Научная статья на тему 'Elasto-plastic Twisting of a Two-layer Rod Weakened by Holes'

Elasto-plastic Twisting of a Two-layer Rod Weakened by Holes Текст научной статьи по специальности «Математика»

CC BY
9
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
elastic-plastic torsion / multi-layer materials / conservation laws / упруго-пластическое кручение / многослойные материалы / законы сохранения

Аннотация научной статьи по математике, автор научной работы — Sergei I. Senashov, Irina L. Savostyanova, Olga N. Cherepanova

Under study is the elasto-plastic twisting of a multiply-connected two-layer prismatic rod under the influence of a couple of forces with a given moment. It is assumed that the rod consists of two layers. Either layer has its own elastic properties, but the plastic characteristics of both layers are the same. The contact boundary of the layers is located alongside Axis ох. The lateral boundary of the rod is free from stresses; at the interface, continuous are movements and stresses. Stress components at a point are calculated with the help of contour integrals obtained from the conservation laws, calculated on the lateral boundary and the boundaries of the holes. At those points of the rod where yield stress is achieved — plastic state is present, at the rest of them — elastic. This allows building the boundary between the plastic and elastic areas.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Упруго-пластическое кручение двухслойного стержня, ослабленного отверстиями

Изучается упруго-пластическое кручение многосвязного двухслойного призматического стержня под действием пары сил с заданным моментом. Предполагается, что стержень состоит из двух слоев. Каждый слой обладает своими упругими свойствами, но пластические характеристики у обоих слоев одинаковые. Граница контакта слоев расположена вдоль оси ох. Боковая граница стержня свободна от напряжений, на границе раздела непрерывны перемещения и напряжения. Компоненты тензора напряжений в точке вычисляются с помощью контурных интегралов, полученных из законов сохранения, вычисленных по боковой границе и границам отверстий. В тех точках стержня, где достигается предел текучести, реализуется пластическое состояние, в остальных — упругое. Это позволяет построить границу между пластической и упругой областями.

Текст научной работы на тему «Elasto-plastic Twisting of a Two-layer Rod Weakened by Holes»

EDN: ESRTIV УДК 539.374

Elasto-plastic Twisting of a Two-layer Rod Weakened by Holes

Sergei I. Senashov* Irina L. Savostyanova^

Reshetnev Siberian State University of Science and Technology

Krasnoyarsk, Russian Federation

Olga N. Cherepanova*

Siberian Federal University Krasnoyarsk, Russian Federation Reshetnev Siberian State University of Science and Technology

Krasnoyarsk, Russian Federation

Received 27.02.2023, received in revised form 07.04.2023, accepted 04.07.2023 Abstract. Under study is the elasto-plastic twisting of a multiply-connected two-layer prismatic rod under the influence of a couple of forces with a given moment. It is assumed that the rod consists of two layers. Either layer has its own elastic properties, but the plastic characteristics of both layers are the same. The contact boundary of the layers is located alongside Axis ох. The lateral boundary of the rod is free from stresses; at the interface, continuous are movements and stresses. Stress components at a point are calculated with the help of contour integrals obtained from the conservation laws, calculated on the lateral boundary and the boundaries of the holes. At those points of the rod where yield stress is achieved — plastic state is present, at the rest of them — elastic. This allows building the boundary between the plastic and elastic areas.

Keywords: elastic-plastic torsion, multi-layer materials, conservation laws.

Citation: S.I. Senashov, I.L. Savostyanova, O.N. Cherepanova, Elasto-plastic Twisting of a Two-layer Rod Weakened by Holes, J. Sib. Fed. Univ. Math. Phys., 2023, 16(5), 591-597. EDN: ESRTIV.

Introduction

In the article we continue to use the conservation laws for solving the boundary value problems of the equations of mechanics of a solid body being deformed. For more than 50 years the equations of elasticity and plasticity are studied with the help of symmetries [1, 2]. This allowed building a series of exact solutions and studying some qualitative properties of these equations. There were attempts to solve the boundary value problems [2] with the help of symmetries, but here good results did not manage to be achieved, which is explained by the local nature of the symmetries. The found conservation laws turned out to be more suitable for solving the boundary value problems of mechanics equations [3-6]. For the first time, the conservation laws

*sen@mail.sibsau.ru

truppa@inbox.ru https://orcid.org/0000-0002-9675-7109 tcheronik@mail.ru © Siberian Federal University. All rights reserved

were used for solving the boundary value problems for two-dimensional equations of plasticity [3-11], and with their use it turned out well to solve the basic boundary value problems. This is explained by the fact that the symmetries by their nature are local, unlike the conservation laws - global in and of itself. Further, the conservation laws were used for solving the elasto-plastic problems on the twisting of rods and bending of cantilevers, and also solving the elasto-plastic problems for plates with finite dimensions, weakened by holes [12-18]. In the present work it is demonstrated that the conservation laws can be successfully used also for solving the boundary value problems for multi-layer materials.

1. Problem setting

Let us consider a rectilinear rod, a cross section of which is shown in Fig. 1.

M

o

Fig. 1. Multi-linked rod

Assume S1 and S2 are the areas, occupied by elasto-plastic isotropic materials that have their yield stress at pure shift identical and equal to k and Lame elastic constants are different and equal to and respectively. There are two holes limited by the contours r and

r2 Assume that the boundary line of the materials is rectilinear. We will choose the axis of coordinate alongside the boundary line. It is assumed, as usual, that the lateral surface of the rod and the side walls of the holes are free from stresses, and the rod is being twisted by a couple of forces with the moment

M = JJ (vai3 - xa23,)dxdy

In this case, the equations describing stress state in area Si, i = 1,2 are written as

Fi = dxai3 + dy023 = 0, F2 = dy<713 - dx^23 + ¡iU = 0, ¡iU = Ki, (1)

where 013,023 are stress components, u is twist angle, it is assumed to be constant. On the lateral surface of the rod and the holes these conditions comply

013™1 + <23^2 = 0, 013 + <23 = k ,

(2)

and they mean that the lateral surface and the walls of the holes are free from stresses and are in plastic state.

From (2) we obtain

a\3 = kni, a23 = -kn2. (3)

Also we assume that on the boundary line stress components are continuous, this means absence of stress interruption for this given rod alongside .

2. Conservation laws

The conservation law we will search in the form of

Ax + By = piFi + P2 F2, (4)

where p1,p2 are some functions, simultaneously not identically zero, the letter subscripts stand for derivatives with respect to the corresponding variables.

Note. More detailed information on the conservation laws, their calculating and usage can be found in the literature referenced above. Assume

A = a1u + a2v + a3, B = {1u + {2v + {3, (5)

where for convenience it was set a13 = u, a23 = v, a1, a2, a3,/ 1,{2,{3 are assumed to be functions only x, y.

Inserting (5) into (4) we obtain

a1 = {2, a2 = -{1, aX - a2y = 0, ay + a^ = 0, a^ + /3 = -a2Ki. (6)

Assume

am - a2y(i) =0, a^ + c^ = 0, af0 + {f0 = -a2Ki, i = 1, 2. (7)

Here the index i in brackets corresponds to the area Si.

Let us assume that at the point x0, y0 the subintegral functions have a singularity, and this point is located within a circle with the radius e : (x — x0)2 + (y — y0)2 = e2, then from (4) we obtain (see Fig. 2)

(Ax + By )dxdy = (A1 x + B1y )dxdy+ (A2X + B2y )dxdy =

S JJS1 JJS2

1dy b1 dx I I A1 dy Bldx I I a2 dy b2 dx I J a1,

ri

2 2 1 1 2 2

— A dy — B1 dx+ A dy — B1dx + A2dy — B2dx + A1dy — B1dx +

J £ J L i J L2

+ A2dy — B2dx + / A1dy — B1dx + A2dy — B 2dx = 0.

Jr 2 Jab Jba

We have alongside

I A1dy — B1 dx +1 A2dy — B2dx = Jab Jba

= (a1(1)u + a2(1) v + a3(1))dy — ( —a2(1)u + a 1(1)v + {3(1))dx + J AB

+ i (a1(2)u + a2(2)v + a3(2))dy — (—a2(2)u + a1(2)v + {3(2))dx = 0. Jba

¿2

Fig. 2. Contour bypass scheme when computing the integral

Since alongside dy = 0, then we assume 33(i = 0, aX(i) = a2(iKi, therefore a1(1) = a1(2), a2(1) = a2(2).

As a result we obtain

A1 dy - B dx = A dy - B dx + / A1dy - B1dx + / A2dy - B2dx+ Je J li JT1 JL2

+ / A2dy - B2dx.

Jf2

Let us use formula (8) to find the functions u,v at the point x0, yo. For this, we will consider the solution of equations (7) in the form of

(8)

1 x - x0 2 y - yo 3 . x - x0

a = --~2---"2 , a = —-~2---"2 , a = arctg-. (9)

(x - xo) + (y - yo) (x - xo) + (y - yo) y - yo

Inserting (9) into (8) we obtain

j A1dy - B1dx = j (a1u + a2v + a3)dy - (-a2u + a1v)dx

f x - xo y - yo , x - xo \

7-72—;-Z2u - 7-72—;-Z2v + arctg- dy-

Je V (x - xo) + (y - yo) (x - xo) + (y - yo) y - yo J

f y- yo V , f x - xo s,

-2-2 u )dx + -2-2 v)dx.

V (x - xo) + (y - yo) / Je (x - xo) + (y - yo)

Assume x - xo = e cos 4>, y - yo = £ sin then we obtain

,-2n

j A1dy - B1dx = j [(u cos ^ + v sin cos ^ + (u sin ^ + v cos sin =

= udfi = 2nu(xo,yo).

o

In the last equation, being used are the mean-value theorem and the passage to the limit e ^ 0. As a result from formula (8) it follows

2n013(xo,yo) = (--X2—X0--2 kn1 + --'y2—yy--2 kn2 +

Jl 1 \ (x — xo) + (y - yo) (x - xo) + (y - yo)

x =xo \ / y- yo 1 x - x0 /IJ,

+ arctg- \dy - --"2---"2 kn1 - --"2---"2 kn2 ) dx+

y - yo J \(x - xo) + (y - yo) (x - xo) + (y - yo)

. f ( x - xo , , y - yo , , x = xo,,

+ 7-7^-72 kn1 + 7-7^-72 kn2 + "¡1 arctg —-— ) dy-

Jri \ (x - xo) + (y - yo) (x - xo) + (y - yo) y - yo .

y - yo , x - xo

2 2 kn1--2-2 kn2 )dx+

(x - xo) + (y - yo) (x - xo) + (y - yo) J

, f ( x - xo , , y- yo , , x = xoA,

+ / --"2-;-T2 kn1 + --"2---"2 kn2 + "¡2 arctg- ]dy-

Jl2 V (x - xo) + (y - yo) (x - xo) + (y - yo) y - yo J

y - yo x - xo

I -2-2 kn1--2-2 kn2 ¡dx+

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

V (x - xo) + (y - yo) (x - xo) + (y - yo) J

. i ( x - xo , , y- yo , , x = xoA,

+ / --"2-:-T2 kn1 + --"2---"2 kn2 + "¡2 arctg- ]dy-

Jr2 \ (x - xo) + (y - yo) (x - xo) + (y - yo) y - yo )

(10)

y - yo x - xo

I -2-2 kn1--2-2 kn2 dx.

\(x - xo) + (y - yo) (x - xo) + (y - yo) /

„(x - xo) + (y - yo) (x - xo) + (y - yo)

Let us consider the solution of equations (7) in the form of

1 = _y - yo_ 2 = x - xo

aa f\ f\, aa

(x - xo)2 + (y - yo)2 ' (x - xo)2 + (y - yo)2 '

a3 = 1 "¡2 ln((x - xo)2 + (y - yo)2). Inserting (11) into (8) we obtain

2n023(xo,yo) = I I ----2 kn1 - 7-72—-72 kn2 +

J \(x - xo) + (y - yo) (x - xo) + (y - yo)

Li

(11)

1 "¡2ln((x- xo)2 + (y- yo)2)dy -72-x°-72kn1 + 7-y—y-72

2 V /V (x-xo) +(y - yo) (x-xo) +(y-yo)

ri

~2-—-2 kn1--2-o-2 kn2 + 1 ln((x x)2 I (y y_ )2)

(x - xo) +(y - yo) (x - xo) +(y - yo) 2

+ / ( 7--)2 kn1 - (-^-)2 kn2 + 2"¡2 ln((x - xo) +(y - yo) )dy-

2 -y-—-2 kn2 ) | dx+

A x - xo , , y- yo

- I--2-2 kn1 +--2-2 kn2 '

V (x - xo) + (y - yo) (x - xo) + (y - yo) J

L2

(x - xo) +(y - yo) (x - xo) +(y - yo) //

II y - yo x — xo 1 , ,, \2 / \2\ i

+ / ( - --"2---"2 kn1 + 7-T2-:-T2 kn2 + ^"¡2 ln((x - xo) + (y - yo) )dy-

(x - xo) + (y - yo) (x - xo) +(y - yo) 2

- ( - 7--72 kn1 + 7-y2-f-72 kn2) dx+

V (x - xo) + (y - yo) (x - xo) + (y - yo) / y

y - yo x - xo 1 2 2

+ / ( - 7-72-:-72 kn1 + 7-72-;-72 kn2+ x"¡2ln((x - xo) +(y - yo) )dy-

(x - xo) + (y - yo) (x - xo) + (y - yo) 2

r2

— (--2---2 kn1 +--y—---2 kn2 ) Idx. (12)

V (x - xo) + (y - yo) (x - xo) + (y - yo) //

Conclusion

Formulas (10), (12) allow calculating stress components' values at all points of a cross section. Further, at each point x0,yo to be checked is the condition of plasticity a23 + o\3 = k2. Those points where a23 + < k2. belong to the elastic zone, and the rest of the points belong to the plastic zone. In this way, the described procedure allows separating the plastic and elastic zones and building the elasto-plastic boundary which beforehand was unknown and was to be determined.

This article was carried out by the team of the scientific laboratory "Smart Materials and Structures" within the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the implementation of the project "Development of multifunctional smart materials and structures based on modified polymer composite materials capable to function in extreme conditions" (Project no. FEFE-2020-0015).

References

[1] B.D.Annin, V.O.Bytev, S.I.Senashov, Group properties of elasticity and plasticity equations, Novosibirsk, Nauka, 1983 (in Russian).

[2] L.V.Ovsyannikov, Group analysis of differential equations, Moscow, Nauka, 1978 (in Russian).

[3] S.I.Senashov, On the laws of conservation of plasticity equations. Reports of the USSR Academy of Sciences, 320(1991), 606-608 (in Russian).

[4] S.I.Senashov, Conservation laws and the exact solution of the Cauchy problem for plasticity equations, Dokl. Math., 40(1995), 658-659.

[5] P.P.Kiryakov, S.I.Senashov, A.I.Yakhno, Application of symmetry and conservation laws to the solution of differential equations, Novosibirsk, Nauka Publ, 2001 (in Russian).

[6] S.I.Senashov, A.M.Vinogradov, Symmetries and conservation laws of 2- dimensional ideal plasticity, Proc. Edinburg Math. Soc., 3(1988), no. 2, 415-439.

[7] S.I.Senashov, A.N.Yakchno, Reproduction of solutions for bidimensional ideal plasticity, Journal of Non-Linear Mechanics, 42(2007), 500-503.

DOI: 10.1016/j.ijnonlinmec.2007.01.011

[8] S.I.Senashov, A.N.Yakchno,Deformation of characteristic curves of the plane ideal plasticity equations by point symmetries, Nonlinear analysis, 71(2009), 1274-1284.

DOI: 10.1016/j.na.2009.01.161

[9] S.I.Senashov, A.N.Yakchno, Conservation Laws, Hodograph Transformation and Boundary Value Problems of Plane Plasticity, SIGMA, 8(2012), 071. DOI: 10.3842/SIGMA.2012.071

[10] S.I.Senashov, A.N.Yakchno, Some symmetry group aspects of a perfect plane plasticity system, J. Phys. A. Math. Theor, 46(2013), 355202.

[11] S.I.Senashov, A.N.Yakchno, Conservation Laws of Three-Dimensional Perfect Plasticity Equations under von Mises Yield Criterion, Abstract and Applied Analysis Volume, 2013(2013). DOI: 10.1155/2013/702132

12] O.V.Gomonova, S.I.Senashov, Determination of elastic and plastic deformation regions in the problem of uniaxial stretching of a plate weakened by holes, J. Appl. Mech. Tech. Phy, 62(2021), no. 1, 157-163. DOI: 10.1134/S0021894421010193

13] S.I.Senashov, E.V.Filyushina, Conservation laws of equations of the plane theory of elasticity, Vestnik Sib. GAU, 53(2014), no. 1, 79-81 (in Russian).

14] S.I.Senashov, I.L.Savostyanova, On elastic torsion around three axes, Siberian Journal of Industrial Mathematics, 24(2021), no. 1, 120-125. DOI: 10.1134/S1990478921010129

15] S.I.Senashov, O.V.Gomonova, Construction of Elastoplastic Boundary in Problem of Tension of a Plate Weakened by Holes, Intern. J. Non-Lin. Mech., 108(2019), 7-10 (in Russian).

16] O.V.Gomonova, S.I.Senashov, O.N.Cherepanova, Group analysis of the equations of ideal plasticity, Journal of Applied Mechanics and Technical Physics, 62(2021), no. 5, 882-889. DOI: 10.1134/S0021894421050205

17] S.I.Senashov, A.V.Kondrin, O.N.Cherepanova, On Elastoplastic Torsion of a Rod with Multiply Connected Cross-Section, J. Sib. Fed. Univ. Math. Phys, 7(2015), no. 1, 343-351.

18] S.I.Senashov, O.N.Cherepanova, A.V.Kondrin, Elastoplastic Bending of Beam, J. Sib. Fed. Univ. Math. Phys., 7(2014), no. 2, 203-208.

Упруго-пластическое кручение двухслойного стержня, ослабленного отверстиями

Сергей И. Сенашов Ирина Л. Савостьянова

Сибирский государственный университет науки и технологий им. М. Ф. Решетнева

Красноярск, Российская Федерация

Ольга Н. Черепанова

Сибирский федеральный университет Красноярск, Российская Федерация Сибирский государственный университет науки и технологий им. М. Ф. Решетнева

Красноярск, Российская Федерация

Аннотация. Изучается упруго-пластическое кручение многосвязного двухслойного призматического стержня под действием пары сил с заданным моментом. Предполагается, что стержень состоит из двух слоев. Каждый слой обладает своими упругими свойствами, но пластические характеристики у обоих слоев одинаковые. Граница контакта слоев расположена вдоль оси ох. Боковая граница стержня свободна от напряжений, на границе раздела непрерывны перемещения и напряжения. Компоненты тензора напряжений в точке вычисляются с помощью контурных интегралов, полученных из законов сохранения, вычисленных по боковой границе и границам отверстий. В тех точках стержня, где достигается предел текучести, реализуется пластическое состояние, в остальных — упругое. Это позволяет построить границу между пластической и упругой областями.

Ключевые слова: упруго-пластическое кручение, многослойные материалы, законы сохранения.

i Надоели баннеры? Вы всегда можете отключить рекламу.