ГОРНЫЕ МАШИНЫ
УДК 621.23.05
В. П. Гилета, И. В. Тищенко, Ю. В. Ванаг
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПНЕВМОУДАРНОГО МЕХАНИЗМА С ДВУМЯ УПРАВЛЯЕМЫМИ КАМЕРАМИ
С развитием строительства возрастают объемы реконструкции существующих зданий и сооружений.
Одной из причин этого является точечная застройка в сложившейся части города, при которой возникает необходимость усиления фундаментов близлежащих жилых объектов, укрепления откосов котлованов и насыпей, глубинное уплотнение насыпных и просадочных грунтов, сооружение подпорных стенок и экранов, формование набивных свай под фундаменты зданий, опор мостов, эстакад, линий электропередач [1, 2].
Для выполнения таких работ наиболее эффективным и распространенным является метод виброударного прокола.
Метод реализуется путем погружения в грунт стальных труб с закрытым торцом или элементов круглого поперечного сечения диаметром до 65 мм и длиной до 15 м, также стандартных профилей, которые широко используются в качестве электродов заземления, зондов, анкеров, элементов крепления откосов котлованов, насыпей, выемок, опорных элементов дорожного или иного ограждения.
Большая часть перечисленных работ проводится в стесненных условия - труднодоступных местах строительной площадки, например, внутри (из подвальных помещений, колодцев, коллекторов) или вблизи жилых объектов и сооружений. Применение в таких условиях грузоподъемных средств невозможно, поэтому имеют место значительная доля ручного труда, быстрое утомление обслуживающего персонала, низкая производительность труда.
В связи с этим, актуально, создание оборудования с малыми массогабаритными параметрами и экономичными расходными характеристиками, что соответствует специфике работ в стесненных
условиях и позволяет использовать компактные источники сжатого воздуха.
В нашей стране и за рубежом виброударный метод реализован с помощью серийных пневмо-пробойников СО144, ИП4605 и ИП4603 и пнев-момолотов «Тайфун»; за рубежом - например, с помощью машин Grundomat фирмы Тгайо-ТесШк (Германия) [3, 4].
В основу типажного ряда пневмопробойников положены диаметр скважин и энергия единичного удара, максимально возможное значение которой, достигается за счет увеличения массы ударника и машины в целом. Частота ударов при этом сравнительно невысокая (1 ^ 6 Гц), что обусловлено производительностью передвижных компрессоров.
Перечисленные машины выполнены по беззолотниковой схеме с одной управляемой камерой, торцевым впуском и выхлопом сжатого воздуха и снабжены механизмом реверсирования направления ударов. Машины имеют массы: 30, 55 и 90 кг и соответственно длины: 1350, 1500 и 1400 мм. Схемы данных машин не позволяют существенно уменьшить длины и массы машин.
Повышение мощности существующих пнев-моударных машин традиционно идет за счет увеличения энергии и снижения частоты ударов. Проведенные на базе Института горного дела СО РАН исследования [5], показали, что резервом повышения мощности пневмоударных машин является увеличение частоты их ударов (более 10 Гц) при значениях энергии ударов не ниже 30-40 Дж, необходимых для преодоления сил сопротивления грунта. Прочность машин обеспечивается величиной скорости соударения, значение которой не превышает 4 м/с [6], как и у серийных пневмо-пробойников.
Исходя из представленных выше граничных
Рис. 1. Общий вид экспериментального образца пневмоударного механизма с двумя управляемыми камерами : 1 - корпус с наковальней; 2 - ударник; 3 - патрубок;
4 - задняя гайка; 5 - амортизатор
условий при создании экспериментального образца малогабаритного пневмоударного механизма скорость разгона ударной части задавалась на уровне 4 м/с, масса ударника при этом составляла 4 кг, а всей машины 15 кг. Радиальные размеры ограничены диаметром 75 мм в расчете на погружение труб диаметром до 100 мм.
На основе существующих рекомендаций по расчету элементов системы воздухораспределения [4], а также математического моделирования рабочих процессов пневмоударного механизма, исходя из минимизации расходных показателей, были определены рациональные сочетания объемов камер, размеры впускного и выхлопного трактов
[7].
По полученным результатам в лаборатории механизации горных работ Института горного дела СО РАН был спроектирован и изготовлен экспериментальный образец малогабаритного пневмоударного устройства с бесклапанной системой воздухораспределения и двумя управляемыми камерами [8].
Повышение частоты ударов механизма реализуется за счет использования буферного цикла воздухораспределения, при котором существенное увеличение частоты ударов достигается за счет передачи накопленной энергии воздушного буфера ударнику в начале его рабочего хода [6].
Увеличение числа управляемых камер позволило уменьшить величину рабочего хода, объемы рабочих камер и, соответственно, длину машины. Таким образом, принятая схема воздухораспреде-
ления пневмоударного механизма позволила уменьшить длину в 2.4 раза и массу машины в 2.1 раза по сравнению с пневмопробойником СО144 (таблица).
Полученная масса машины с учетом массы вспомогательного оборудования удовлетворяет требованиям норм о предельно допустимых нагрузках при подъеме и перемещении тяжестей вручную согласно требованиям ПОТ Р О-45-009-2003 (п. 16.24, табл. 16.1).
Основными конструктивными элементами механизма (рис. 1) являются: корпус 1 с наковальней в его передней части, ударник 2, патрубок 3, задняя гайка 4 и амортизатор 5.
На первом этапе исследований для качественного и количественного анализа рабочего цикла экспериментального образца пневматического ударного механизма проводилось индицирование его фактических рабочих параметров путем записи импульсных индикаторных диаграмм изменения давления в рабочих камерах, а также измерение расхода потребляемого сжатого воздуха. Перечисленные выше операции осуществлялись на лабораторном измерительном стенде (рис. 2).
Измерение избыточного давления в камерах прямого, обратного хода и магистрали осуществлялось мембранными тензометрическими датчиками Д1, Д2 и Д3 соответственно. Крайнее заднее положение ударника фиксировалось контактным регистратором перемещения П. Полученные сигналы поступали в блок усилителей БУ и светолу-чевой осциллограф ОС марки Н-117. Момент
Кр1\
ГТНгЩЧп^ 1
л
1-. <м
Кр2
п
^Еадрадленне
а
мн
9
-И
45.
///'/у
77
Г П ¿11 1— 1-Ц—1
г~
ДЗ Д1 ЧЧЧ ЧЧЧ ЧЧЧ Ч^ ЧчЧ ^ Д-р --1 1
ос IIII БУ
■Ж
Рис. 2. Схема измерительного стенда 1 - измерительный участок трубопровода; 2 - рама; 3 - образец пневматической ударной машины; 4 - зажимное устройство; 5 - магистраль
сжатого воздуха
Технические характеристики пневмоударных механизмов
№ п/п Параметр Значения параметров
ПУМ СО144
Габаритные размеры, мм:
1 диаметр 73 71
длина 570 1350
2 Масса ударника, кг 4.4 -
3 Общая масса машины, кг 13.5 28
4 Давление сжатого воздуха, МПа 0.6 0.6
5 Сила отдачи, Н 1275 -
6 Частота ударов, Гц 22.3 5.5
7 Энергия ударов, Дж 30 65
8 Ударная мощность, Вт 668 357.5
9 Скорость удара, м/с 3.7 -
10 Расход сжатого воздуха, м3/с (м3/мин) 0.044 (2.61) 0.025 (1.5)
11 Перемещение ударника, м 0.036 -
нанесения ударов ударника фиксировался при помощи пьезокристаллического акселерометра А марки KD-45. Регистрация параметров осуществлялась на фотобумагу с масштабными коэффициентами: 0,01 МПа/мм - по давлению и 0,002 с/мм - по времени. Затем диаграммы оцифровывались с помощью программы КОМПАС-Ю с последую-
щим переводом полученных данных в Microsoft Office Excel 2007 для отображения данных в графическом виде.
Для измерения потребляемого сжатого воздуха использовался термоанемометрический расходомер DS-300 производства компании CS Instruments (Германия) [9]. Его приборная цепь состояла
р, МПа
0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 О,! 0,05 0
/л
\ у \
\ \
-л \ N
л г л ■"л л
f \ \
J \ / \
X \ / 1
\ \ / i
\ — \ _> J
0,005 0.01 0,015 0.02 0.025 0,03 0,035 0,01 0,(М5 0.05 0.055 г, с
р, МПа 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 О
\P1
\
\
л/ рI /
г
{ л г
\
\ 1
V —N - ----------- У
0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,М 0,045 0,05
а) pм = 0.4 МПа;
б) pм = 0.5 МПа;
в) pм = 0.6 МПа;
величины давлений в камерах: прямого хода pl, обратного хода p2 и магистральной pз
0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045 L с
а б
Рис. 3. Диаграммы p=f(t) при различном магистральном давнии pM
в
а
б
Рис. 4. Погружение труб различного диаметра экспериментальным образцом пневмоударного
механизма с двумя управляемыми камерами
из датчика Д, нагревательный элемент которого погружен в измерительный участок трубопровода 1, длиной L = 1600 мм, диаметром d = 69 мм, что обеспечивает диапазон варьирования проточного расхода в пределах 0 - 18 м3/мин; измерительно-регистрирующего модуля ИМ с аналоговым выходом 4 - 20 мА и запоминающим устройством на 6000 данных; портативного компьютера c пакетом программ CS Soft Professional. Функциональные звенья с помощью кронштейнов и зажимов закреплены на стационарной раме 2.
Пневматический ударный механизм 3 закреплялся в зажимном устройстве 4 и подключался к магистральной сети сжатого воздуха 5 с помощью гибкого шланга и распределительного пульта 6 с кранами Кр1, Кр2. Подключение механизма к магистральной сети сжатого воздуха 5 осуществлялось гибким шлангом диаметром 16 мм. Сжатый воздух подавался к машине от стационарного компрессора 5 с расходом 6 м3/мин. Величина давления контролировалась при помощи манометра МН с ценой деления шкалы 5 кПа.
Запись индикаторных диаграмм проводилась при разном сетевом давлении сжатого воздуха (0.4-0.6 МПа). Обработка полученных индикаторных диаграмм позволила выявить характер процессов происходящих в камерах пневмоударного механизма. По результатам измерений определены его технические характеристики, представленные в таблице при номинальном сетевом давлении 0.6 МПа.
Энергетические параметры машины определялись путем обработки полученных индикаторных диаграмм (рис. 3) в соответствии с ГОСТ 16519-70. Данные представлены в таблице, в которой для сравнительной оценки приводятся также характеристики наиболее близкого по назначению серийного пневмопробойника СО144 [3].
Полученные результаты подтверждают перспективность принятой системы воздухораспреде-ления для получения высокой частоты ударов пневматического устройства. Наряду с этим критерием оценки технического уровня машины может служить удельный расход энергоносителя,
в
показывающий затраты объема сжатого воздуха на единицу ударной мощности: q = Q|(Е-V). Данная величина для описанного экспериментального образца равна q = 6.7 -10-5 м3/Дж, а для серийного пневмопробойника СО144, имеющего такой же калибр составила q = 7 -10 5 м3/Дж (табл.).
погружалась на 1 м (рис. 4 б). Процесс погружения обсадных труб экспериментальным образцом пневмоударного устройства фиксировался на видеокамеру SAMSUNG, что позволяло после покадровой обработки полученного материала с помощью компьютерной программы Picture Motion Professional определить время прохождения контрольного участка 0.1 ми рассчитать среднюю скорость погружения элемента на нем. Регистра-
FxlO 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
-з
м/с
14
2
>
\
> \ \
Ч >
ч S
4 — — „
* * - • ^ Ч * < -ч
\ •ц." — — - -
1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 /, м 1 - 0 34; 2 - 0 48; 3 - 0 60; 4 - 0 76 мм
Рис. 5. Изменение скорости внедрения труб
Второй этап исследований заключался в определении технологических возможностей нового оборудования для виброударного погружения в грунт стальных элементов (рис. 4 а—г).
В качестве погружаемых элементов использовались трубы длиной 4 м наружным диаметром: 0 34 мм, 0 48 мм, 0 60 мм, 0 76 мм. На торце передней части закреплялся конусный наконечник (рис. 4 а) с углом а = 60 ° при вершине. Угол а соответствовал углу внутреннего трения супесча-но-суглинистых грунтов естественной влажности. Внешний диаметр конуса во всех случаях был равен внешнему диаметру трубы. Обсадная труба оснащалась расширителем, превышающим ее диаметр на 10 мм и длиной 0.04 м. Это позволило обеспечить постоянство сил бокового сопротивления грунта и исключало контакт боковой поверхности рабочей части обсадной трубы со стенками скважины.
Перед началом замеров труба предварительно
ция результатов эксперимента начиналась с отметки 1 м и заканчивалась отметкой 3.5 м (рис. 4
б-д).
Экспериментальные исследования проводились в вертикальном грунтовом канале, заполненном естественным супесчаным грунтом с нормальной влажностью (10-12%).
После погружения до расчетной отметки забитая труба извлекалась из грунта с помощью кран-балки грузоподъемностью 2 т. После извлечения трубы начинался новый цикл подготовительных работ. Обработка материалов видеосъемки позволила получить качественную картину перемещения забиваемых труб и вычислить средние значения скорости на контрольном участке. По результатам построены графики скорости погружения труб от глубины внедрения (рис. 5).
Результаты экспериментов показывают, что в одних и тех же грунтовых условиях характер полученных зависимостей сохраняется. Скорость
внедрения труб в исследуемом диапазоне размеров снижается с увеличением их диаметра. Одновременно происходит падение средней скорости по глубине погружения труб, которое для трубы 0 34 мм составляет 8,3 раза; для трубы - 0 48 мм 8 раз; для трубы 0 60 мм - 5.3 раза; для трубы 0 76 мм - 5 раз.
Рост скорости внедрения труб во всех опытах в диапазоне 2.3 - 2.9 м можно объяснить изменением состава и свойств грунта. Существенное падение скорости погружения при достижении глубины 1.6 - 2.3 м объясняется тем, что в грунт начинает внедряться соединительная муфта, которая увеличивает сечение скважины.
На глубине 3.2 м процесс внедрения трубы 0 76 мм остановился, это связано с увеличением
плотности грунта.
ВЫВОДЫ
Результаты исследований подтверждают перспективность принятой системы воздухораспреде-ления для получения высокой частоты ударов пневматического устройства.
Полученные скоростные характеристики свидетельствую о том, что экспериментальный образец пневмоударного устройства с двумя управляемыми камерам обладает достаточным уровнем ударной мощности для преодоления сил сопротивления грунтового массива и может использоваться в качестве генератора ударных импульсов для погружения стальных элементов методом виброударного прокола.
СПИСОК ЛИТЕРАТУРЫ
1. Пневмопробойники в строительном производстве / А. Д. Костылев, В. А. Григоращенко, В. А. Козлов, В. П. Гилета, Ю. Б. Рейфисов. - Новосибирск : Наука, 1987. - 142 с.
2. Кершенбаум, Н. Я. Проходка горизонтальных и вертикальных скважин ударным способом / Н. Я. Кершенбаум, В. И. Минаев. - М. : Недра, 1984. - 246 с.
3. Пневмопробойники / К. С. Гурков, В. В. Климашко, А. Д. Костылев, В. Д. Плавских, Е. П. Русин, Б. Н. Смоляницкий, К. К. Тупицын, Н. П. Чепурной. - Новосибирск : Изд-во ИГД СО РАН, 1990. - 217 с.
4. Повышение эффективности и долговечности импульсных машин для сооружения протяженных скважин в породных массивах / Б. Н. Смоляницкий и др.; отв. ред. Б. Ф. Симонов; Ин-т горного дела им. Н. А. Чинакала, СКТБ «Наука» КНЦ, Ин-т химии твердого тела и механохимии и др. - Новосибирск : Изд-во СО РАН, 2013. - 204 с. (Интеграционные проекты СО РАН; вып. № 43)
5. Резервы повышения производительности виброударного погружения в грунт стальных элементов в технологиях специальных строительных работ / В. П. Гилета, Ю. В. Ванаг, И. В. Тищенко, Б. Н. Смоляницкий, В. В. Червов // ФТПРПИ. - 2008. - № 5. - С. 72-80.
6. Гурков, К.С. Пути повышения производительности пневмопробойников / К. С. Гурков, Г. А. Ткаченко. - Препринт №15. Новосибирск : ИГД, 1987. - С. 42.
7. Выбор параметров пневмоударных машин для проходки скважин в стесненных условиях / В. П. Гилета, Ю. В. Ванаг // Труды конф. с участием иностранных ученых "Фундаментальные проблемы формирования техногенной геосреды" (7-11 июля 2008 г.) В II т. - Т II. Машиноведение. - Новосибирск : Ин-т горного дела СО РАН, 2009. - с. 230-235.
8. Патент РФ 139290 Пневматическое устройство ударного действия / В.П. Гилета, И.В. Тищенко, Ю.В. Ванаг, Н.А. Чусовитин; опубл. 10.04.2014, Бюл. №10.
9. Червов, В.В. Влияние элементов системы воздухораспределения пневмомолота с упругим клапаном на потребление энергоносителя / В. В. Червов, И. В. Тищенко, А. В. Червов // ФТПРПИ. - 2009. -№ 1. С. 41-47.
Авторы статьи
Гилета Владимир Павлович,
доктор технических наук, профессор каф. проектирования технологических машин НГТУ, email: [email protected].
Ванаг Юлия Валерьевна,
старший преподаватель каф. проектирования технологических машин НГТУ, email: [email protected].
Тищенко Игорь Владимирович,
кандидат технических наук, с.н.с. лаборатория механизации горных работ Институт горного дела СО РАН, email: [email protected].
Поступило в редакцию 14.01.2 15