Научная статья на тему 'ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРАДИЕНТ-ТЕМПЕРАТУРНОЙ ЭНЕРГЕТИКИ'

ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРАДИЕНТ-ТЕМПЕРАТУРНОЙ ЭНЕРГЕТИКИ Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
49
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОРСКАЯ ВОДА / ГРАДИЕНТ ТЕМПЕРАТУР / ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ / КЛИМАТИЧЕСКИЕ УСЛОВИЯ

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Хакимуллин Б.Р., Гумеров И.Р., Гафуров А.М.

В статье рассматриваются эколого-экономические характеристики градиент-температурной энергетики. Использование градиента температур морской воды для выработки электроэнергии с помощью энергоустановок на низкокипящих рабочих телах.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

EKOLOGO-ECONOMIC CHARACTERISTICS A GRADIENT - TEMPERATURE POWER

In article ekologo-economic characteristics a gradient - temperature power are considered. Use of a gradient of temperatures of sea water for electricity production by means of power installations on the low-boiling working fluid.

Текст научной работы на тему «ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРАДИЕНТ-ТЕМПЕРАТУРНОЙ ЭНЕРГЕТИКИ»

измениться.

Использованные источники:

1. Ветреная ветряная энергетика. [Электронный ресурс] / Режим доступа: http://www.nkj.ru/archive/articles/22733/.

2. Гафуров Н.М., Хакимуллин Б.Р., Багаутдинов И.З. Основные направления альтернативной энергетики. // Инновационная наука. - 2016. - № 4-3. - С. 7476.

3. Экологические проблемы энергетического обеспечения человечества. [Электронный ресурс] / Режим доступа: http://nuclphys.sinp.msu.ru/ecology/ecol/ecol05.htm.

4. Экологические проблемы человечества и пути их решения. Часть 2. Энергетика. [Электронный ресурс] / Режим доступа:

http://www.chemfive.ru/news/ehkologicheskie_problemy_chelovechestva_i_puti_ ikh_reshenija_ehnergetika/2014-04-25-266.

5. Калимуллина Д.Д., Гафуров А.М. Влияние альтернативной энергетики на окружающую среду. // Инновационная наука. - 2016. - № 3-3. - С. 97-98.

УДК 62-176.2

Хакимуллин Б.Р. студент кафедра ПТЭ институт теплоэнергетики Гумеров И.Р. магистрант кафедра ПТЭ институт теплоэнергетики Гафуров А.М. инженер I категории УНИР ФГБОУВО «КГЭУ» Россия, г. Казань

ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРАДИЕНТ-ТЕМПЕРАТУРНОЙ ЭНЕРГЕТИКИ

В статье рассматриваются эколого-экономические характеристики градиент-температурной энергетики. Использование градиента температур морской воды для выработки электроэнергии с помощью энергоустановок на низкокипящих рабочих телах.

Ключевые слова: морская вода, градиент температур, производство электроэнергии, климатические условия.

Hakimullin B.R.

Gumerov I.R.

Gafurov A.M.

EKOLOGO-ECONOMIC CHARACTERISTICS A GRADIENT -TEMPERATURE POWER

In article ekologo-economic characteristics a gradient - temperature power are considered. Use of a gradient of temperatures of sea water for electricity production by means of power installations on the low-boiling working fluid.

Keywords: sea water, gradient of temperatures, production of electricity, environmental conditions.

Энергию океанов используют в разработках так называемой градиент -температурной энергетики, основанной на разности температур в глубине и на поверхности океанов. Градиент-температурные электростанции в основном располагаются на морском побережье и для работы используют морскую воду. Около 70% солнечной энергии поглощается (аккумулируется) мировым океаном. Перепад же температур между водами на глубине в сотни метров и водами на поверхности океана - огромный источник энергии, который оценивается в 20-40 тыс. ТВт, из них можно использовать только 4 ТВт.

Япония внесла наибольший вклад в развитие теории и практики систем по получению энергии морского градиента. В 1970 гг. компания Токио Электрик Поуэр Компани разработала и построила 100 кВт электростанцию закрытого типа в Науру. Пущенная в строй в 1981 г. электростанция производила около 120 кВт электроэнергии, из которых 90 кВт использовалось для нужд самой станции. Оставшееся электричество использовалось для питания школы и других объектов в Науру. Этот объект поставил рекорд по реальному использованию энергии морского градиента. Япония и сегодня является лидером в разработках градиент-температурной энергетики. Так, в июне 2013 года там была запущена единственная на данный момент в мире OTEC-электростанция (от первых букв английского названия технологии Ocean thermal energy conversion) мощностью 50 кВт [1].

В настоящее время разрабатывается новая концепция таких энергетических установок, которая даёт основания ожидать от теплоэнергетического модуля эффективной работы не только в наиболее прогретой части тропического океана, но и по всей акватории, где средний градиент температуры составляет примерно 17°С.

Преобразование энергии температурного градиента морской воды -это процесс, который использует тёплую морскую воду для нагрева и испарения жидкостей с низкой температурой кипения, таких как аммиак. Аммиак в теплообменнике (испарителе) испаряется в теплых поверхностных слоях морской воды (рис. 1). Испарившейся пар расширяется в турбине, который соединенный с электрогенератором. Далее отработавший в турбине пар поступает в нижнюю часть теплообменника (конденсатора), куда из недр океана подаётся на поверхность холодная морская вода, которая

обеспечивает процесс конденсации отработавшего в турбине пара. Затем полученный конденсат сжимают в насосе и повторно используют для генерации энергии. Работа теплового двигателя осуществляется по органическому циклу Ренкина. Причем затраты на сжатие конденсата (аммиака) могут составлять примерно 40% от вырабатываемой электроэнергии. Поскольку такие системы требуют довольно большой разницы температур, то они лучше всего подходят для прибрежных районов в тропиках, где генерация энергии часто зависит от привозного топлива [2,

3].

Низкокипящее рабочее тело (НРТ) выбирают по следующим показателям: температуре замерзания и кипения, теплофизическим свойствам, коэффициентам теплоотдачи, гидравлическим потерям при транспортировке, запаху, воспламеняемости, токсикологическим и наркотическим свойствам, воздействию на окружающую среду и здоровье человека, коррозионной активности, летучести, склонности к пенообразованию, стоимости [4, 5].

Одним из распространённых низкокипящих рабочих тел является органическая жидкость пентан С5Н12. Примерами других низкокипящих рабочих тел могут быть углеводороды (бутан, пропан), хладоны ^11, R12, R114, R123, R245+а), аммиак, толуол, дифенил, силиконовое масло, а также СО2, при высоком давлении, или новое синтетическое вещество «Novec 649», разработанной компанией «3М», известной по брэнду «Скоч» и др [6].

Рис. 1. Принципиальная схема градиент-температурной энергоустановки с использованием морской воды.

Самая главная задача инженеров в этом проекте - разработка и строительство многометровых труб большого диаметра для поднятия холодной воды с глубин океана.

Одновременно с этим, морские тепловые станции, работающие на основе перепадов температур морской воды и являющиеся еще одним видом альтернативной энергетики, способствуют выделению огромного количества углекислоты, снижению давления, нагреву глубинных вод и остыванию вод поверхностных слоев. Данные процессы негативно влияют на климат, флору и фауну региона.

Использованные источники:

1. Экологические проблемы энергетического обеспечения человечества. [Электронный ресурс] / Режим доступа: http://nuclphys.sinp.msu.ru/ecology/ecol/ecol05.htm.

2. Океан: энергетический потенциал. [Электронный ресурс] / Режим доступа: http://www.facepla.net/content-info/art-menu/1265-oceanic-energy.html.

3. Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 3 кПа. // Инновационная наука. 2016. № 2-3. -С. 30-32.

4. Гафуров А.М., Гафуров Н.М. Методика выбора оптимального низкокипящего рабочего тела для использования в низкотемпературных средах. // Инновационная наука. - 2015. - № 11-2. - С. 31-32.

5. Гафуров А.М., Гафуров Н.М. Характерные особенности термодинамического цикла при использовании углекислого газа СО2 и пропана С3Н8. // Инновационная наука. - 2015. - № 11-2. - С. 32-34.

6. Гафуров А.М. Возможности использования органического цикла Ренкина для утилизации низкопотенциальной теплоты. // Вестник Казанского государственного энергетического университета. 2014. №2 (21). - С. 20-25.

УДК 620.91

Хакимуллин Б.Р. студент кафедра ПТЭ институт теплоэнергетики Гумеров И.Р. магистрант кафедра ПТЭ институт теплоэнергетики Гафуров А.М. инженер I категории УНИР ФГБОУВО «КГЭУ» Россия, г. Казань ЭКОЛОГО-ЭКОНОМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГЕОТЕРМАЛЬНОЙ ЭНЕРГЕТИКИ В статье рассматриваются эколого-экономические характеристики геотермальной энергетики. Особенности использования тепловой энергии Земли, сконцентрированной под толщей земной коры, для систем отопления домов и выработки электрической энергии.

Ключевые слова: термальные источники, геотермальные тепловые насосы, производство электроэнергии.

Hakimullin B.R. Gumerov I.R. Gafurov A.M.

EKOLOGO-ECONOMIC CHARACTERISTICS OF GEOTHERMAL

POWER

In article ekologo-economic characteristics of geothermal power are considered. Features of use of heat energy of Earth concentrated under thickness of crust for heating systems of houses and development of electric power.

i Надоели баннеры? Вы всегда можете отключить рекламу.