Научная статья на тему 'EFFICACY OF THE JAWBONE DEFECT ELIMINATION'

EFFICACY OF THE JAWBONE DEFECT ELIMINATION Текст научной статьи по специальности «Клиническая медицина»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
jaw defect / osteoplasty / plasma rich in growth factors / xenograft / osteostimulation / osteoconduction / дефект челюсти / костная пластика / плазма / богатая факторами роста / ксенографт / остестимуляция / остеокондукция

Аннотация научной статьи по клинической медицине, автор научной работы — Poryadin G.V., Eremin D.A., Khelminskaya N.M., Kravets V.I., Zhitareva I.V.

The regenerative medicine methods are being actively developed both in Russia and abroad due to relevance of this direction, especially in the field of the jaw osteoplasty. Autologous, allogeneic and xenoplastic materials, as well as the calcium phosphate ceramics synthetic preparations are conventionally used to normalize and stimulate osteogenesis, however, the treatment outcomes are not always unequivocal. The study was aimed to substantiate the use of the biocomplex consisting of plasma rich in growth factors (PRGF) and xenoplastic material to improve the jawbone osteogenesis efficacy. The study involved 136 patients (105 females and 31 males aged 21–67) divided into four groups based on the method of bone defect restoration. In group 1, no osteoplastic material was used; in group 2, osteoplasty involved the use of the PRGF fibrin gel; in group 3, the Osteobiol Gen-Os material was used; in group 4, osteoplasty involved using the combination of the Osteobiol Gen-Os material and plasma rich in growth factors (PRGF). Computed tomography and digital densitometry were performed before surgery and 3, 6, 12 months after it to assess the dynamics of osteogenesis. A year later restoration of the lost bone tissue volume was reported in 100% of patients in group 4, 70.27% of patients in group 3, 43.47% of patients in group 2, 37.5% of patients in group 1; Fisher's exact test revealed significant differences in the osteoplasty outcomes in groups 3 and 4 (p = 0.00002). There were significant differences in bone density between patients of groups 1 and 2 twelve months after surgery (p = 0.044), between patient of groups 3 and 4 three (p = 0.004), six (p = 0.0001) and 12 (p = 0.0001) months after surgery. The findings show that the method proposed is effective.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЭФФЕКТИВНОСТЬ УСТРАНЕНИЯ КОСТНЫХ ДЕФЕКТОВ ЧЕЛЮСТЕЙ

Методы регенеративной медицины в России и за рубежом активно развиваются в связи с актуальностью этого направления, особенно в вопросах костной пластики челюстей. Для нормализации и стимуляции остеогенеза традиционно применяют ауто-, аллои ксенопластиченские материалы, а также синтетические препараты на основе кальций-фосфатной керамики, но результаты лечения не всегда однозначны. Целью исследования было обосновать применение биокомплекса плазмы крови, богатой факторами роста PRGF, и ксенопластического материала для повышения эффективности остеогенеза костных дефектов челюстей. В исследовании участвовало 136 пациентов (105 женщин и 31 мужчина, в возрасте 21–67 лет), в зависимости от метода замещения костного дефекта разделенных на четыре группы. В 1-й группе остеопластические материалы не применяли, во 2-й пластику проводили фибриновым гелем PRGF, в 3-й — материалом Osteobiol Gen-Os, в 4-й — материалом Osteobiol Gen-Os совместно с препаратом плазмы, богатой факторами роста PRGF. Для динамической оценки процесса остеогенеза проводили компьютерную томографию с цифровой денситометрией до операции и через 3, 6, 12 месяцев после нее. Через год восстановление утраченного объема костной ткани в 4-й группе зафиксировано у 100% пациентов, в 3-й — у 70,27%, во 2-й — у 43,47%, а в 1-й у — 37,5%, точный критерий Фишера выявил статистически значимые различия результатов костной пластики в 3-й и 4-й группах (p = 0,00002). Статистически значимо различаются показатели плотности костной ткани у пациентов 1-й и 2-й групп через 12 месяцев после операции (p = 0,044), у 3-й и 4-й групп — через 3 (p = 0,004), 6 (p = 0,0001) и 12 (p = 0,0001). Полученные результаты говорят об эффективности применения предложенной нами методики.

Текст научной работы на тему «EFFICACY OF THE JAWBONE DEFECT ELIMINATION»

EFFICACY OF THE JAWBONE DEFECT ELIMINATION

Poryadin GV, Eremin DA, Khelminskaya NM Kravets VI, Zhitareva IV, Posadskaya AV, Krasnov NM, Shen PA, Gureshidze MA

Pirogov Russian National Research Medical University, Moscow, Russia

The regenerative medicine methods are being actively developed both in Russia and abroad due to relevance of this direction, especially in the field of the jaw osteoplasty. Autologous, allogeneic and xenoplastic materials, as well as the calcium phosphate ceramics synthetic preparations are conventionally used to normalize and stimulate osteogenesis, however, the treatment outcomes are not always unequivocal. The study was aimed to substantiate the use of the biocomplex consisting of plasma rich in growth factors (PRGF) and xenoplastic material to improve the jawbone osteogenesis efficacy. The study involved 136 patients (105 females and 31 males aged 21-67) divided into four groups based on the method of bone defect restoration. In group 1, no osteoplastic material was used; in group 2, osteoplasty involved the use of the PRGF fibrin gel; in group 3, the Osteobiol Gen-Os material was used; in group 4, osteoplasty involved using the combination of the Osteobiol Gen-Os material and plasma rich in growth factors (PRGF). Computed tomography and digital densitometry were performed before surgery and 3, 6, 12 months after it to assess the dynamics of osteogenesis. A year later restoration of the lost bone tissue volume was reported in 100% of patients in group 4, 70.27% of patients in group 3, 43.47% of patients in group 2, 37.5% of patients in group 1; Fisher's exact test revealed significant differences in the osteoplasty outcomes in groups 3 and 4 (p = 0.00002). There were significant differences in bone density between patients of groups 1 and 2 twelve months after surgery p = 0.044), between patient of groups 3 and 4 three p = 0.004), six p = 0.0001) and 12 p = 0.0001) months after surgery. The findings show that the method proposed is effective.

Keywords: jaw defect, osteoplasty, plasma rich in growth factors, xenograft, osteostimulation, osteoconduction

Author contribution: Kravets VI, Posadskaya AV, Krasnov NM — study concept and design; Shen PA, Gureshidze MA, Krasnov NM — patient follow-up and data processing; Zhitareva IV — statistical processing; Krasnov NM — manuscript draft writing; Poryadin GV, Eremin DA, Khelminskaya NM — editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Pirogov Russian National Research Medical University (protocol № 131 of 27 January 2014), the patients submitted the informed consent to study participation.

1X1 Correspondence should be addressed: Natalia M. Khelminskaya Ostovitianov, 1, Moscow, 117997, Russia; Khelminskaya@mail.ru

Received: 02.10.2023 Accepted: 17.10.2023 Published online: 21.11.2023

DOI: 10.24075/brsmu.2023.044

ЭФФЕКТИВНОСТЬ УСТРАНЕНИЯ КОСТНЫХ ДЕФЕКТОВ ЧЕЛЮСТЕЙ

Г. В. Порядин, Д. А. Еремин, Н. М. Хелминская В. И. Кравец, И. В. Житарева, А. В. Посадская, Н. М. Краснов, П. А. Шень, М. А. Гурешидзе

Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

Методы регенеративной медицины в России и за рубежом активно развиваются в связи с актуальностью этого направления, особенно в вопросах костной пластики челюстей. Для нормализации и стимуляции остеогенеза традиционно применяют ауто-, алло- и ксенопластиченские материалы, а также синтетические препараты на основе кальций-фосфатной керамики, но результаты лечения не всегда однозначны. Целью исследования было обосновать применение биокомплекса плазмы крови, богатой факторами роста PRGF, и ксенопластического материала для повышения эффективности остеогенеза костных дефектов челюстей. В исследовании участвовало 136 пациентов (105 женщин и 31 мужчина, в возрасте 21-67 лет), в зависимости от метода замещения костного дефекта разделенных на четыре группы. В 1-й группе остеопластические материалы не применяли, во 2-й пластику проводили фибриновым гелем PRGF, в 3-й — материалом Osteobiol Gen-Os, в 4-й — материалом Osteobiol Gen-Os совместно с препаратом плазмы, богатой факторами роста PRGF. Для динамической оценки процесса остеогенеза проводили компьютерную томографию с цифровой денситометрией до операции и через 3, 6, 12 месяцев после нее. Через год восстановление утраченного объема костной ткани в 4-й группе зафиксировано у 100% пациентов, в 3-й — у 70,27%, во 2-й — у 43,47%, а в 1-й у — 37,5%, точный критерий Фишера выявил статистически значимые различия результатов костной пластики в 3-й и 4-й группах p = 0,00002). Статистически значимо различаются показатели плотности костной ткани у пациентов 1-й и 2-й групп через 12 месяцев после операции p = 0,044), у 3-й и 4-й групп — через 3 p = 0,004), 6 p = 0,0001) и 12 p = 0,0001). Полученные результаты говорят об эффективности применения предложенной нами методики.

Ключевые слова: дефект челюсти, костная пластика, плазма, богатая факторами роста, ксенографт, остестимуляция, остеокондукция

Вклад авторов: В. И. Кравец, А. В. Посадская, Н. М. Краснов — концепция и дизайн исследования; П. А. Шень, М. А. Гурешидзе, Н. М. Краснов — курация пациентов и обработка данных; И. В. Житарева — статистическая обработка; Н. М. Краснов — подготовка черновика рукописи; Г В. Порядин, Д. А. Еремин, Н. М. Хелминская — редактирование.

Соблюдение этических стандартов: исследование одобрено этическим кабинетом РНИМУ имени Н. И. Пирогова (протокол №131 от 27 января 2014 г), от пациентов было получено добровольное информированное согласие на участие в исследовании.

Сх] Для корреспонденции: Наталья Михайловна Хелминская

ул. Островитянова, д. 1, г. Москва, 117997, Россия; Khelminskaya@mail.ru

Статья получена: 02.10.2023 Статья принята к печати: 17.10.2023 Опубликована онлайн: 21.11.2023 DOI: 10.24075/vrgmu.2023.044

The features of reparative regeneration of the jawbone defects result primarily from the high degree of the oral cavity microbial contamination. One milliliter of oral fluid contains billions of microorganisms that form associations consisting of various bacterial species (streptococci, neisserias, vibrios, spirilla and spirochetes), the majority of which are obligate or facultative

anaerobes that maintain viability over a long time and actively replicate [1].

Chemical composition of the saliva has a significant impact on the jawbone tissue spontaneous regeneration, since the increased activity of proteolytic enzymes and fibrinolytic activators promotes the blood clot dissolution and washing

out of the defect cavity, thereby complicating the course of postoperative period and disrupting the organotypic bone graft formation [2].

Some clinical and experimental studies have shown that extraction of maxillar and mandibular teeth is followed by bone resorption in the tooth extraction sockets. Furthermore, bone deterioration is more prominent on the buccal side than on the lingual and palatal sides [3, 4]. Two thirds of the alveolar bone tissue is lost three months after tooth extraction [5]. Six months after surgery, the average clinical width and height loss in the tooth socket is 63% and 22% of the baseline, respectively [4], that is why many clinicians point to the need to preserve the alveolar process (part) after tooth extraction using various osteoplastic materials [6, 7].

Bacterial contamination of the bone defect adversely affects regeneration by distorting bone repair, therefore, there is no full bone cavity replenishment. A similar pattern is observed in the projection of bone defects caused by benign neoplasms of the jaw, the invasion of which results in bone tissue resorption and causes compression of the trigerminal nerve branches with typical neurological symptoms [8].

To date, numerous studies have been published reporting good outcomes of spontaneous jawbone defect regeneration after enucleation of cysts, including in cases of large defects [9-11]. Comparative assessment of the use of xenografts, allografts and synthetic material to preserve the volume of the alveolar process (part) of the jaw for the 25-year period was performed. Computer analysis of the data obtained revealed no clinically significant differences between application of osteoplastic materials and barrier membranes of different origin used for preservation of the alveolar process (part) of the jaw. Furthermore, postoperative complications significantly slowed bone tissue repair and thwarted formation of the full-fledged organotypic graft [12]. This suggests the need for further study of the methods for bone tissue regeneration stimulation using various materials and their combinations, as well as for identification of standard indications for the use of osteoplasty techniques.

The study was aimed to substantiate the use of the biocomplex consisting of plasma rich in growth factors and osteoplastic material to improve the effectiveness of osteogenesis in the limited jawbone defects.

METHODS

The clinical x-ray study was performed at the Pirogov City Clinical Hospital № 1, department of maxillofacial surgery and dentistry of the Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, in 2014-2022.

To assess the dynamics of the jawbone tissue regeneration, we performed the clinical x-ray study and surgical treatment of 136 patients aged 21-67, among them 105 (77.2%) females and 31 (22.8%) males. The patient inclusion criteria were as follows: the established diagnosis of chronic periodontitis, periapical abscess with a fistula, root cyst, follicular cyst, incisive canal cyst. Exclusion criteria: decompensation of concomitant disorder, malignant neoplasms of any stage or remission for less than five years, circulatory system diseases, hepatitis B and C, diabetes mellitus, thrombocytopenia, moderate to severe generalized periodontitis. Pregnancy and the history of concomitant disorder with complications during the study period were also considered to be the exclusion criteria. In 15 cases (11.03%), resorption of mandibular canal and incisive canal walls with the development of trigeminal neuropathy was

reported. The bone cavities were divided into three subgroups based on their size: small cavities (volume up to 1 cm3) were diagnosed in 52 cases (39%), medium cavities (volume up to 2 cm3) were observed in 53 patients (38.2%), large cavities (volume exceeding 2 cm3) were reported in 31 cases (22.8%).

Clinical groups were formed based on the jaw osteoplasty method. Group 1 consisting of 24 individuals (17.65%) showed spontaneous bone tissue regeneration due to filling the cavity with a blood clot; in group 2 consisting of 23 patients (16.91%), the bone defect was filled with plasma rich in growth factors (PRGF) in the form of gel. Group 3 included 37 patients (27.20%), among them seven patients showed resorption of the alveolar canals and compression of the trigerminal nerve branches. In this group osteoplasty was performed using the Osteobiol Gen-Os xenogeneic material (Tecnoss; Italy). Group 4 consisted of 53 patients, among them eight patients had neurological symptoms associated with compression of the inferior alveolar and nasopalatine nerves in the mandibular and incisive canals, respectively. The jaw defects in this group were repaired using a complex consisting of the Osteobiol Gen-Os material and plasma rich in growth factors (PRGF). The complex was obtained by polymerization of the xenogeneic material granules in the liquid phase. In group 4, the PRGF fibrin membrane was used to ensure decompression of the neurovascular bundle and separation of the augmentation area from the canal cavity. The PRFG Sistema IV centrifuge (BTI Biotechnology Institute; Spain) was used to obtain the plasma preparation rich in growth factors (PRGF). Preoperative dental examination and treatment were conducted in accordance with the general guidelines "Periapical Tissue Diseases" [13].

During the postoperative period, clinical assessment of patients was performed on days 1, 3, 5, and 7. All patients were recommended to rinse the oral cavity with an antiseptic solution, to apply antiseptic gel to the surgical wound area, to use the methods to ensure local hypothermia in the operated areas within 3 days after surgery for 10-15 min every hour. The broad-spectrum antibiotics and medium therapeutic doses of non-steroidal anti-inflammatory drugs were prescribed. Suture removal was performed on day 10-14 after surgery.

To study the jaw structure and determine the studied materials' capability of full-fledged bone tissue volume restoration, the data of cone beam computed tomography scans obtained using the Galileos (Sirona; Germany) or KaVo 3D eXam (KaVo; Korea) dental computed tomography system before treatment and 3, 6, 12 months after surgery were used. The Galileos Viewer and Vidar Dicom Viewer 3.1 software tools were used to determine the defect shape, size, and localization, as well as the contact with adjacent anatomical structures; the jawbone volume and density were measured in the Hounsfield units (HU).

Mathematical and statistical processing of the data obtained was performed using the IBM SPSS Statistics 21.0 software package, the following modules were used: descriptive statistics, t-test for independent samples (Student's t-test), nonparametric Mann-Whitney U test for two independent samples. The medstatistic.ru online resource (calculator) was also used. The following programs were applied: analysis of contingency tables using the x2 test, two-sided Fisher's exact test.

RESULTS

The analysis of the jawbone tissue regeneration dynamics performed a year after surgery suggested that the best osteoplasty outcomes were observed in group 4, where the lost volume of bone tissue was restored in all 52 cases (100%),

while in group 3 a full-fledged filling of bone cavity with the graft was reported only in 26 cases (70.27%) (p = 0.00002, < 0.05). In groups 1 and 2, complete restoration was reported for small defects only, in 9 cases (37.5%) among patients of group 1 and 10 cases (43.47%) among patients of group 2, while no restoration of volume was reported for medium to large cavities; no significant advantage of one of the groups was also found p = 0.905, > 0.05; p = 0.77, > 0.05). However, the slightly higher x-ray intensity values were reported for clinical group 2 on month 3, 6 and 12 after surgery.

Patients of groups 1 and 2 demonstrated significant differences in the digital densitometry data 12 months after surgery (p = 0.044, < 0.05), which suggested that the use of the PRGF preparation in the form of gel significantly improved the bone tissue regeneration qualitative characteristics. In patients of clinical group 4, the average jawbone density values obtained three months after surgery were 721.73 ± 24.41 HU, while in group 3 these were significantly lower: 445.11 ± 7.92 HU (p = 0.004, < 0.005). After 6 months the difference between the average bone tissue x-ray intensity values became smaller; the values of group 3 were within in range of 600.54 ± 11.68 HU, while that of group 4 were in the range of 843.58 ± 19.7 HU. However, significant differences persisted (p = 0.0001, < 0.05). The average bone density value of patients of control clinical group 3 did not change significantly over a year after surgery, it was 608.95 ± 18.71 HU. In group 4, this indicator slightly increased (898.64 ± 20.18 HU), but it was still significantly different (p = 0.0001, < 0.05).

DISCUSSION

Auto-osteoplasty is considered to be a gold standard of osteoplasty in surgical practice, however, allogeneic bone,

xenografts and synthetic materials are extensively used to restore medium to large bone defects, when a large amount of bone is needed [14-18]. Good outcomes of the jawbone defect osteoplasty were achieved when using plasma preparations rich in autologous and allogeneic platelets and growth factors [19-22]. The results of the randomized controlled trial involving comparative analysis of bone tissue repair following the use of xenogeneic and allogeneic osteoplastic materials, as well as plasma rich in growth factors, showed that plasma preparation was significantly superior to other studied materials [23]. Many authors note that it is necessary to combine materials of different origin in order to enhance the augmentation material regeneration potential [24-28].

CONCLUSIONS

Comparative analysis of the dynamic changes in the volume and density of bone tissue in the projection of limited defects in all clinical groups demonstrated that the use of biocomplex of the Osteobiol Gen-Os bone material and plasma rich in growth factors (PRGF) was superior to that of the conventional method used in control group 1, as well as to the separate use of Osteobiol Gen-Os and plasma rich in growth factors (PRGF) in the form of gel. Simplicity and accessibility of the method to generate the plasma preparation rich in growth factors (PRGF), along with the relatively low cost, absolute level of biological safety and no toxic effects on the organism, make this technique one of the methods to address the issues of regenerative medicine. The study results obtained based on the informative clinical x-ray data have shown that the proposed method of using the Osteobiol Gen-Os osteoplastic material in combination with plasma rich in growth factors (PRGF) is promising for everyday use in clinical practice.

References

1. Zelenova EG, Zaslavskaya MI, Salina EV, Rassanov SP. Mikroflora polosti rta: norma i patologiya: Uchebnoe posobie. Nizhniy Novgorod: Izdatel'stvo NGMA, 2004; 158 s. Russian.

2. Samoylova MV, Kosyreva TF, Anurova AE, Abramovich RA, Mironov AYu, Zhilenkova OG, et al. Oral cavity microbiocenosis assessment on the basis of bacterial endotoxin and plasmalogens in a saliva by method gas-liquid chromatography-mass spectrometry. Clinical Laboratory Diagnostics. 2019; 64 (3): 186-92. DOI: 10.18821/0869-2084-2019-64-3-186-192. Russian.

3. Cardaropoli G, Araujo M, Hayacibara R, Sukekava F, Lindhe J. Healing of extraction sockets and surgically produced —augmented and non-augmented — defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol. 2005 May; 32 (5): 435-40. DOI: 10.1111/j.1600-051X.2005.00692.x. PMID: 15842256.

4. Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol. 2009 Dec; 36 (12): 104858. DOI: 10.1111/j.1600-051X.2009.01482.x. PMID: 19929956.

5. Araujo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol. 2005 Feb; 32 (2): 212-8. DOI: 10.1111 /j. 1600-051X.2005.00642.x. PMID: 15691354.

6. Canullo, L, Del Fabbro M, Khijmatgar S, et al. Dimensional and histomorphometric evaluation of biomaterials used for alveolar ridge preservation: a systematic review and network meta-analysis. Clin Oral Invest. 2022; 26: 141-58. DOI: 10.1007/ s00784-021-04248-1.

7. Stumbras A, Januzis G, Kubilius R, Gervickas A, Juodzbalys G. Randomized clinical trial of bone healing after alveolar ridge preservation using xenografts and allografts vs. plasma rich in

growth factors. Journal of Oral Implantology. 2020; 46 (5). DOI: 10.1563/aaid-joi-D-19-00179.

8. Ku JK, Han M, Yongvikul A, Huh JK, Kim JY. Volumetric analysis of spontaneous bone healing after jaw cyst enucleation. Sci Rep. 2022 Sep 2; 12 (1): 14953. DOI: 10.1038/s41598-022-16921-w. PMID: 36056044. PMCID: PMC9440199.

9. Chiapasco M, Rossi A, Motta JJ, Crescentini M. Spontaneous bone regeneration after enucleation of large mandibular cysts: A radiographic computed analysis of 27 consecutive cases. J Oral Maxillofac Surg. 2000; 58: 942-8. DOI: 10.1053/ joms.2000.8732.

10. Iatrou I, Theologie-Lygidakis N, Leventis M. Intraosseous cystic lesions of the jaws in children: a retrospective analysis of 47 consecutive cases. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2009; 107 (4): 485-92.

11. Ihan Hren N, Miljavec M. Spontaneous bone healing of the large bone defects in the mandible. Int. J. Oral Maxillofac. Surg. 2008; 37 (12): 1111-6. DOI: 10.1016/j.ijom.2008.07.008.

12. Atieh MA, Alsabeeha NH, Payne AG, Ali S, Faggion CMJ, Esposito M. Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst Rev. 2021; 4: CD010176. DOI: 10. 1002/ 14651 858.

13. Bolezni periapikal'nykh tkaney. Obshchie klinicheskie rekomendatsii. Postanovlenie №18 Soveta Assotsiatsii obshchestvennykh ob"edineniy «Stomatologicheskaya Assotsiatsiya Rossii» ot 02.08.2018; 128 s. Russian.

14. Drobyshev AYu, Redko NA, Sviridov EG, Deev RV. Features of bone regeneration of the jaws alveolar ridge using hydroxyapatite-based material. Traumatology and Orthopedics of Russia. 2021;

27 (1): 9-18. DOI: 10.21823/2311-2905-2021-27-1-9-18. Russian.

15. Moiseeva NS, Kharitonov DYu, Kharitonov ID, Stepanov IV, Podoprigora AV. Clinical and laboratory evaluation of morphological parameters in osteoplastic materials used in alveolar bone 23. augmentation. Journal of new medical technologies. 2021; 15(4): 18-23. DOI: 10.24412/2075-4094-2021-4-1-3. Russian.

16. Stogov MV Dyuryagina OV Silanteva TA, Kireeva EA, Shipitsyna IV, Stepanov MA. Preclinical evaluation of the efficacy and safety of a new osteoplastic material of xenogenic origin containing vancomycin or meropenem. Orthopaedic Genius. 2022; 28 (4): 24. 565-73. DOI: 10.18019/1028-4427-2022-28-4-565-573. Russian.

17. Han JJ, Moon JE, Lee E-H, Yang HJ, Hwang SJ. Clinical and Radiographic Outcomes of Dental Implant after Maxillary Sinus Floor Augmentation with RhBMP-2/Hydroxyapatite Compared to Deproteinized Bovine Bone. PLOS ONE. 2022; 17: e0273399. 25. DOI: 10.1371/journal.pone.0273399.

18. Ho SKC, Peel SAF, Hu ZM, Sandor GKB, Clokie CML. Augmentation of the Maxillary Sinus: Comparison of Bioimplants Containing Bone Morphogenetic Protein and Autogenous Bone in 26. a Rabbit Model. J Can Dent Assoc. 2010; 76: 108.

19. Blazhenko AN, Rodin IA, Ponkina ON, Mukhanov ML, Samoilova AS, Verevkin AA, et al Aim To evaluate the effect of A-PRP-therapy on reparative bone regeneration in accute limb bone fractures. Innovative Medicine of Kuban. 2019; 3 (15): 32-8. Russian. 27.

20. Burykin KI, Parshikov MV, Yarygin NV, Svetlov DV, Govorov MV, Chemyanov IG, et al. Opportunities and prospects for the use of plasma enriched in platfoles in the treatment of fractures and bone defects. Polytrauma. 2020; 3: 108-19. Russian.

21. Samoday VG, Starikov AO, Kalashnikov PI. Lyophilized allogenic growth factors in traumatology and orthopedics as a promising 28. direction of regenerative medicine. Polytrauma. 2019; 4: 15-28. Russian.

22. Fayn AM, Vaza AYu, Gnetetskiy SF, Skuratovskaya KI, Bondarev VB, Bogolyubskiy YuA, et al. Available methods to enhance regenerative potential of plastic materials for bone defects

Литература

1. Зеленова Е. Г., Заславская М. И., Салина Е. В., Рассанов С. П. Микрофлора полости рта: норма и патология: Учебное пособие. Нижний Новгород: Издательство НГМА, 2004; 158 с.

2. Самойлова М. В., Косырева Т. Ф., Анурова А. Е., Абрамович д. Р. А., Миронов А. Ю., Жиленкова О. Г. и др. Оценка микробиоценоза полости рта на основе гх-мс-определения плазмалогена и бактериального эндотоксина в ротовой жидкости. Клиническая лабораторная диагностика. 2019; 64

(3): 186-92. DOI: 10.18821/0869-2084-2019-64-3-186-192. 1о.

3. Cardaropoli G, Araujo M, Hayacibara R, Sukekava F, Lindhe J. Healing of extraction sockets and surgically produced —augmented and non-augmented — defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol. 2005 May; 32 (5): 435-40. 11. DOI: 10.1111/j.1600-051X.2005.00692.x. PMID: 15842256.

4. Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a 12. systematic review. J Clin Periodontol. 2009 Dec; 36 (12): 104858. DOI: 10.1111/j.1600-051X.2009.01482.x. PMID: 19929956.

5. Araiijo MG, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol. 2005 Feb; 32 (2): 212-8. DOI: 10.1111 /j. 1600- 13. 051X.2005.00642.x. PMID: 15691354.

6. Canullo, L, Del Fabbro M, Khijmatgar S, et al. Dimensional and histomorphometric evaluation of biomaterials used for alveolar ridge preservation: a systematic review and network meta- 14. analysis. Clin Oral Invest. 2022; 26: 141-58. DOI: 10.1007/ s00784-021-04248-1.

7. Stumbras A, Januzis G, Kubilius R, Gervickas A, Juodzbalys G. Randomized clinical trial of bone healing after alveolar ridge preservation using xenografts and allografts vs. plasma rich in 15. growth factors. Journal of Oral Implantology. 2020; 46 (5). DOI: 10.1563/aaid-joi-D-19-00179.

8. Ku JK, Han M, Yongvikul A, Huh JK, Kim JY. Volumetric analysis

replacement in orthopedics. Part 1. Autologous platelet rich plasma. The Russian Journal of Transplantation. 2022; 14 (1): 79-97. DOI: 10.23873/2074-0506-2022-14-1-79-97. Russian. Skwarcz S, Bryzek I, Gregosiewicz A, Warda E, Gaweda K, Tarczynska M, et al. Autologous activated platelet-rich plasma (PRP) in bone tissue healing - does it work? Assessment of PRP effect on bone defect healing in animal models. Polish Journal of Veterinary Sciences. 2019; 22 (1): 109-15. DOI: 10.24425/ pjvs.2019.127077.

Vasilyev AV Kuznetsova VS, Galitsyna EV Bukharova TB, Osidak EO, Fatkhudinova NL, et al. Biocompatibility and osteoinductive properties of collagen and fibronectin hydrogel impregnated with rhBMP-2. Stomatology. 2019; 98 (6-2): 5-11. DOI: 10.17116/ stomat2019980625. Russian.

Konev VA, Labutin DV, Bozhkova SA. Experimental justification for clinical application of bone growth stimulators in traumatology and orthopaedics (a review). Siberian Medical Review. 2021; 4: 5-17. DOI: 10.20333/25000136-2021-4-5-17. Russian. Kuznetsova VS, Vasilyev AV, Bukharova TB, Nedorubova IA, Goldshtein DV, Kulakov AA. Advantages and disadvantages of bone graft materials activated by BMP-2 and constructs carrying its gene. Stomatology. 2023; 102 (4): 76-80. DOI: 10.17116/ stomat202310204176. Russian.

Petrov IYu, Larionov EV, Ippolitov YuA, But LV, Petrov AI. Morphohistochemical studies of osteoplastic material based on hyaluronic acid, hondroitinsulfate and under-mineralalized bone collagen for bone defects recovery in experiment. Journal of new medical technologies. 2018; 3: 41-6. DOI: 10.24411/2075-40942018-16038. Russian.

Skwarcz S, Bryzek I, Gregosiewicz A, Warda E, Gaweda K, Tarczynska M, et al. The effect of activated platelet-rich plasma (PRP) on tricalcium hydroxyapatite phosphate healing in experimental, partial defects of long bone shafts in animal models. Polish Journal of Veterinary Sciences. 2019; 22 (2): 243-50. DOI: 10.24425/pjvs.2019.127092.

of spontaneous bone healing after jaw cyst enucleation. Sci Rep. 2022 Sep 2; 12 (1): 14953. DOI: 10.1038/s41598-022-16921-w. PMID: 36056044. PMCID: PMC9440199. Chiapasco M, Rossi A, Motta JJ, Crescentini M. Spontaneous bone regeneration after enucleation of large mandibular cysts: A radiographic computed analysis of 27 consecutive cases. J Oral Maxillofac Surg. 2000; 58: 942-8. DOI: 10.1053/ joms.2000.8732.

Iatrou I, Theologie-Lygidakis N, Leventis M. Intraosseous cystic lesions of the jaws in children: a retrospective analysis of 47 consecutive cases. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2009; 107 (4): 485-92. Ihan Hren N, Miljavec M. Spontaneous bone healing of the large bone defects in the mandible. Int. J. Oral Maxillofac. Surg. 2008; 37 (12): 1111-6. DOI: 10.1016/j.ijom.2008.07.008. Atieh MA, Alsabeeha NH, Payne AG, Ali S, Faggion CMJ, Esposito M. Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst Rev. 2021; 4: CD010176. DOI: 10. 1002/ 14651 858.

Болезни периапикальных тканей. Общие клинические рекомендации. Постановление №18 Совета Ассоциации общественных объединений «Стоматологическая Ассоциация России» от 02.08.2018; 128 с.

Дробышев А. Ю., Редько Н. А., Свиридов Е. Г., Деев Р. В. Особенности регенерации костной ткани альвеолярного гребня челюстей при применении материала на основе гидроксиапатита. Травматология и ортопедия России. 2021; 27 (1): 9-18. DOI: 10.21823/2311-2905-2021-27-1-9-18. Моисеева Н. С., Харитонов Д. Ю., Харитонов И. Д., Степанов И. В., Подопригора А. В. Клинико-лабораторная оценка морфологических параметров остеопластических материалов, применяемых при костной аугментации

альвеолярного отростка. Вестник новых медицинских технологий. 2021; 15(4): 18-23. DOI: 10.24412/2075-40942021-4-1-3.

16. Стогов М. В., Дюрягина О. В., Силантьева Т. А., Киреева Е. А., Шипицына И. В., Степанов М. А. Доклиническая оценка эффективности и безопасности нового костнопластического материала ксеногенного происхождения, содержащего в своем объеме ванкомицин и меропенем. Гений ортопедии. 2022; 28 (4): 565-73. DOI: 10.18019/1028-4427-2022-28-4565-573.

17. Han JJ, Moon JE, Lee E-H, Yang HJ, Hwang SJ. Clinical and Radiographic Outcomes of Dental Implant after Maxillary Sinus Floor Augmentation with RhBMP-2/Hydroxyapatite Compared to Deproteinized Bovine Bone. PLOS ONE. 2022; 17: e0273399. DOI: 10.1371/journal.pone.0273399.

18. Ho SKC, Peel SAF, Hu ZM, Sandor GKB, Clokie CML. Augmentation of the Maxillary Sinus: Comparison of Bioimplants Containing Bone Morphogenetic Protein and Autogenous Bone in a Rabbit Model. J Can Dent Assoc. 2010; 76: 108.

19. Блаженко А. Н., Родин И. А., Понкина О. Н., Муханов М. Л., Самойлова А. С., Веревкин А. А. и др. Влияние А-PRP-терапии на репаративную регенерацию костной ткани при свежих переломах костей конечностей. Инновационная медицина Кубани. 2019; 3 (15): 32-8.

20. Бурыкин К. И., Паршиков М. В., Ярыгин Н. В., Светлов Д. В., Говоров М. В., Чемянов И. Г. и др. Возможности и перспективы использования обогащенной тромбоцитами плазмы в лечении переломов и дефектов костей. Политравма. 2020; 3: 108-19.

21. Самодай В. Г. Стариков А. О. Калашников П. И. Лиофилизированные аллогенные факторы роста в травматологии и ортопедии как перспективное направление регенеративной медицины. Политравма. 2019; 4: 15-28.

22. Файн А. М., Ваза А. Ю., Гнетецкий С. Ф., Скуратовская К. И., Бондарев В. Б., Боголюбский Ю. А. и др. Доступные способы повышения регенераторного потенциала пластического материала в неотложной травматологии.

Часть 1. Использование аутологичной богатой тромбоцитами плазмы крови. Трансплантология. 2022; 14 (1): 79-97. DOI: 10.23873/2074-0506-2022-14-1-79-97.

23. Skwarcz S, Bryzek I, Gregosiewicz A, Warda E, Gaweda K, Tarczynska M, et al. Autologous activated platelet-rich plasma (PRP) in bone tissue healing - does it work? Assessment of PRP effect on bone defect healing in animal models. Polish Journal of Veterinary Sciences. 2019; 22 (1): 109-15. DOI: 10.24425/ pjvs.2019.127077.

24. Васильев А. В., Кузнецова В. С., Галицына Е. В., Бухарова Т. Б., Осидак Е. О., Фатхудинова Н. Л., и др. Биосовместимость и остеогенные свойства коллаген-фибронектинового гидрогеля, импрегнированного BMP-2. Стоматология. 2019; 98 (6-2): 5-11. DOI: 10.17116/stomat2019980625.

25. Конев В. А., Лабутин Д. В., Божкова С. А. Экспериментальное обоснование клинического применения стимуляторов остеогенеза в травматологии и ортопедии (обзор литературы). Сибирское медицинское обозрение. 2021; 4: 5-17. DOI: 10.20333/25000136-2021-4-5-17.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

26. Кузнецова В. С., Васильев А. В., Бухарова Т. Б., Недорубова И. А., Гольдштейн Д. В., Кулаков А. А. Преимущества и недостатки костно-пластических материалов, активированных BMP-2 и несущими его ген конструкциями. Стоматология. 2023; 102 (4): 76-80. DOI: 10.17116/stomat202310204176.

27. Петров И. Ю., Ларионов Е. В., Ипполитов Ю. А., Бут Л. В., Петров А. И. Морфогистохимические исследования остеопластического материала на основе гиалуроновой кислоты, хондроитинсульфата и недеминерализованного костного коллагена для восстановления костных дефектов в эксперименте. Вестник новых медицинских технологий. 2018; 3: 41-6. DOI: 10.24411/2075-4094-2018-16038.

28. Skwarcz S, Bryzek I, Gregosiewicz A, Warda E, Gaweda K, Tarczynska M, et al. The effect of activated platelet-rich plasma (PRP) on tricalcium hydroxyapatite phosphate healing in experimental, partial defects of long bone shafts in animal models. Polish Journal of Veterinary Sciences. 2019; 22 (2): 243-50. DOI: 10.24425/pjvs.2019.127092.

i Надоели баннеры? Вы всегда можете отключить рекламу.