Научная статья на тему 'Экологические особенности и развитие планктонных сообществ в горном ледниково-моренном озере (бассейн озера Байкал, Россия)'

Экологические особенности и развитие планктонных сообществ в горном ледниково-моренном озере (бассейн озера Байкал, Россия) Текст научной статьи по специальности «Биологические науки»

CC BY
104
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
BATHYMETRY / CHEMICAL COMPOSITION / CHIKOI NATIONAL PARK / ENVIRONMENT / LAKE SHEBETY / PHYTOPLANKTON / ZOOPLANKTON / БАТИМЕТРИЯ / ГИДРОХИМИЧЕСКИЙ СОСТАВ / ЗООПЛАНКТОН / НАЦИОНАЛЬНЫЙ ПАРК «ЧИКОЙ» / ОЗЕРО ШЕБЕТЫ / ФАКТОРЫ СРЕДЫ / ФИТОПЛАНКТОН

Аннотация научной статьи по биологическим наукам, автор научной работы — Афонина Е. Ю., Ташлыкова Н. А., Куклин А. П., Цыбекмитова Г. Ц.

Изучение горных не затронутых цивилизацией водоемов позволяет выявить фоновое состояние состава, структуры и распределения гидробионтов. Ледниково-мореное озеро Шебеты (бассейн озера Байкал, Россия) может служить модельным объектом для изучения гидрологических моделей, биологического разнообразия и адаптивных механизмов сообществ гидробионтов. Целью настоящей работы является выявление наиболее важных переменных факторов среды, регулирующих состав и структуру фитои зоопланктона в различных зонах озера Шебеты. Озеро Шебеты горный ледниково-моренный водоем, расположенный на высоте 1567.4 м н.у.м., в Хентей-Даурском нагорье, на территории Национального парка «Чикой» (Забайкальский край). В работе обобщены первые лимнологические исследования озера. По результатам обследований впервые составлена батиметрическая карта озера, определен химический состав озерных вод, изучены основные компоненты гидробиоценоза фитои зоопланктон. По содержанию органического вещества озеро относится к олиготрофным, по степени минерализации к ультрапресным с высоким содержанием растворенного кислорода. Основную долю площади озера Шебеты составляют глубоководные участки, мелководные занимают ограниченную площадь вдоль береговой линии. Выявлены факторы среды, определяющие распределение и развитие планктонных сообществ в глубоководном горном озере в условиях экстремального континентального климата. Всего в составе фитопланктона зарегистрировано 35 видов водорослей из семи отделов: Cyanobacteria, Bacillariophyta, Cryptophyta, Chrysophyta, Dinophyta, Chlorophyta и Charophyta. В зоопланктоне отмечено 35 видов, относящихся к трем систематическим группам: Rotifera, Cladocera и Copepoda. Наибольшее видовое разнообразие наблюдалось среди диатомовых водорослей и ветвистоусых ракообразных. Расширена география распространения некоторых видов коловраток и ракообразных. К редко встречающимся видам для водоемов Забайкальского края отнесены Euchlanis alata, Acantocyclops capillatus, Cyclops abyssorum. Планктонные сообщества литорали качественно и количественно богаче, по сравнению с сообществами пелагиали. Согласно статистическому анализу (CCorA), в литоральной зоне озера численность и биомасса Bacillariophyta, Chlorophyta, Chrysophyta, Dinophyta, Rotifera, Cladocera и Copepoda определялись факторами (по убыванию факторной нагрузки): глубина, содержание фосфора, температура воды и pH; в пелагиали pH, цветность, мутность и содержание азота определялись количественные показатели Bacillariophyta, Chlorophyta и Copepoda. В литорали численность Crucigeniella irregularis, Kellicottia longispina и Conochilus unicornis зависела от содержания фосфатов. В глубоководной зоне численность таких видов фитопланктона, как Kephyrion doliolum, Cryptomonas ovata, Crucigenia tetrapedia, Peridinium sp. и зоопланктона, как Arctodiaptomus neithammeri и Cyclops abyssorum определялась химическим потреблением кислорода, содержанием общего фосфора, глубиной и температурой воды.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биологическим наукам , автор научной работы — Афонина Е. Ю., Ташлыкова Н. А., Куклин А. П., Цыбекмитова Г. Ц.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ENVIRONMENTAL FEATURES AND DYNAMICS OF PLANKTON COMMUNITIES IN A MOUNTAIN GLACIAL MORAINE LAKE (BAIKAL LAKE BASIN, RUSSIA)

The research on mountain lakes located in non-industrialised areas provides a thorough look at the background condition of the communities of hydrobionts in terms of their composition, structure, and distribution. Lake Shebety is a glacial moraine lake of the Baikal Lake basin, Russia that could be used as a pattern for studying biodiversity and adaptive mechanisms of aquatic communities. This paper is aimed to identify the essential transient factors that regulate the composition and structure of phytoplankton and zooplankton in different zones of Lake Shebety. This will provide a better understanding of the plankton dynamics under the extreme continental climate. The present article is the first limnological investigation conducted for the water body on the above mentioned factors. Samples were collected during the summer of 2002 and 2016. Lake Shebety is located at 1567.4 m above sea level in the Khentei-Daurian Highland which lies in the Chikoi National Park, Trans-Baikalsky Krai, Russia. The research was performed on the basin morphometry and hydrochemical composition, along with hydrobiological studies of phytoplankton and zooplankton. Typical ecosystem features include oligotrophic status, low salinity, and high oxygen content. The lake is mainly characterised by deep-water areas with shallow-water shorelines. The study covers environmental factors determining the distribution and development of plankton communities in a mountain deep-water lake under extreme continental climate condition. We have detected a total of 35 algae species belonging to the following phyla: Cyanobacteria, Bacillariophyta, Cryptophyta, Chrysophyta, Dinophyta, Chlorophyta, and Charophyta. The data on zooplankton consisted of 35 species representing the phyla of Rotifera, Cladocera, and Copepoda. The greatest diversity of species was observed for the diatoms and cladocerans. It is apparent that the geographical distribution of some species of rotifers and crustaceans has been expanded. The species of Euchlanis alata, Acantocyclops capillatus, and Cyclops abyssorum are rare species for the water bodies in the Trans-Baikalsky Krai. The littoral plankton community is more diverse in components and quantities as compared to the pelagic one. As per the CCorA, the factors that contribute to the abundance and biomass of Bacillariophyta, Chlorophyta, Chrysophyta, Dinophyta, Rotifera, Cladocera, and Copepoda have been observed in the following descending order: depth, phosphorus content, water temperature, and pH in littoral zone; pH, color, turbidity, nitrogen content determine density of Bacillariophyta, Chlorophyta and Copepoda in the pelagic zone. The abundance of alga Crucigeniella irregularis and rotifers Kellicottia longispina and Conochilus unicornis were positively related to the phosphate content in the shallow areas. The abundance of the phytoplankton species Kephyrion doliolum, Cryptomonas ovata, Crucigenia tetrapedia, Peridinium sp. and zooplankton species Arctodiaptomus neithammeri and Cyclops abyssorum are associated with chemical oxygen demand, total phosphorus content, depth, and the temperature in deep-water areas.

Текст научной работы на тему «Экологические особенности и развитие планктонных сообществ в горном ледниково-моренном озере (бассейн озера Байкал, Россия)»

ENVIRONMENTAL FEATURES AND DYNAMICS OF PLANKTON COMMUNITIES IN A MOUNTAIN GLACIAL MORAINE LAKE (BAIKAL LAKE BASIN, RUSSIA)

Ekaterina Yu. Afonina, Natalya A. Tashlykova, Alexey P. Kuklin, Gazhit Ts. Tsybekmitova

Institute of Natural Resources, Ecology and Cryology of SB RAS, Russia e-mail: [email protected], [email protected], [email protected], [email protected]

Received: 13.01.2020. Revised: 10.04.2020. Accepted: 02.05.2020.

The research on mountain lakes located in non-industrialised areas provides a thorough look at the background condition of the communities of hydrobionts in terms of their composition, structure, and distribution. Lake Shebety is a glacial moraine lake of the Baikal Lake basin, Russia that could be used as a pattern for studying biodiversity and adaptive mechanisms of aquatic communities. This paper is aimed to identify the essential transient factors that regulate the composition and structure of phytoplankton and zooplankton in different zones of Lake Shebety. This will provide a better understanding of the plankton dynamics under the extreme continental climate. The present article is the first limnological investigation conducted for the water body on the above mentioned factors. Samples were collected during the summer of 2002 and 2016. Lake Shebety is located at 1567.4 m above sea level in the Khentei-Daurian Highland which lies in the Chikoi National Park, Trans-Baikal-sky Krai, Russia. The research was performed on the basin morphometry and hydrochemical composition, along with hydrobiological studies of phytoplankton and zooplankton. Typical ecosystem features include oligotrophic status, low salinity, and high oxygen content. The lake is mainly characterised by deep-water areas with shallow-water shorelines. The study covers environmental factors determining the distribution and development of plankton communities in a mountain deep-water lake under extreme continental climate condition. We have detected a total of 35 algae species belonging to the following phyla: Cyanobacteria, Bacillariophyta, Cryptophyta, Chrysophyta, Dinophyta, Chlorophyta, and Charophyta. The data on zooplankton consisted of 35 species representing the phyla of Rotifera, Cladocera, and Copepoda. The greatest diversity of species was observed for the diatoms and cladocerans. It is apparent that the geographical distribution of some species of rotifers and crustaceans has been expanded. The species of Euchlanis alata, Acantocyclops capillatus, and Cyclops abyssorum are rare species for the water bodies in the Trans-Baikalsky Krai. The littoral plankton community is more diverse in components and quantities as compared to the pelagic one. As per the CCorA, the factors that contribute to the abundance and biomass of Bacillariophyta, Chlorophyta, Chrysophyta, Dinophyta, Rotifera, Cladocera, and Copepoda have been observed in the following descending order: depth, phosphorus content, water temperature, and pH in littoral zone; pH, color, turbidity, nitrogen content determine density of Bacillariophyta, Chlorophyta and Copepoda in the pelagic zone. The abundance of alga Crucigeniella irregularis and rotifers Kellicottia longispina and Conochilus unicornis were positively related to the phosphate content in the shallow areas. The abundance of the phytoplankton species Kephyrion doliolum, Cryptomonas ovata, Crucigenia tetrapedia, Peri-dinium sp. and zooplankton species Arctodiaptomus neithammeri and Cyclops abyssorum are associated with chemical oxygen demand, total phosphorus content, depth, and the temperature in deep-water areas.

Key words: bathymetry, chemical composition, Chikoi National Park, environment, Lake Shebety, phytoplank-ton, zooplankton

Introduction

Remote high mountain lakes, located far from populated areas and under extreme climate conditions, with a small watershed, a low content of nutrients, low salinity, and high oxygen content, receive less impact from human activities but magnify the effects of global climate changes, and can thus be taken as a mirror of natural environmental changes (Flanagan et al., 2003; Aygen et al., 2009). Due to their vulnerability, the lakes have attracted the interest of limnologists for a long time mainly because of their extreme climatic and physical and chemical conditions (Williamson et al., 2009). Since glacier lakes belong to the ecosystems with extreme habitat conditions (low food concentra-

tion, low water temperature, short growing seasons, extreme seasonal changes in light level and periods of high solar radiation), the aquatic biota include a wide spectrum of organisms that differ greatly in their biological cycles, feeding behaviour, and dispersal strategies (Catalan et al., 2006; Udovic et al., 2017). High-mountain lakes are generally considered as pristine water bodies. Given that high mountain lakes are small with less complex trophic webs compared to those of lowland lakes, they are suitable for investigation and analysis of ecological processes (Aygen et al., 2009).

The Hentei-Daurian Highland is one of the unique geomorphological structures of the Baikal Lake basin, Russia, where the glaciers past

activities can easily be tracked. There are three zones under the state protection within the territory: the Sokhondinsky State Nature Biosphere Reserve, the Chikoi National Park, and the Menza State Research and Educational Station. The majority of water bodies on the highland are small lakes of glacial origin, which are characterised by specific thermal and chemical regimes, making them extremely sensitive to climatic changes (Enikeev & Staryshko, 2009). This hard-to-reach and remote area with its harsh climate leaves the biodiversity of aquatic communities in mountain lakes virtually unexplored to date. There are reported works on the macroalgae (Kuklin, 2013), benthic fauna (Makarchenko & Makarchenko, 2010; Semenchenko & Matafonov, 2014; Ichige & Barkalov, 2017), and ichthyofauna (Antonov, 2009, 2017) of Lake Bukukun (Sokhondinsky State Nature Reserve). The long-term hydrobio-logical study results of some mountain lakes in the Baikal basin are revealed in monographs (Ple-shanov, 2009; Timoshkin, 2009) and other papers (Bondarenko, 2009; Matveev et al., 2010). Some integrated research results of Lake Shebety are listed by Tsybekmitova et al. (2016), Afonina & Tashlykova (2017), Matafonov & Andrievskaya (2017), Gorlacheva (2019).

The Chikoi National Park (Krasnochikoisky district, Trans-Baikalsky Krai) was created in 2014 to protect cedar forests and the south Siberian taiga, with elements of mountain steppes and alpine meadows in the upper River Chikoi. The fishes listed in the regional Red Data Book (Hucho taimen (Pallas, 1773)) and protected in the Baikal Lake basin (Brachymystax lenok (Pallas, 1773)) inhabit the rivers and lakes of the Chikoi River basin. Being a part of the Chikoi National Park, Lake Shebety is not polluted by anthropogenic activity and, thus, could be considered as a pattern of an ecologically pure water body. The lake is also used to investigate the aquatic community structure and flow unexposed to human influence, subject only to natural forcing (such as climate variability). Notably, Lake Shebety is relatively young, as it was formed 18 000-20 000 years ago and is far from major biodiversity centres (e.g. Lake Baikal). Finally, it draws research interest due to the insufficient data on the past climatic eras whereas the lake ecosystem evolved during the last interglacial period. Lake Shebety could be used as a pattern for studying the biodiversity of a mountain oligotrophic non-industrialised water body located in the temperate zone. Some moun-

tain lakes in Europe (Marchetto, 1998; Fott et al., 1999; Tolotti, 2001), Eastern Siberia (Bondarenko et al., 2017), and Altai (Burmistrova & Ermo-laeva, 2013) are typically used as pattern ecosystems in ecological monitoring.

The composition and distribution of aquatic organisms are usually determined by the spatiotemporal dynamics of the environment. In the bio-topes different in hydrological and physicochemi-cal parameters, the plankton communities differ in species composition and abundance (Skala, 2015; Voutilainen et al., 2016). The aim of the present study is to identify the most important environmental variables regulating patterns in the species composition and structure of phytoplankton and zooplankton in different zones of the glacial Lake Shebety. The research tasks are as follows: i) to perform lake bathymetry and study some physi-cochemical parameters; ii) to assess the structural characteristics of phytoplankton and zooplankton; iii) to identify relations between the studied variables with multivariate statistical analysis methods. This will provide a better understanding of the linkage between plankton features and extreme continental climate conditions.

Material and Methods

Study site

The mountain Lake Shebety is located at an altitude of 1567.4 m a.s.l. within the buffer zone of the Baikal Lake basin. The altitude of the spurs of the Chikokonsky Range surrounding the water body ranges from 1653.5 m a.s.l. in the north to 2252.8 m a.s.l. in the south. The tops of the ridges are wide, rounded; the slopes are steep. Rocky placers are on the crests of the ridges and along the slopes. The lake is open. In its southwestern part, Porokhovoy Creek inflows into the lake, and an unnamed stream outflows from the lake in the west. Lake Shebety is of glacier-dammed origin. It was formed as a result of blocking the valley by the coastal moraine of the Sartlan glacier which flowed down the Melnichnaya Creek valley from the northern megaslope of Bystrinskiy Golets bald peak. The lake area is 873 000 m2, volume of 15.7 km2 and catchment area of 10.5 km2. The lake is fed by melting snow and rainwater.

Sampling and analysis

Samples were collected during field investigation in July and August of 2002 and 2016 from deep water (1 and 2) and shallow sites (3 - without aquatic plants and 4 - with plants growth) (Fig. 1).

A

0-211 =

4 - 6 m ■

8-10 m =

12-14 m =

16-18 m ■

24 -26 m | | | I

28 - 30 m | ^

32-34 m I

=1

36-38 m 40-42 m J

Fig. 1. A - Depth map (isobaths are conducted after 2 m) and location of sampling stations in Lake Shebety; B - Water volume distribution by depth. July 2016.

Hydrobiological and hydrochemical samples were taken layer-by-layer (in the surface and near-bottom water layers in the littoral zone; in the surface water layer, at the Secchi disk depth and double Secchi disk depth, and near the bottom in the pelagic zone) using a Patalas bathometer. Zooplankton was also sampled by the total vertical tows with a Juday net (mesh size = 64 ^m). Samples were fixed with 4% formalin. The material was processed by generally accepted hydro-biological methods (Kiselev, 1969; Sadchikov, 2003). Hydrochemical samples were analysed out following Alekin et al. (1973). A total of 78 plankton and 57 hydrochemical samples were collected. At the time of sampling, dissolved oxygen, oxygen saturation, pH, turbidity, temperature, water color, total dissolved solids were measured using a GPS-AQVAMETER multiparametric sensor for water analysis (developed in the United Kingdom). Wa-

ter transparency was measured with Secchi disk. The lake depth was determined with a HDS 5 Gen 2 sounder (High Definition System) with a beam of 50 / 200 kHz (35°).

Phytoplankton identification was based on the taxonomic keys presented in the study by Tash-lykova (2009). The taxonomic database of algae was used to ensure valid names of the species (Guiry & Guiry, 2020). Zooplankton identification was performed using appropriate identification keys (Kutikova, 1970; Smirnov, 1971; Borutskiy et al., 1991; Tsalolikhin, 1995).

Statistical analysis

Data analysis of variance was conducted using the XL STAT (Addisonsoft, USA). The influence of environmental factors on plankton variability (abundance and biomass of phyto-plankton and zooplankton, and of taxon groups separately) was determined with Canonical-Correlation Analysis (CCorA). Multivariate data were standardised and analyses were performed using the R program (Dalgaard, 2008). The Pearson correlation coefficient was calculated for the paired values. The confidence of the correlation coefficient was tested using Student's t-test at a significance level of p < 0.05.

Results

Hydrological, physical and chemical characteristics

The surrounding steep mountain slopes determine the depth structure of Lake Shebety. The lake is mainly characterised by deep water areas. Shallow waters occupy a limited area along the shoreline. The lake area from the edge to the transparency depth was 24.3% and from 20 m to maximum depth (42.5 m) was 45.4% of the total lake area. The depths from 0 m to 2 m display the largest area and amount to 104 478 m2 (12%). The total area from the edge to a depth of 6 m is 24.3%, from 6 m to 12 m is 11.8%, from 12 m to 20 m is 18.5%, and from 20 m to 36 m is 50%. The depths of more than 36 m make up 0.12% of the lake area. The calculated total lake volume was 1 568 453 m3 (Fig. 1).

The water quality of the lake under study corresponds to the natural water bodies of the Baikal region, with low concentrations of nutrients, total dissolved solids and a high oxygen content (Table 1).

Assemblage structure of phytoplankton and zooplankton

The plankton community consisted of 35 algae (sub)species and 35 invertebrate species (Table 2).

Table 1. Some physical and chemical characteristics of Lake Shebety in the zones under study

Parameter (symbol, units) Littoral Pelagic

Depth (H, m) 3.15 ± 0.95 29.2 ± 1.27

Transparency (m) To the bottom 5.2 ± 0.02

Temperature (T, °C) 18.50 ± 0.17 11.0 ± 2.90

PH 7.85 ± 0.31 7.45 ± 0.13

Color (Col, deg.) 18.0 ± 0.71 16.8 ± 0.62

Turbidity (Turb, mg/l) 0.55 ± 0.30 0.46 ± 0.20

Oxygen (O2, mg O2 l-1) 8.37 ± 0.07 7.88 ± 0.32

Oxygen saturation (%) 87.0 ± 0.78 74.2 ± 6.39

Sodium-cation (Na, mg l-1) 0.72 ± 0.02 1.09 ± 0.03

Potassium-cation (K, mg l-1) 0.44 ± 0.02 0.51 ± 0.02

Calcium-cation (Ca, mg l-1) 3.50 ± 1.1 5.0 ± 0.98

Nitrate-nitrogen (NO3, mg l-1) 0.25 ± 0.05 0.24 ± 0.04

Nitrite-nitrogen (NO2, mg l-1) 0.01 ± 0.004 0.01 ± 0.002

Ammonia-nitrogen (NH4, mg l-1) 0.31 ± 0.05 0.3 ± 0.001

Phosphate-phosphorus (PO4, mg l-1) 0.006 ± 0.001 0.007 ± 0.003

Total phosphorus (P, mg l-1) 0.012 ± 0.004 0.016 ± 0.002

Hydrocarbonate-anion (HCO3, mg l-1) 19.83 ± 1.08 18.3 ± 2.04

Total dissolved solids (TDS, mg l-1) 30.0 ± 1.12 30.0 ± 2.21

Permanganate oxidisation (PO, mgO l-1) 2.81 ± 0.25 2.37 ± 0.17

Chemical oxygen demand (COD, mgO l-1) 18.2 ± 1.90 19.34 ± 0.82

Organic substance (OS, mg l-1) 13.65 ± 1.40 14.52 ± 0.61

Table 2. A list of phytoplankton and zooplankton of Lake Shebety in the zones under study

Taxon Locality

Littoral Pelagic

Phytoplankton

Cyanobacteria

Coelosphaerium kuetzingianum Nägeli 1849 + -

Synechocystis aquatilis Sauvageau 1892 + -

Bacillariophyta

Aulacoseira islandica (Otto Müller) Simonsen 1979 + +

Aulacoseira italica (Ehrenberg) Simonsen 1979 + -

Cocconeis placentula Ehrenberg 1838 - +

Cyclotella meneghiniana Kützing 1844 + +

Diatoma vulgaris Bory 1824 + +

Diatoma vulgaris f. producta (Grunow) A. Kurz 1922 + +

Fragilaria capucina Desmazieres 1830 - +

Fragilaria radians (Kützing) D.M. Williams & Round 1987 + -

Fragilariforma constricta (Ehrenberg) D.M. Williams & Round 1988 + -

Handmannia bodanica (Eulenstein ex Grunow) Kociolek & Khursevich 2012 + -

Gomphonema coronatum Ehrenberg 1841 + -

Gomphonema olivaceum (Hornemann) Brebisson 1838 + -

Gomphonema sp. + -

Tabellaria flocculosa (Roth) Kützing 1844 + +

Cryptophyta

Cryptomonas ovata Ehrenberg 1832 - +

Chrysophyta

Chrysococcus rufescens Klebs 1892 + +

Chrysococcus biporus Skuja 1939 + +

Kephyrion doliolum Conrad, 1930 + +

Mallomonas caudata Iwanoff [Ivanov] 1899 - +

Charophyta

Cosmarium pokornyanum (Grunow) West & G.S. West 1900 + -

Elakatothrix genevensis (Reverdin) Hindak 1962 + +

Spirogyra sp. + -

Taxon Locality

Littoral Pelagic

Chlorophyta

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Crucigenia tetrapedia (Kirchner) Kuntze 1898 + +

Crucigeniella irregularis (Wille) P.M. Tsarenko & D.M. John in D.M. John & P.M. Tsar-enko 2002 + +

Monoraphidium contortum (Thuret) Komarkova-Legnerova in Fott 1969 + +

Monoraphidium griffithii (Berkeley) Komarkova-Legnerova 1969 + +

Monoraphidium komarkovae Nygaard 1979 - +

Oocystis marssonii Lemmermann 1898 + -

Pseudopediastrum boryanum (Turpin) E. Hegewald in Buchheim et al. 2005 + +

Tetraedron incus (Teiling) G.M. Smith 1926 - +

Koliella sp. + -

Dinophyta

Peridinium sp. + +

Zooplankton

Rotifera

Asplanchna priodonta Gosse, 1850 + +

Brachionus urceus (Linnaeus, 1758) - +

Collotheca sp. + +

Conochilus unicornis (Schrank, 1803) + +

Euchlanis dilatata Ehrenberg, 1832 + -

Euchlanis alata Voronkov, 1911 + -

Keratella cochlearis (Gosse, 1851) - +

Kellicottia longispina (Kellicott, 1879) + +

Notholca squamula (Müller, 1786) + +

Cladocera

Acroperus harpae Baird, 1843 + -

Alona affinis (Leydig, 1860) + -

Alona costata Sars, 1862 + -

Alonella excisa (Fischer, 1854) + -

Bosmina longispina Leydig, 1860 + +

Bythotrephes longimanus Leydig, 1860 - +

Ceriodaphnia pulchella Sars, 1862 + -

Chydorus sphaericus (O.F. Müller, 1785) + -

Coronatella rectangula Sars, 1862 + -

Daphnia cristata G.O. Sars, 1862 - +

Daphnia galeata Sars, 1863 - +

Diaphanosoma brachyurum (Lievin, 1848) + +

Eurycercus lamellatus (Müller, 1785) + -

Holopedium gibberum Zaddach, 1855 + +

Leptodora kindtii (Focke, 1844) + -

Polyphemus pediculus (Linnaeus, 1761) + +

Scapholeberis mucronata (Müller, 1776) + -

Sida crystallina (Müller, 1776) + -

Simocephalus vetulus (Müller, 1776) + -

Copepoda

Arctodiaptomus neithammeri Mann, 1940 - +

Acantocyclops venustus (Norman et Scott, 1906) + -

Acantocyclops capillatus (Sars, 1863) + -

Cyclops abyssorum (Sars, 1863) + +

Eucyclops serrulatus (Fischer, 1851) + -

Macrocyclops albidus (Jurine, 1820) + -

Atteyella nordenskjoldi (Lilljeborg, 1902) + -

Note: «+» - species is present, «-» - species is absent.

The diversity, structure and density of hydro-bionts varied in the distinguished lake zones. In the littoral, 28 algal taxa and 29 zooplankton species were noted. For phytoplankton, the average abundance was 64.77 ± 27.8 x 103 cells x l-1, the average biomass was 317.7 ± 197.5 mg x m-3. The values for zooplankton are as follows: 66.20 ± 20.64 x 103 individuals x m-3 and 379.29 ± 160.17 mg x m-3. The Cyanobacteria Coelosphaerium kuetzingianum Nägeli (20-57% of total abundance), chlorophytes Crucigeniella irregularis (Wille) P.M. Tsaren-ko & D.M. John in D.M. John & P.M. Tsarenko (22-70%) and the rotifers Conochilus unicornis (Schrank, 1803) (20-85% of total abundance) and Kellicottia longispina (Kellicott, 1879) (26-31%) dominated. There were no calanoids observed in the coastal waters.

In the pelagic zone, 21 phytoplankton species and 16 zooplankton species were found. For phytoplankton, the abundance averaged to 30.36 ± 7.9 x 103 cells x l-1 and the biomass value 47.21 ± 6.8 mg x m-3. The values for zooplankton are as follows: 28.43 ± 5.69 x 103 individuals x m-3 and 274.95 ± 44.35 mg x m-3. The diatoms Cyclotella meneghiniana Kützing (2-23% of total abundance), chrysophytes Kephyrion do-liolum Conrad (30-40%), the greens C. irregularis (33-72%), Crucigenia tetrapedia (Kirchner) Kuntze (9-26%), and the copepods Arctodiapto-mus neithammeri (Mann, 1940) (34-40% of total abundance) and Cyclops abyssorum G.O. Sars, 1863 (10-20%) were dominants.

Relation between abiotic factors and phytoplankton and zooplankton assemblages

As per the CCorA, for each of the two lake zones, three factors were identified with a total contribution to the plankton community variability of 99.99% and with a nearly equal share of the variance of each factor (Fig. 2, Fig. 3).

For the littoral zone (Fig. 2), the first component as a parameter with maximum negative factor loadings has quantitative indicators of Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda. The factor loads of the second and third components are positive and determined respectively by abundance and biomass indicators of Chrysophyta and Dyn-ophyta. Among the three components of environmental factors, depth and the phosphorus (total and mineral) content have the greatest influence on the plankton development. It should be noted that water temperature and pH also have high factor signs.

For the pelagic zone (Fig. 3), the greatest positive factor loads on the first component are characterised by the signs of Chrysophyta abundance. The highest positive factor loads on the second component are biomass indicators of Bacillariophyta and abundance indicators of Copepoda (both factor loads are negative). On the third these are abundance indicators of Bacillariophyta (positive factor load), biomass indicators of Chlorophyta and Rotifera (negative factor loads) and Chrysophyta (positive). The main abiotic factor affecting the plankton structure is the pH. Such factors as colour, turbidity and nitrogen content also have high negative factor signs.

Fl (33,33 %)

F2 (33,33 %)

Fig. 2. CCorA for biotic (filled circles) and environmental variables (lines) of the littoral zone in Lake Shebety. Designations: N - abundance, B - biomass, ph - phytoplankton, cya - Cyanobacteria, chr - Chrysophyta, bac - Bacillariophyta, cry - Cryp-tophyta, din - Dinophyta, cha - Charophyta, chl - Chlorophyta, eug - Euglenophyta, K d - Kephyrion doliolum, C i - Crucigeniella irregularis, C t - Crucigenia tetrapedia, C k - Coelosphaerium kuetzingianum, z - zooplankton, rot - Rotifera, cop -Copepoda, clad - Cladocera, K l - Kellicottia longispina, A p - Asplanchnapriodonta, C u - Conochilus unicornis, S c - Sida crystallina, D b - Diaphanasoma brachyurum, A n - Arctodiaptomus neithammeri, C a - Cyclops abyssorum.

Fl (34,19 %) F2 (32,90 %)

Fig. 3. CCorA for biotic (filled circles) and environmental variables (lines) of the pelagic zone in Lake Shebety. Designations: N - abundance, B - biomass, ph - phytoplankton, cya - Cyanobacteria, chr - Chrysophyta, bac - Bacillariophyta, cry - Cryp-tophyta, din - Dinophyta, cha - Charophyta, chl - Chlorophyta, eug - Euglenophyta, K d - Kephyrion doliolum, C i - Cruci-geniella irregularis, C t - Crucigenia tetrapedia, C k - Coelosphaerium kuetzingianum, z - zooplankton, rot - Rotifera, cop -Copepoda, clad - Cladocera, K l - Kellicottia longispina, A p - Asplanchnapriodonta, C u - Conochilus unicornis, S c - Sida crystallina, D b - Diaphanasoma brachyurum, A n - Arctodiaptomus neithammeri, C a - Cyclops abyssorum.

The research showed the correlation between the environment and the abundance of phytoplankton and zooplankton species. Statistically significant Pearson coefficients were found for three species in the littoral zone and six species in the pelagic zone. The green alga Crucigeniella irregularis and rotifers Kellicottia longispina and Conochilus unicornis were positively related to phosphate content on shallow sites. The abundance of species Cryptomonas ovata Ehrenberg, Kephyrion doliolum, Crucigenia tetrapedia and Peridinium sp. among phytoplankton and species A. neithammeri and Cyclops abyssorum among zooplankton were associated with COD, total phosphorus, depth and temperature on deep water sites (Table 3).

Discussion

A recent study has shown the aquatic ecosystem state in conditions of the vast glacial lakes in Transbaikalia at different glaciation periods (Kuk-lin & Enikeev, 2017). Lake Shebety is a glacial moraine deep-water lake. Shallow sites occupy only 12% of the total lake area. According to the chemical composition, the waters belong to the bicarbonate class and the calcium group, ultra-fresh, neutral-slightly alkaline. The nutrient content (nitrogen (except ammonium) and phosphorus) in the studied lake corresponds to that in other mountain lakes (Pugnetti & Bettinetti, 1999; Ivanova et al.,

2014; Bondarenko et al., 2017). A rather high ammonia nitrogen content (0.25-0.33 mg x l-1) and COD and PO are also noted in glacial lakes of the High Tatra Mountains (Kopâcek et al., 1995), Lago Santo Parmense Lake (Italy) (Ferrari, 1976), Te-letskoye Lake (Zuykova et al., 2009). Reports on mountain lakes different in type of watershed have shown that the type of watershed determines nitrogen concentration, which increases in forest watershed (e.g. Kopâcek et al., 1995). The chemical composition of the lake waters in different years of research is constant, which is also noted for some mountain lakes (Diaz et al., 2007; Zuykova et al., 2009; Rumyantsev, 2012).

Under extreme climatic conditions (low nutrient conditions, low food availability, low temperature) and hydro-morphological properties (large depth, limited catchment area), Lake Shebety shows an oligotrophic character as corroborated by low biodiversity values and trophic state indices. Summer plankton communities in the lake have species with a poor taxonomic composition, with a few dominant species, which is quite similar to other mountain lakes (Gardner et al., 2008; Dubovskaya et al., 2010; Ta§, 2016). A poor species composition of planktonic community in the lake is probably caused, in part, by the «clear-water phase» (Sommer et al., 1986; Trifonova, 1990), which is recorded in the middle of the calendar summer in cold-water lakes.

Table 3. Values of correlation coefficients between the environmental variables and the phytoplankton and zooplankton species

Parameters Littoral Pelagic

Oxygen - Peridinium sp. - 0.97*

Chemical Oxygen Demand - Cryptomonas ovata - 0.96*

Total Phosphorus - Cryptomonas ovata - -0.87*

Total Phosphorus - Kephyrion doliolum - 0.96**

Phosphate - Crucigeniella irregularis 0.96* -

Phosphate - Kellicottia longispina 0.92** -

Phosphate - Conochilus unicornis 0.95* -

Depth - Arctodiaptomus neithammeri - 0.97*

Depth - Peridinium sp. - -0.96*

Temperature - Crucigenia tetrapedia - 0.93**

Temperature - Cyclops abyssorum - -0.96*

Temperature - Peridinium sp. - 0.96*

Note: «*» - p < 0.05, «**» - p < 0.01, «***» - p < 0.001, «-» - insignificant values of the correlation coefficient.

In Lake Shebety, the algae flora and rotif-eran and crustacean fauna are mostly represented by species with a wide natural range. There were no endemic species of algae and invertebrates registered in the summer plankton composition. Some phytoplankton species, including Aulacoseira islandica (Otto Müller) Si-monsen, Handmannia bodanica (Eulenstein ex Grunow) Kociolek & Khursevich, Tabellaria flocculosa (Roth) Kützing, Fragilariforma con-stricta (Ehrenberg) D.M. Williams & Round, Monoraphidium komarkovae Nygaard, are subarctic, arctic and boreal (Barinova et al., 2006; Bondarenko, 2009). The current study has expanded the information on the distribution of some zooplankton species. Acantocyclops ca-pillatus (Sars, 1863) has been recorded for the first time in the Trans-Baikalsky Krai and for the second time in Eastern Siberia (Shaburova et al., 2002). Euchlanis alata Voronkov, 1911, is an arctic relict and typical for higher-latitude lakes. This is the second record in the region, while previously it was found in the Shilka River basin (Afonina, 2013). Arctodiaptomus neit-hammeri is known from high mountain lakes of Bulgaria, Turkey, Macedonia (Borutskiy et al., 1991). In Transbaikalia, this species also inhabits soda steppe lakes (Afonina & Itigilova, 2015, 2018). Cyclops abyssorum is distributed in lakes of the southern Palearctic. Previously, this species was found in the Ingoda River basin (Afonina, 2013). The majority of the noted species are typical for the cold-water complex: Chrysococcus rufescens Klebs, Kephyrion do-liolum, Mallomonas caudata Iwanoff [Ivanov], Cryptomonas ovata among the phytoplankton; Conochilus unicornis, Euchlanis alata, Noth-olca squamula (Müller, 1786), Kellicottia lon-

gispina, Holopedium gibberum Zaddach, 1855, Daphnia crystata G.O. Sars, 1862, Cyclops abyssorum, Atteyella nordenskjoldi (Lilljeborg, 1902) among the zooplankton.

Sampling in the littoral zone with an abundant aquatic vegetation in 2016 showed that the species number of invertebrates increased from 18 in 2002 to 29 species in 2016 (mainly due to phytophilous forms (Scapholeberis mucronata (Müller, 1776), Simocephalus vetulus (Müller, 1776), Ceriodaphnia pulchella Sars, 1862, Alonella excisa (Fischer, 1854), Alona costata Sars, 1862, Acroperus harpae Baird, 1843, Eu-rycercus lamellatus (Müller, 1785), Macrocy-clops albidus (Jurine, 1820), Acantocyclops ve-nustus (Norman et Scott, 1906)). Wherein our research conducted in more years has shown no significant differences in dominant species and quantitative development of aquatic organisms. The constancy of the plankton community structure is also observed in other mountain lakes (Zuykova et al., 2009; Kononova et al., 2014). The equilibrium of plankton communities is due to the redistribution of abundance and biomass within groups of plankton communities, and therefore they are resistant to environmental changes (Winder et al., 2003).

Phytoplankton populations in mountain lakes are often dominated by nanoplanktonic species of green algae (Monoraphidium, Tet-raedron, Oocystis, Crucigenia, Crucigeniella) and motile species of Chrysophyta (Chrysococcus, Kephyrion) and Cryptophyta (Cryptomonas) (Rott, 1988; Fott et al., 1999; Sal-maso & Naselli-Flores, 1999; Sommaruga et al., 1999; Ta§, 2016). Most species/genera of the structure-forming plankton complexes (algae Monoraphidium contortum (Thuret)

Komarkova-Legnerova in Fott, M. griffithii (Berkeley) Komarkova-Legnerova, M. komar-kovae and invertebrates Conochilus unicornis, Kellicottia longispina, Asplanchna priodonta, Cyclops, Arctodiaptomus) are typical representatives of the summer plankton of deep-water oligotrophic lakes (Gliwicz & Rowan, 1984; Andronikova, 1996; Salmaso & Naselli-Flores, 1999; Ferrara et al., 2002; Zuikova & Bochkarev, 2009; Zuykova et al., 2009). The domination of small-size groups of hydrobionts (nanoplanktonic algae species as well as rotifers species and age stages of copepods) results in low biomass values in summer, as observed in mountain lakes of Italy (Manca & Comoli, 1999; Ferrara et al., 2002) and Russia (Bonda-renko et al., 2002; Zuykova et al., 2009). Oli-gotrophy promotes the existence of small sized phytoplankton species with high turnover rates (Reynolds, 1984).

In Lake Shebety, the littoral plankton community is more diverse and dense than the pelagic. The species composition is determined by the lake area and depth, quantitative indicators are the temperature of the water, which is most pronounced in the littoral zone (Bur-mistrova & Ermolaeva, 2013). Cyanobacterial-green phytoplankton and rotiferan zooplankton assemblages develop in shallow parts. Diatoms, chlorophytes, chrysophytes phytoplankton and copepod zooplankton complexes develop in deep water sites. Detritophages and grasping phytophagous dominate in the littoral zone whereas filter feeders inhabit the pelagial zone. According to Gessner et al. (1996), Kononova et al. (2014), the shallow water areas with more warm-water, rich nutrients and plant growth are characterised by abundant plankton organisms. The cladocerans (especially the Chydori-dae family) had more density and diversity in station 4. They prefer warm lake shallow parts with plant growth and good mixing of water masses (Gillooly & Dodson, 2000), where a higher number of ecological niches facilitates their colonisation. So, they can expand the boundaries of their vertical migration to avoid the predator press (Burmistrova & Ermolaeva, 2013). The species diversity of filter-feeding microphagous rotifers is the highest in the littoral areas, while predatory species, such as As-planchna priodonta Gosse, 1850, dominate in the deep-water parts of the lake. The study has shown that small zooplankton organisms prefer

lighted, most aerated upper lake layers, which are rich in phytoplankton mainly from green algae, which is consistent with other research (Moore, 1981; Rivyer, 2012; Vetsler, 2009).

According to the obtained results, one of the most critical factors that determines the composition of the plankton communities in both lake zones is the active interaction of the environment, or pH (see Fig. 2, Fig. 3), as it is confirmed by the analysis based on published data (Barinova et al., 2006; Ivanova & Kazantseva, 2006).

In mountain glacial lakes, temperature and light level are important factors for phyto-plankton. Their low values are limiting factors for production, and decreasing nutrient concentrations do not contribute to an intensive algae abundance (Moore, 1981; Bondarenko, 2009; Denisov, 2010; Ivanova et al., 2014). Such conditions are preferable for cryptophytes, chryso-phytes and dinoflagellates which are capable of utilising dissolved organic matter (Tolotti et al., 2003; Bondarenko & Schur, 2008) and consuming easily assimilated organic food with low molecular weight at low temperatures and a low availability of nutrients (Maeda & Ichimu-ra, 1973; Reynolds, 1984; Rott, 1988).

Copepods form a dominant group in the pelagic zone of Lake Shebety. Their dominance in mountain lakes with a low productivity and phytoplankton biomass is common (Somma-ruga, 2001; Bondarenko et al., 2002; Winder et al., 2003; Mitamura et al., 2003; O'Brien et al., 2004; Viljanen et al., 2009), because they are better adapted to live in P-limited environments (Andersen & Hessen, 1991). The cope-pod populations are dominated by copepodites with a large amount of orange-red fat droplets in the body. The accumulation and presence of lipids in the body is characteristic of wintering older stages and mature individuals of cyclopoids and calanoids, especially in northern and alpine lakes (Sargent & Falk-Petersen, 1988; Vanderploeg et al., 1992). In the present study, the water temperature and depth are the determining factors for copepods vertical distribution as well as for pelagial of Altai (Burmistrova & Ermolaeva, 2013) and European mountain lakes (Pinel-Alloul et al., 1999). The abundance of Cyclops abyssorum significantly increases (from 0.18-0.54 x 103 individuals x m-3 to 3.8515.22 x 103 individuals x m-3) with a decreasing temperature. The abundance of Arctodiaptomus neithammeri increases (from 0.83-3.62 x 103

individuals x m-3 to 33.53-60.74 x 103 individuals x m-3) with an increasing depth. The high density of cyclopoids and calanoids in the lower layers is also noted in mountain lakes in Switzerland (Winder et al., 2003), Finland (Vil-janen et al., 2009), and Russia (Vetsler, 2009; Burmistrova & Ermolaeva, 2013). The location of copepods in deeper, cold, dark and food-poor water layers (below 10 m) is an adaptation to the reduced consumption by fish (Gliwicz & Rowan, 1984), as well as due to the peculiarity of their ecology (low temperature optimum (8-10°C), the ability to store lipids and to actively reproduce in the bottom layers) (Ferrara et al., 2002; Rivyer, 2012; Skala, 2015). The differences in the responses of crustaceans to temperature may be due to different thermal requirements of the taxa (Viljanen et al., 2009).

In the littoral zone of Shebety Lake, one of the main abiotic factors affecting the plankton structure is the phosphorus content. The density of green algae and chrysophytes depends on the total phosphorus and mineral phosphorus content. A factor analysis has revealed both a positive and negative effect. A phosphorus limitation of phytoplankton growth has been demonstrated in many lakes (Schindler, 1978; Morris & Lewis, 1988). The research on the Pyrenees lakes has shown that cryptophytes are associated with lakes with a greater phosphorus concentration, while chrysophytes are not driven by this factor (Catalan et al., 2006).

A certain interconnection between the nitrogen content and the abundance and biomass of plankton community can be explained by trophic relationships of algae and invertebrates. The low values of algae biomass in the summer are caused by low concentrations of nutrients. Limiting the development of algae with nitrogen is often observed in aquatic ecosystems in summer (Sommer, 1986; Trifonova, 1990). This is characteristic for Lake Shebety, due to the high ammonia nitrogen content in the water.

Conclusions

The water quality of the mountain glacial Lake Shebety corresponds to the natural water bodies of the Baikal Lake basin, with low nutrients and total dissolved solids and a high dissolved oxygen content. Shallow waters occupy a limited area. The lake is mainly deep-water. The spatial heterogeneity of plankton diversity and density is determined by physical and

chemical parameters: depth, phosphorus content, pH, and water temperature in the littoral zone; nitrogen content, pH, color and turbidity in the pelagic during the period of maximum water warming.

Acknowledgements

We are deeply grateful to our colleagues A.V Afonin, P.V Matafonov (both - Institute of Natural Resources, Ecology and Cryology of SB RAS, Russia) and to the Chikoy National Park staff for assistance in the field. The authors thank two anonymous reviewers for constructive comments on the manuscript. The study was carried out within the Projects Russian Academy of Sciences No. IX.137.1 and Russian Foundation for Basic Research No. 17-29-05085_ofi_m and supported by the administration of Chikoi National Park (contract no. 386-06/16).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

References

Afonina E.Yu. 2013. Review of rotifers (Rotifera) and crustaceans (Cladocera, Calanoida, Cyclopoida, Harpacticoida) diversity in streams and lakes of the Upper Amur River Basin. Amurian Zoological Journal 5(3): 248-255. [In Russian] Afonina E.Yu., Itigilova M.Ts. 2015. Dynamics of zooplankton in the saline lakes of the South-Eastern Za-baikalia in the different climatic periods. Bulletin of Buryat State University 4: 104-115. [In Russian] Afonina E.Yu., Itigilova M.Ts. 2018. Composition and structure of zooplankton in saline lakes of the Onon-Torey plain (the Trans-Baikal region). Fauna of the Urals and Siberia 1: 28-45. DOI: 10.24411/24110051-2018-10103 [In Russian] Afonina E.Yu., Tashlykova N.A. 2017. Littoral and pelagic plankton communities of high mountain Lake Shebety. Education and Science 1: 128-135. [In Russian] Alekin O.A., Semonov A.D., Skopintsev B.A. 1973. Manual on chemical analysis of land waters. Leningrad: Gidrometeoizdat. 269 p. [In Russian] Andersen T., Hessen D.O. 1991. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36(4): 807-814. DOI: 10.4319/lo.1991.36.4.0807 Andronikova I.N. 1996. Structural and functional organization of zooplankton of lacustrine ecosystems of different trophic types. St. Petersburg: Nauka. 189 p. [In Russian] Antonov A.L. 2009. Morphoecological traits of the blunt-snouted lenok Brachymystax tumensis Mori, 1930 from Bukukunskoe Lake (Onon River basin). The Bulletin of Irkutsk State University. Series «Biology. Ecology» 2(1): 62-65. [In Russian] Antonov A.L. 2017. On the diversity of fishes in mountain lakes of the Amur basin. Journal of Ichthyology 57(6): 860-869. DOI: 10.1134/S0032945217060017 Aygen C., Özdemir Mis D., Ustaoglu M.R., Balik S. 2009. Zooplankton composition and abundance in Lake Egrigöl, a high mountain lake (Gündogmu§, Anta-

lya). Turkish Journal of Zoology 33(1): 83-88. DOI: 10.3906/zoo-0805-11 Barinova S.S., Medvedeva L.A., Anisimova O.V. 2006. Biodiversity of environmental indicator algae. Tel Aviv: Pilies Studio. 498 p. [In Russian] Bondarenko N.A. 2009. Ecology and taxonomic diversity of planktonic algae in the lakes of the mountainous areas of Eastern Siberia. PhD Thesis Abstract. Borok. 46 p. [In Russian] Bondarenko N.A., Schur L.A. 2008. Cryptophyta in East-Siberian water bodies (Russia). Algologia 18(4): 408-422. [In Russian] Bondarenko N.A., Shevelova N.G., Domysheva V.M. 2002. Structure of plankton communities in Ilchir, an alpine lake in Eastern Siberia. Limnology 3(2): 127-133. DOI: 10.1007/s102010200015 Bondarenko N., Sheveleva N., Rozhkova N., Matveev A., Samusenok V., Vokin A., Yuriev A. 2017. Remote mountain lakes of Eastern Siberia: a pattern of ecologically pure non-industrialised water-bodies. Environmental Earth Sciences 76(10): 378. DOI: 10.1007/s12665-017-6708-4 Borutskiy E.V., Stepanova L.A., Kos M.S. 1991. Freshwater Calanoida of the USSR: An Identification Guide. St. Petersburg: Nauka. 504 p. [In Russian] Burmistrova O.S., Ermolaeva N.I. 2013. Zooplankton in high-mountain lakes of Altai. Inland Water Biology 6(3): 194-202. DOI: 10.1134/S1995082913030036 Catalan J., Camarero L., Felip M., Pla S., Ventura M., Buchaca T., Bartumeus F., de Mendoza G., Miry A., Casamay-or E.O., Medina-S6nchez J.M.M., Bacardit M., Altuna M., Bartrons M., de Quijano D.D. 2006. High mountain lakes: Extreme habitats and witnesses of environmental changes. Limnetica 25(1-2): 551-584. Dalgaard P. 2008. Introductory Statistics with R. Springer: New York. 364 p. DOI: 10.1007/978-0-387-79054-1 Denisov D.B. 2010. Algae communities' ecological peculiarities in polytypic subarctic water objects. Bulletin of Kola Science Centre of RAS 1: 48-56. [In Russian] Diaz M., Pedrozoa F., Reynolds C., Temporettia P. 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37(1): 17-27. DOI: 10.1016/j.limno.2006.08.006 Dubovskaya O.P., Kotov A.A., Korovchinsky N.M., Smirnov N.N., Sinev A.Yu. 2010. Zooplankton of lakes in the spurs of the Putorana Plateau and adjacent territories (north of Krasnoyarsk Krai). Contemporary Problems of Ecology 3(4): 401-434. DOI: 10.1134/S1995425510040065 Enikeev F.I., Staryshko V.E. 2009. Glacial morphogenesis and placer formations of Eastern Transbaikalia. Chita: Chita State University. 370 p. [In Russian] Ferrara O., Vagaggini D., Margaritora F.G. 2002. Zooplankton abundance and diversity in Lake Bracciano, Latium, Italy. Journal of Limnology 61(2): 169-175. DOI: 10.4081/jlimnol.2002.169

Ferrari I. 1976. Winter limnology of a mountain lake: Lago Santo Parmense (Northern Appennines, Italy). Hydrobiologia 51(3): 245-257. DOI: 10.1007/ BF00005751

Flanagan K.M., McCauley E., Wrona F., Prowse T. 2003. Climate change: the potential for latitudinal effects on algal biomass in aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 60(6): 635-639. DOI: 10.1139/f03-062 Fott J., Blaho M., CtuchlHk E., Strunesky O. 1999. Phy-toplankton in three Tatra Mountain lakes of different acidification status. Journal of Limnology 58(2): 107-116. DOI: 10.4081/jlimnol.1999.107 Gardner E.M., McKnight D.M., Lewis Jr.W.M., Miller M.P. 2008. Effects of nutrient enrichment on phyto-plankton in an alpine lake, Colorado, U.S.A. Arctic, Antarctic, and Alpine Research 40(1): 55-64. DOI: 10.1657/1523-0430(07-002)[GARDNER]2.0.CO;2 Gessner M.A., Schieferstein B., Mbller U., Barkmann S., Lenfers U.A. 1996. A partial budget of primary organic carbon flows in the littoral zone of a hardwater lake. Aquatic Botany 55(2): 93-105. DOI: 10.1016/ S0304-3770(96)01064-9 Gillooly J.F., Dodson S.I. 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45(1): 22-30. DOI: 10.4319/lo.2000.45.1.0022 Gliwicz Z.M., Rowan M.G. 1984. Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnology and Oceanography 29(6): 1290-1299. DOI: 10.4319/ lo.1984.29.6.1290 Gorlacheva E.P. 2019. Nutrition of black baikal grayling (Thymallus baikalensis) in Lake Shebety (Transbaikal territory). International Research Journal 1(79/1): 115-119. DOI: 10.23670/IRJ.2019.79.1.021 [In Russian]

Guiry M.D., Guiry G.M. 2020. Algaebase. World-wide electronic publication. National University of Ireland, Gal-way. Available from http://www. algaebase.org/ Ichige K., Barkalov A.V. 2017. A review of the Old World species of the genus Blera Billberg, 1820 (Diptera, Syrphidae), with descriptions of two new species and a subspecies. Euroasian Entomological Journal 16(5): 419-431. DOI: 10.15298/euroasentj.16.5.04 Ivanova E.A., Anishchenko O.V., Glushchenko L.A., Ga-evsky N.A., Kolmakov V.I. 2014. Contribution of different groups of autotrophs to the primary production of the mountain Lake Oiskoe. Contemporary Problems of Ecology 7(4): 397-409. DOI: 10.1134/ S1995425514040040 Ivanova M.B., Kazantseva T.I. 2006. Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: a statistical analysis. Russian Journal of Ecology 37(4): 264-270. DOI: 10.1134/S1067413606040084

Kiselev I.A. 1969. Plankton of the seas and continental waters. Vol. 1. Leningrad: Nauka. 658 p. [In Russian] Kononova O.N., Dubovskaya O.P., Fefilova E.B. 2014. Zooplankton and dead zooplankton in Kharbeyskie lakes of Bolshezemelskaya Tundra (period from 2009 to 2012). Journal of Siberian Federal University. Biology 3(7): 303-327 [In Russian] Kopacek J., Prochazkova L., Stuchlik E., Blazka P. 1995. The nitrogen phosphorus relationship in mountain lakes: Influence of atmospheric input, watershed, and pH. Limnology and Oceanography 40(5): 930-937. DOI: 10.4319/lo.1995.40.5.0930 Kuklin A.P. 2013. Macroalgae in the Bukukun River basin. Notes of the Transbaikal Branch of the Russian Geographical Society 132: 68-75. [In Russian] Kuklin A.P., Enikeev F.I. 2017. Aegagropila linnaei in lakes and Arahley Arey (Eastern Transbaikalia). European Journal of Natural History 3: 19-20. Kutikova L.A. 1970. Rotifer fauna of the USSR (Rotatoria). Leningrad: Nauka. 744 p. [In Russian] Maeda O., Ichimura S.E. 1973. On the high density of a phytoplankton population found in a lake under ice. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 58(5): 673-685. DOI: 10.1002/ iroh.19730580507 Makarchenko E.A., Makarchenko M.A. 2010. Hydrobae-nus tiunovi sp.n. (Diptera, Chironomidae, Orthocla-diinae) from Sokhondinsky State Biosphere Reserve (Zabaikal'sky Territory, Russia). Euroasian Entomological Journal 9(3): 411-412. Manca M., Comoli P. 1999. Studies on zooplankton of Lago Paione Superiore. Journal of Limnology 58(2): 131-135. DOI: 10.4081/jlimnol.1999.131 Marchetto A. 1998. The study of high mountain lakes in the activity of the Istituto Italiano di Idrobiologia. Journal of Limnology 57(1): 1-10. Matafonov P.V., Andrievskaya E.A. 2017. The results of the first researches of zoobenthos in Lake Shebety (Transbaikalia). Scholarly Notes of Transbaikal State University. Series Biological Sciences 12(1): 142-147. Matveev A.N., Samusenok V.P., Yuriev A.L., Andreev R.S., Pomazkova G.I., Bondarenko N.A., Rozhkova N.A., Slugina Z.V. 2010. Hydrobiological characteristics of Verhnekicherskye lakes (Baikal Lake basin). The Bulletin of Irkutsk State University. Series «Biol-ogy. Ecology» 3(2): 36-53. [In Russian] Mitamura O., Seike Y., Kondo K., Goto N., Anbutsu K., Akatsuka T., Kihira M., Qung T., Nishimura T.M. 2003. First investigation of ultraoligotrophic alpine Lake Puma Yumco in the pre-Himalayas, China. Limnology 4(3): 167-175. DOI: 10.1007/s10201-003-0101-6

Moore J.W. 1981. Influence of temperature, photoperiod and trophic conditions on the seasonal cycles of phy-toplankton and zooplankton in two deep subarctic lakes of Northern Canada. Internationale Revue der

gesamten Hydrobiologie und Hydrographie 66(5): 745-770. DOI: 10.1002/iroh.19810660512 Morris D.P., Lewis W.M. 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology 20(3): 315-327. DOI: 10.1111/j. 1365-2427.1988.tb00457.x O'Brien W.J., Barfield M., Bettez N.D., Gettel G.M., Hershey A.E. 2004. Physical, chemical, and biotic effects on arctic zooplankton communities and diversity. Limnology and Oceanography 49(4 II): 1250-1261. Pinel-Alloul B., Guay C., Angeli N., Legendre P., Dutil-leul P., Balvay G., Gerdeaux D., Guillard J. 1999. Large-scale spatial heterogeneity of macrozooplank-ton in Lake of Geneva. Canadian Journal of Fisheries and Aquatic Sciences 56(8): 1437-1450. DOI: 10.1139/f99-055 Pleshanov A.S. (Ed.). 2009. Biota of water bodies of the Baikal Rift Zone. Irkutsk: Irkutsk State University. 231 p. [In Russian] Pugnetti A., Bettinetti R. 1999. Biomass and species structure of the phytoplankton of an high mountain lake (Lake Paione Superiore, Central Alps, Italy). Journal of Limnology 58(2): 127-130. DOI: 10.4081/jlim-nol.1999.127

Reynolds C.S. 1984. The ecology of freshwater phyto-plankton. Cambridge: Cambridge University Press. 384 p.

Rivyer I.K. 2012. Cold-water zooplankton of lakes in the Upper Volga basin. Izhevsk: Izdatelstvo Permyako-va. 390 p. [In Russian] Rott E. 1988. Some aspects of the seasonal distribution of flagellates in mountain lakes. Hydrobiologia 161(1): 159-170. DOI: 10.1007/BF00044108 Rumyantsev V.A. 2012. Lake Ladoga: environmental problems, causes, solutions. Regional Ecology 1-2(33): 7-13. [In Russian] Sadchikov A.P. 2003. The study methods of freshwater phytoplankton. Moscow: Universitet I Shkola. 157 p. [In Russian]

Salmaso N., Naselli-Flores L. 1999. Studies on the zooplankton of the deep subalpine Lake Garda. Journal of Limnology 58(1): 66-76. DOI: 10.4081/jlim-nol.1999.66

Sargent J.R., Falk-Petersen S. 1988. The lipid biochemistry of calanoid copepods. Hydrobiologia 167-168(1): 101-114. DOI: 10.1007/BF00026297 Semenchenko K.A., Matafonov D.V. 2014. New data on the water mite fauna (Acari, Hydrachnidia) of the Baikal region. Vladimir Ya. Levanidov's Biennial Memorial Meetings 6: 600-610. [In Russian] Schindler D.W. 1978. Factors regulating phytoplankton production and standing crop in the world's freshwa-ters. Limnology and Oceanography 23(3): 478-486. DOI: 10.4319/lo.1978.23.3.0478 Shaburova N.I., Makarkina N.V., Buyantuev V.A., Penko-va O.G., Sheveleva N.G. 2002. Crustacean biodiver-

sity in water bodies of the south of Eastern Siberia. In: Inland water biology: problems of ecology and biodiversity. Borok: Papanin Institute for Biology of Inland Waters of RAS. P. 107. [In Russian] Skala I. 2015. Zooplankton community composition of high mountain lakes in the Tatra Mts., the Alps in North Tyrol, and Scotland: relationship to pH, depth, organic carbon, and chlorophyll-a concentration. Acta Musei Silesiae, Scientiae Naturales 64(2): 175189. DOI: 10.1515/cszma-2015-0025 Smirnov N.N. 1971. Chydoridae fauna of the world. Leningrad: Nauka. 531 p. [In Russian] Sommaruga R. 2001. The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry andPhotobiology 62(1-2): 35-42. DOI: 10.1016/ s1011-1344(01)00154-3 Sommaruga R., Psenner R., Schafferer E., Koinig K.A., Sommaruga-Wograth S. 1999. Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: Potential effect of climatic warming on UV underwater attenuation. Arctic Antarctic and Alpine Research 31(3): 247-254. DOI: 10.1080/15230430.1999.12003305 Sommer U. 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138(1): 1-7. DOI: 10.1007/BF00027228 Sommer U., Gliwicz Z.M., Lampert W., Duncan A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106:433-471.

Ta§ B. 2016. Phytoplankton community and ecological state of a high-mountain lake within an Important Natural Area (Eastern Black Sea, Turkey). Fundamental and Applied Limnology 189(1): 51-61. DOI: 10.1127/fal/2016/0966 Tashlykova N.A. 2009. Ecological features of the phy-toplankton development in the Selenga River delta channels and Cherkalov Bay: Baikal Lake. PhD Thesis. Ulan-Ude. 206 p. [In Russian] Timoshkin O.A. (Ed.). 2009. Index of animal species inhabiting Lake baikal and its catchment area. Novosibirsk: Nauka. Vol. 2, book 1. 980 p. Vol. 2, book 2. 1668 p. [In Russian] Tolotti M. 2001. Phytoplankton and littoral epilithic diatoms in high mountain lakes of the Adamello-Brenta Regional Park (Trentino, Italy) and their relation to trophic status and acidification risk. Journal of Limnology 60(2): 171-188. DOI: 10.4081/jlim-nol.2001.1.171 Tolotti M., Thies H., Cantonati M., Hansen C.M.E., Thaler B. 2003. Flagellate algae (Chrysophyceae, Dino-phyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving

variables. Hydrobiologia 502(1-3): 331-348. DOI: 10.1023/B:HYDR.0000004291.03882.f7 Trifonova I.S. 1990. Ecology and succession of lake phytoplankton. Leningrad: Nauka. 182 p. [In Russian] Tsalolikhin S.Ya. (Ed.). 1995. Identification Guide to Freshwater Invertebrates of Russia and Adjacent Territories. Vol. 2: Crustaceans. St. Petersburg: Nauka. 632 p. [In Russian] Tsybekmitova G.T., Eremeeva M.I., Gorlacheva E.P., Afo-nin A.V., Mikheev I.E., Tashlykova N.A., Afonina E.Y., Ivanov S.S., Butenko M.N. 2016. Integrated research of lake Shebet. Modern problems of science and education 6: 531. [In Russian] Udovic M.G., Cvetkoska A., Zutinic P., Bosak S., Stankovic I., Spoljaric I., Mrsic G., Borojevic K.K., Cukurin A., Plenkovic-Moraj A. 2017. Defining centric diatoms of most relevant phytoplankton functional groups in deep karst lakes. Hydrobiologia 788(1): 169-191. DOI: 10.1007/s10750-016-2996-z Vanderploeg H.A., Gardner W.S., Parrish C.C., Liebig J.R., Cavaletto J.F. 1992. Lipids and life-cycle strategy of a hypolimnetic copepod in Lake Michigan. Limnology and Oceanography 37(2): 413-424. DOI: 10.4319/lo.1992.37.2.0413 Vetsler N.M. 2009. Structural features and dynamics of zooplankton community in pelagial of the Lake Dal-neye (Kamchatka). Phd Thesis Abstract. Borok. 25 p. [In Russian]

Viljanen M., Holopainen A.-L., Rahkola-Sorsa M., Avin-sky V., Ruuska M., Leppänen S., Rasmus K., Vouti-lainen A. 2009. Temporal and spatial heterogeneity of pelagic plankton in Lake Pyhäselkä, Finland. Boreal Environment Research 14(5): 903-913. Voutilainen A., Jurvelius J., Lilja J., Viljanen M., Rahkola-Sorsa M. 2016. Associating spatial patterns of zooplankton abundance with water temperature, depth, planktivorous fish and chlorophyll. Boreal Environment Research 21(1-2): 101-114. Williamson C.E., Saros J.E., Schindler D.W. 2009. Climate change: Sentinels of change. Science 323(5916): 887-888. DOI: 10.1126/science.1169443 Winder M., Buergi H.R., Spaak P. 2003. Seasonal vertical distribution of phytoplankton and copepod species in a high-mountain lake. Archiv für Hydrobiologie 158(2): 197-213. DOI: 10.1127/00039136/2003/0158-0197 Zuikova E.I., Bochkarev N.A. 2009. A description of pelagic zooplankton in the large lakes of the Todzha Depression (Bolshoi Yenisey River basin, Tuva). Inland Water Biology 2(1): 50-58. DOI: 10.1134/ S1995082909010088 Zuykova E.I., Sheveleva N.G., Evstigneeva T.D. 2009. The seasonal and interannual dynamics of zooplankton in Lake Teletskoye. Inland Water Biology 2(3): 234-246. DOI: 10.1134/S1995082909030079

ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ И РАЗВИТИЕ ПЛАНКТОННЫХ СООБЩЕСТВ В ГОРНОМ ЛЕДНИКОВО-МОРЕННОМ ОЗЕРЕ (БАССЕЙН ОЗЕРА БАЙКАЛ, РОССИЯ)

Е. Ю. Афонина, Н. А. Ташлыкова, А. П. Куклин, Г. Ц. Цыбекмитова

Институт природных ресурсов, экологии и криологии СО РАН, Россия e-mail: [email protected], [email protected], [email protected], [email protected]

Изучение горных не затронутых цивилизацией водоемов позволяет выявить фоновое состояние состава, структуры и распределения гидробионтов. Ледниково-мореное озеро Шебеты (бассейн озера Байкал, Россия) может служить модельным объектом для изучения гидрологических моделей, биологического разнообразия и адаптивных механизмов сообществ гидробионтов. Целью настоящей работы является выявление наиболее важных переменных факторов среды, регулирующих состав и структуру фито- и зоопланктона в различных зонах озера Шебеты. Озеро Шебеты - горный ледниково-моренный водоем, расположенный на высоте 1567.4 м н.у.м., в Хентей-Даурском нагорье, на территории Национального парка «Чикой» (Забайкальский край). В работе обобщены первые лимнологические исследования озера. По результатам обследований впервые составлена батиметрическая карта озера, определен химический состав озерных вод, изучены основные компоненты гидробиоценоза - фито- и зоопланктон. По содержанию органического вещества озеро относится к олиготрофным, по степени минерализации - к ультрапресным с высоким содержанием растворенного кислорода. Основную долю площади озера Шебеты составляют глубоководные участки, мелководные - занимают ограниченную площадь вдоль береговой линии. Выявлены факторы среды, определяющие распределение и развитие планктонных сообществ в глубоководном горном озере в условиях экстремального континентального климата. Всего в составе фитопланктона зарегистрировано 35 видов водорослей из семи отделов: Cyanobacteria, Bacillariophyta, Cryptophyta, Chrysophyta, Dinophyta, Chlorophyta и Charophyta. В зоопланктоне отмечено 35 видов, относящихся к трем систематическим группам: Rotifera, Cladocera и Copepoda. Наибольшее видовое разнообразие наблюдалось среди диатомовых водорослей и ветвистоусых ракообразных. Расширена география распространения некоторых видов коловраток и ракообразных. К редко встречающимся видам для водоемов Забайкальского края отнесены Euchlanis alata, Acantocyclops capillatus, Cyclops abyssorum. Планктонные сообщества литорали качественно и количественно богаче, по сравнению с сообществами пелагиали. Согласно статистическому анализу (CCorA), в литоральной зоне озера численность и биомасса Bacillariophyta, Chlorophyta, Chrysophyta, Dinophyta, Rotifera, Cladocera и Copepoda определялись факторами (по убыванию факторной нагрузки): глубина, содержание фосфора, температура воды и pH; в пелагиали - pH, цветность, мутность и содержание азота определялись количественные показатели Bacillariophyta, Chlorophyta и Copepoda. В литорали численность Crucigeniella irregularis, Kellicottia longispina и Conochilus unicornis зависела от содержания фосфатов. В глубоководной зоне численность таких видов фитопланктона, как Kephyrion doliolum, Cryptomonas ovata, Crucigenia tetrapedia, Peridinium sp. и зоопланктона, как Arctodiaptomus neithammeri и Cyclops abyssorum определялась химическим потреблением кислорода, содержанием общего фосфора, глубиной и температурой воды.

Ключевые слова: батиметрия, гидрохимический состав, зоопланктон, национальный парк «Чикой», озеро Шебеты, факторы среды, фитопланктон

i Надоели баннеры? Вы всегда можете отключить рекламу.