samples obtained from a mixture containing 10 wt. % iodine. According to the data of Raman spectroscopy, they are also characterized by minimal destructive changes compared to the original nanotubes, as a result of which they should have the

Fig. 3. Raman spectra of native (1) and iodine-modified (2 - 4) MWCNTs. The concentration of iodine in the initial mixture with MWCNTs (wt. %): 2 - 5; 3 - 10; 4 - 15

Table 5. Raman spectroscopy data of MWCNTs samples

Iodine concentration in the initial mixture, wt. %

Peak 2D position, cm

Peak intensity ratio D/G 2D/G

0 2687 1.21 0.21

5 2667 1.62 0.23

10 2646 1.52 0.19

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

15 2653 1.63 0.38

3.2. Electrical conductivity of UHMWPE nanocomposites containing a hybrid filler

Dependences of the electrical conductivity of composites based on UHMWPE modified with mixtures of GNPs and MWCNTs in various variations are shown in Fig. 4. They are similar in nature and consist of 3 pronounced sections. On the first one, the material demonstrates the properties of a dielectric; on the second one, the electrical conductivity increases significantly; on the third one, it has a maximum value and ceases to depend on the nanomodifier concentration. The electrical conductivity value in the last section for different samples is within the same order of magnitude and is 3.4-5.4x10-4 S-cm-1.

Differences in curves 1-4 in Fig. 4 lie in the length of these sections, and, consequently, in the values of concentrations that characterize the formation of a percolation cluster. An increase in the GNPs content in the composite composition promotes a more efficient increase in electrical conductivity upon the introduction of MWCNTs. The sample with 1 wt. % GNPs has the best conductive properties with

0,0 0,5 1.0 1.5 2.0 2,5 3,0

Mass content MWCNTs, wt. %

Fig. 4. Electrical conductivity of composites based on UHMWPE containing 0.5 (1, 2) and 1 (3, 4) wt. % GNPs, initial (1, 3) and iodine-modified (2, 4) MWCNTs

the addition of 0.5 wt. % MWCNTs-I. To achieve the same electrical conductivity values, a twofold higher concentration of the initial MWCNTs is required.

The dependences shown in Fig. 4 can be applied to the classical equation of percolation theory 1 [37]:

ct = CTf (p-pc/ , (1)

where pc is the filler volume fraction corresponding to the percolation threshold (it was recalculated based on the values of the mass concentration of the filler in the composite, taking into account the data on the densities of the matrix and filler (Table 6)), t is the critical electrical conductivity index, af is the

electrical conductivity of the filler. Bulkdensity UHMWPE is 0.45 g-cm-3, MWCNTs is 0.025 g-cm-3.

For the convenience of approximating the experimental dependences of electrical conductivity, the logarithm of both parts of equation (1) is taken and as a result the following is obtained:

log a = loga f +1 log(p-pc). (2)

The values of MWCNTs volume fractions at the percolation threshold pc and the critical values of electrical conductivity t were determined using linear regression of the dependence log a on log(p-pc) (Fig. 5).

Table 6. Calculated values of the MWCNTs volume concentrations in the composite

Mass content of MWCNTs in the composite, wt. %

Volume content of MWCNTs in the composite, vol. %

0.1 0.033

0.2 0.061

0.3 0.088

0.4 0.114

0.5 0.138

1 0.243

2 0.392

3 0.494

D

M

-0.4 -0.6 ■0.8 -1.0 -1,2 -1,4

t = 2.19 9c = 0.14

-0.5

ig

1.0

-15

t = 4.23

9c = 0.11

-0.4 -0.6 D -°'e

JS -1.0 -1.2 •1a

-5 -4

lg(9 - 9c) (a)

t = 2.42 9c = 0.14

D

g

lg(9 - 9c) (b)

t = 1.66 9c = 0.063

-5 -4

lg(9 - 9c) (c)

6 -5 4

lg(9 - 9c) | (d)

Fig. 5. Dependence plots in the coordinates of equation (2) for composites based on UHMWPE containing 0.5 (a, b) and 1 (c, d) wt. % GNP, initial (a, c) and iodine-modified (b, d) MWCNTs

For sample series 1 (containing 0.5 wt. % GNPs and MWCNTs of various concentrations), 9C and t were 0.14 and 2.19, respectively (Fig. 5a), while the convergence coefficient R2 was equal to 1.

The use of MWCNTs-I instead of the initial nanotubes (sample series 2) led to a decrease in 9C and an increase in t, these indicators became equal to 0.11 and 4.23, respectively (Fig. 5b), the convergence coefficient was 0.99667.

Series 3 nanocomposites (containing 1 wt. % GNPs and initial MWCNTs) are characterized by approximately the same values of 9C and t as for the sample series 1 (Fig. 5c). In this case, the convergence coefficient took a minimum value of 0.79075.

The use of MWCNTs-I (samples series 4) leads to a change in these indicators. The parameter 9c decreases to 0.063 and t decreases to 1.66 (Fig. 5d), R2 = 0.86238.

The values of t obtained as a result of approximating the experimental data by equation (2) range from 1.3 to 4 and are indicative of a satisfactory agreement between the experimental results and the estimated values of the percolation theory for composites with a three-dimensional conductive network of MWCNTs in the matrix [38, 39].

4. Conclusion

Modification of carbon nanotubes with iodine and their use as a modifying filler leads to earlier formation of a percolation cluster in composites

based on ultrahigh molecular weight polyethylene compared to control samples. An increase in the concentration of graphene nanoplates contributes to a twofold decrease in the percolation threshold. The maximum electrical conductivity of 5.4x10-4 S-cm-1 was achieved in nanocomposites containing 3 wt. % iodinated MWCNTs and 1 wt. % graphene nanoplates. X-ray phase analysis demonstrates the absence of iodine in the interlayer space of graphene sheets, while a change in the surface is observed. According to the results of Raman spectroscopy, an insignificant destructive effect of iodine on the surface of the nanomaterial is noticeable. The results obtained in the work make it possible to expand the range of practical application of these materials, for example, as functional antistatic coatings.

5. Acknowledgments

The study was supported by a grant from the Russian Science Foundation No 22-23-01072. This work has been done using facilities of the shared access center "Production and application of multifunctional nanomaterials" (Tambov State Technical University).

6. Funding

This study did not receive external funding.

7. Conflict of interests

The authors declare no conflicts of interest.

References

1. Stolyarov RA, Yagubov VS, Memettova AE, Memetov NR, Tkachev AG, Chapaksov NA. Electrically conductive nanocomposites based on chloroprene rubber containing multi-walled carbon nanotubes "Taunit" and "Taunit-M". Materialovedenie = Inorganic Materials: Applied Research. 2022;5:41-48. DOI: 10.31044/1684-579X-2022-0-5-41-48 (In Russ.)

2. Memetov NR, Gerasimova AV, Stolyarov RA, Tkachev AG, Melezhik AV, Chapaksov NA, Osipkov AS, Mikhalev PA, Provatorov AS. Сomposite materials based on foam polyurethane and graphene nanoplates effectively screening electromagnetic radiation. Advanced Materials and Technologies. 2020;1(17):68-73. D0I:10.17277/ amt.2020.01 .pp.068-073

3. Tkachev AG, Memetov NR, Stolyarov RA, Chapaksov NA, Gerasimova AV, Yagubov VS, Matveentsev AV, Bulgakova VG, Pozdnyakova SA. Electromagnetic properties of cold-cure silicone mixtures containing multi-walled carbon nanotubes. Advanced Materials and Technologies. 2020;3(19):43-46. DOI: 10.17277/amt.2020.03.pp.043-046

4. Komarov FF, Parfimovich ID, Milchanin OV, Tkachev AG, Melezhik AV, Memetov NR, Stolyarov RA, Ludchik OR, Kolchevskaya MN, Miranovich RB. Fabrication and pulsed laser modification of antireflective composite materials for the visible and near-IR ranges. Springer Proceedings in Physics. Selected Articles from the International Conference on Nanomaterials: Applications and Properties, NAP. 2020;240:353-359. DOI:10.1007/978-981-15-1742-6_34

5. Papadopoulos A, Gkikas G, Paipetis AS, Barkoula N-M. Effect of CNTs addition on the erosive wear response of epoxy resin and carbon fibre composites. Composites Part A: Applied Science and Manufacturing. 2016;84:299-307. DOI:10.1016/j.compositesa.2016.02.012

6. Li Y. Wang S, Wang Q, Xing M. A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Composites Part B: Engineering. 2018;133:35-41. DOI:10.1016/j.compositesb.2017.09.024

7. Suslyaev V, Korovin E, Dorozhkin K, Korshunov A, Tkachev A, Stolyarov R, Chapaksov N, Dyachkova T, Blokhin A. Electromagnetic characteristics of coatings based on graphene oxide- and multi-walled carbon nanotubes Taunit-M in a wide range of frequencies. IOP Conference Series: Materials Science and Engineering. 2019;012044. DOI:10.1088/1757-899X/693/1/012044

8. Yagubov V, Stolyarov R, Memetov N, Blokhin A, Tkachev A, Gorshkova A, Moskova M. Nanomodifiedel ectroconducting glue compositions based on polychloroprene rubber. AIP Conference Proceedings. 2018;020026. DOI:10.1063/1.5079357

9. Punetha VD, Rana S, Yoo HJ, Chaurasia A, McLeskey Jr JT, Ramasamy MS, Sahoo NG, Cho JW. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science. 2017;67:1-47. DOI:10.1016/j.progpolymsci.2016.12.010

10. Khurram AA, Rakha SA, Zhou P, Shafi M, Munir A. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with grapheme nanoplatelets and carbon nanotubes. Journal of Applied Physics. 2015; 118(4): 044105. D0I:10.1063/1.4927617

11. Spinelli G, Kotsilkova R, Ivanov E, Petrova-Doycheva I, Menseidov D, Georgiev V, Maio RD, Silvestre C. Effects of filament extrusion, 3D printing and hot-pressing on electrical and tensile properties of poly (lactic) acid composites filled with carbon nanotubes and grapheme. Nanomaterials. 2019;10(1):35. DOI: 10.3390/ nano10010035

12. Balberg I, Binenbaum N, Wagner N. Percolation thresholds in the three-dimensional sticks system. Physical Review Letters. 1984;52(17):1465. DOI: 10.1103/ PhysRevLett.52.1465

13. De Vivo B, Lamberti P, Spinelli G, Tucci V, Guadagno L, Raimondo M. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites. Journal of Applied Physics. 2015;118(6):064302. DOI: 10.1063/1.4928317

14. De Vivo B, Lamberti P, Spinelli G, Tucci V. Numerical investigation on the influence factors of the electrical properties of carbon nanotubes-filled composites. Journal of Applied Physics. 2013;113(24):244301. DOI: 10.1063/1.4811523

15. Penu C, Fernandez A, Marchal P, Hu G-H, Choplin L. Rheological and electrical percolation thresholds of carbon nanotube/polymer nanocomposites. Polymer Engineering & Science. 2012;52(10):2173-2181. DOI: 10.1002/pen.23162

16. Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I. Epoxy composites with carbon nanotubes and graphene nanoplatelets - Dispersion and synergy effects. Carbon. 2014;78:268-278. DOI:10.1016/j.carbon.2014.07.003

17. Liu H. Gao J, Huang W, Dai K, Zheng G, Liu C,Shen C, Yan X,Guo J, Guo Z. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and grapheme bifillers. Nanoscale. 2016;8(26): 12977-12989. DOI:10.1039/ C6NR02216B

18. Nathanael DC, Cory C, Jamie ER, Puchades I, Merrill A, Aaron DF, BrianJL. Modification of silver/single-wall carbon nanotube electrical contact interfaces via ion irradiation. ACS Applied Material Interfaces. 2017;9(8):7406-7411. DOI:10.1021/ acsami.6b14041

19. Kharlamova MV, Yashina LV, Lukashin AV. Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Applied Physics A. 2013;112:297-304. DOI:10.1007/s00339-013-7808-y

20. Yadav R, Dixit CK. Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. Journal of Science: Advanced Materials and Devices. 2017;2:141-149. DOI:10.1016/j.jsamd. 2017.05.007

21. Talla JA, Ghozlan AA. Effect of boron and nitrogen co-doping on CNT's electrical properties: Density functional theory. Chinese Journal of Physics. 2018;56:740-746. D0I:10.1016/j.cjph.2018.01.009

22. Zhang L, Zujovic ZD, Peng H, Bowmaker GA, Kilmartin PA, Travas-Sejdic J. Structural characteristics of polyaniline nanotubessyn the sized from different buffer solutions. Macromolecules. 2008;41:8877-8884. D0I:10.1021/ma801728j

23. DongJ-Q, Shen Q. Enhancement in solubility and conductivity of polyaniline with lignosulfonate modified carbon nanotube. Journal of Polymer Science Part B: Polymer Physics. 2009;47(20):2036-2046. D0I:10.1002/ polb.21802

24. Dyachkova TP, Mischenko SV, Tkachev AG, Gorskiy SYu, Melezhik AV, Anosova IV. Study of regularities in the processes of functionalization and modification of carbon nanotubes. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: khimiya i khimicheskaya tekhnologiya = ChemChemTech. 2013;5:82-87. (In Russ.).

25. Dyachkova TP, Melezhyk AV, Gorsky SYu, Anosova IV, Tkachev AG. Some aspects of functionalization and modification of carbon nanomaterials. Nanosystems: physics, chemistry, mathematics. 2013;4:605-621.

26. Anosova IV, Dyachkova TP, Orlova NV. Investigation of the processes of modification of carbon dispersed carriers with polyaniline. Nauchno-tehnicheskie vedomosti SPbGPU. 2014;1:96-100. (In Russ.).

27. Anosova IV, Dyachkova TP, Rukhov AV. Investigation of regularities of modification of carboxylated multilayer carbon nanotubes with polyaniline. Fundamental'nye i prikladnye problem tehniki i tehnologii. 2015;5:163-169. (In Russ.).

28. Dyachkova TP, Anosova IV, Tkachev AG, Chapaksov NA. Synthesis of composites based on functionalized carbon nanotubes and polyaniline. Perspektivnye materialy = Inorganic Materials: Applied Research. 2017;7:46-53. (In Russ.).

29. Qiu L, Zou H, Zhu N, Feng Y, Zhang X. Iodine nanoparticle-enhanc in gelectrical and thermal transport for carbon nanotubefibers. Applied Thermal Engineering. 2018;6:340-346. D0I:10.1016/j.applthermaleng.2018.06.049

30. Blokhin A, Stolyarov R, Burmistrov I, Gorshkov N, Kolesnikov E, Yagubov V, Tkachev A, Zaytsev I,

Tarov D, Galunin E, Offor P, Kiselev N. Increasing electrical conductivity of PMMA-MWCNT composites by gas phase iodination. Composites Science and Technology. 2021 ;214:108972. DOI: 10.1016/j .compscitech.2021.108972

31. Stolyarov R, Blohin A, Gorshkov N, Tkachev A, Kulnitskiy B, Pasko T, Sukhorukov A, Burmistrov I. Structure and electrical conductivity of heat treated iodine-doped multi-walled carbon nanotubes. IOP Conference Series: Materials Science and Engineering. 2019;693(1): 012019. DOI:10.1088/1757-899X/693/1/012019

32. Fan L, Xu X. A stable iodine-doped multi-walled carbon nanotube-polypyrrole composite with improved electrical property. Composites Science and Technology. 2015;118:264-268. DOI:10.1016/j.compscitech.2015.09.014

33. Patel K, Chikkali SH, Sivaram S. Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications. Progress in Polymer Science. 2020;109:101290. DOI:10.1016/ j.progpolymsci.2020.101290

34. Tkachev AG, Melezhik AV, Memetov NR, Osipov AA. Method for obtaining graphene. Russian Federation patent 2,657,504. 14 June 2018.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

35. Tkachev AG, Melezhik AV. Method for producing carbon nanotubes and a reactor for their production. Russian Federation patent 2,493,097. 20 September 2013.

36. "NanoTechCenter" Ltd. Tambov. Available from: http://www.nanotc.ru/content-category1 [Accessed 10 October 2022].

37. Mamunya EP, Davidenko VV, Lebedev EV. Percolation conductivity of polymer composites filled with dispersed conductive filler. Polymer Composites. 1995;16(4):319-324. DOI:10.1002/pc.750160409

38. Feng X, Liao G, He W, Sun Q, Jian X, Du J. Preparation and characterization of functionalized carbon nanotubes/poly (phthalazinone ether sulfoneketone)s composites. Polymer Composites. 2009;30(4):365-373. DOI:10.1002/pc.20561

39. Sidi Salah L, Ouslimani N, Chouai M, Danlee Y, Huynen I, Aksas H. Predictive optimization of electrical conductivity of polycarbonate composites at different concentrations of carbon nanotubes: a valorization of conductive nanocomposite theoretical models. Materials. 2021;14(7):1687. DOI:10.3390/ma14071687

Information about the authors / Информация об авторах

Nikolay A. Chapaksov, Senior Assistant, Tambov State Technical University (TSTU), Tambov, Russian Federation; 0RCID 0000-0001-9076-9400; e-mail: tchapaxov.nikolaj@yandex.ru

Tatyana P. Dyachkova, D. Sc. (Chem.), Professor, Director of the Center for the Collective Use of Scientific Equipment "Production and Application of Polyfunctional Nanomaterials", TSTU, Tambov, Russian Federation; ORCID 0000-0002-4884-5171; e-mail: dyachkova_tp@mail.ru

Чапаксов Николай Андреевич, старший лаборант, Тамбовский государственный технический университет (ТГТУ), Тамбов, Российская Федерация; ORCID 0000-0001-9076-9400; e-mail: tchapaxov. nikolaj@yandex.ru

Дьячкова Татьяна Петровна, доктор химических наук, профессор, директор центра коллективного пользования научным оборудованием «Получение и применение полифункциональных наноматериалов», ТГТУ, Тамбов, Российская Федерация; ORCID 00000002-4884-5171; e-mail: dyachkova_tp@mail.ru

Roman A. Stolyarov, Cand. Sc. (Eng.), Senior Researcher, TSTU, Tambov, Russian Federation; ORCID 0000-0001-6938-1575; e-mail: stolyarovra@ mail.ru

Viktor S. Yagubov, Cand. Sc. (Eng.), Engineer of the Department of "Nanotechnology Engineering", TSTU, Tambov, Russian Federation; ORCID 0000-0003-48550530; e-mail: vitya-y@mail.ru

Alexey G. Tkachev, D. Sc. (Eng.), Professor, Head of the Department "Technique and technology for the production of nanoproducts", TSTU, Tambov, Russian Federation; ORCID 0000-0001-5099-9682; e-mail: nanotam@yandex.ru

Anastasiya E. Memetova, Cand. Sc. (Eng.), Associate Professor of the Department "Technique and technology for the production of nanoproducts", TSTU, Tambov, Russian Federation; ORCID 0000-0002-1036-7389; e-mail: anastasia.90k@mail.ru

Nariman R. Memetov, Cand. Sc. (Eng.), Associate Professor, Head of the Department "Engineering of Nanotechnologies", TSTU, Tambov, Russian Federation; ORCID 0000-0002-7449-5208; e-mail: memetov.nr@mail.tstu.ru

Tatyana V. Pasko, Cand. Sc. (Eng.), Associate Professor of the Department "Technique and technology for the production of nanoproducts", TSTU, Tambov, Russian Federation; ORCID 0000-0002-5884-3823; e-mail: tpasko@yandex.ru

Igor N. Burmistrov, D. Sc. (Eng.), Director of the Engineering Center, Russian University of Economics named after G. V. Plekhanov, Moscow, Russian Federation; ORCID 0000-0003-0776-2465; e-mail: Burmistrov.IN@rea.ru

Столяров Роман Александрович, кандидат технических наук, старший научный сотрудник, ТГТУ, Тамбов, Российская Федерация; ORCID 0000-00016938-1575; e-mail: stolyarovra@mail.ru

Ягубов Виктор Сахибович, кандидат технических наук, инженер кафедры «Инжиниринг нанотех-нологий», ТГТУ, Тамбов, Российская Федерация; ORCID 0000-0003-4855-0530; e-mail: vitya-y@mail.ru

Ткачев Алексей Григорьевич, доктор технических наук, профессор, заведующий кафедрой «Техника и технологии производства нанопродуктов», ТГТУ, Тамбов, Российская Федерация; ORCID 0000-00015099-9682; e-mail: nanotam@yandex.ru

Меметова Анастасия Евгеньевна, кандидат технических наук, доцент кафедры «Техника и технологии производства нанопродуктов», ТГТУ, Тамбов, Российская Федерация; ORCID 0000-0002-10367389; e-mail: anastasia.90k@mail.ru Меметов Нариман Рустемович, кандидат технических наук, доцент, заведующий кафедрой «Инжиниринг нанотехнологий», ТГТУ, Тамбов, Российская Федерация; ORCID 0000-0002-74495208; e-mail: memetov.nr@mail.tstu.ru Пасько Татьяна Владимировна, кандидат технических наук, доцент кафедры «Техника и технологии производства нанопродуктов», ТГТУ, Тамбов, Российская Федерация; ORCID 0000-0002-58843823; e-mail: tpasko@yandex.ru

Бурмистров Игорь Николаевич, доктор технических наук, директор Инжинирингового центра, Российский экономический университет имени Г. В. Плеханова, Москва, Российская Федерация; ORCID 0000-0003-0776-2465; e-mail: Burmistrov.IN@ rea.ru

Received 28 September 2022; Accepted 07 November 2022; Published 27 December 2022

Copyright: © Chapaksov NA, Dyachkova TP, Stolyarov RA, Yagubov VS, Tkachev AG, Memetova AE, Memetov NR, Pasko TV, Burmistrov IN, 2022. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons. org/licenses/by/4.0/).

i Надоели баннеры? Вы всегда можете отключить рекламу.