Научная статья на тему 'DOPED SILICON WITH GALLIUM AND ANTIMUM IMPURITY ATOMS'

DOPED SILICON WITH GALLIUM AND ANTIMUM IMPURITY ATOMS Текст научной статьи по специальности «Физика»

CC BY
29
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Science and innovation
Область наук
Ключевые слова
silicon / gallium / antimony / concentration / diffusion / diffusion coefficient

Аннотация научной статьи по физике, автор научной работы — B. Isakov, Sh. Hamrokulov, S. Abdurakhmonov, H. Abdurakhmonov

In this work, a mathematical model of the concentration distribution of gallium and antimony elements theoretically doped into silicon by diffusion method was studied using the MathCad program. The essence of theoretical calculations and mathematical modeling of the diffusion process is not to waste experiments, to determine in advance the depth of penetration of the impurity atoms into silicon from diffusion, and to plan the experiments and increase the productivity of the results.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DOPED SILICON WITH GALLIUM AND ANTIMUM IMPURITY ATOMS»

DOPED SILICON WITH GALLIUM AND ANTIMUM

IMPURITY ATOMS

1Isakov Bobir Olimjonovich, 2Hamrokulov Shahzodbek Ikhtiyor ugli, 3Abdurakhmonov Samandar Abdusamad ugli, 4Abdurakhmonov Halimjon Abdusamad ugli

1PhD student of Tashkent State Technical University 2Assistant of the Department of Digital Electronics and Microelectronics, Tashkent State

Technical University 3Trainee Researcher of Tashkent State Technical University 4Specialist of the leader of the youth union of boarding school No. 106 of Tashkent city

https://doi.org/10.5281/zenodo.7979273

Abstract. In this work, a mathematical model of the concentration distribution of gallium and antimony elements theoretically doped into silicon by diffusion method was studied using the MathCad program. The essence of theoretical calculations and mathematical modeling of the diffusion process is not to waste experiments, to determine in advance the depth of penetration of the impurity atoms into silicon from diffusion, and to plan the experiments and increase the productivity of the results.

Keywords: silicon, gallium, antimony, concentration, diffusion, diffusion coefficient.

INTRODUCTION

The main semiconductor material used in the field of electronics is silicon. Despite the advantages of silicon, such as its large reserves and the availability of standard production technology, the main parameters of silicon, such as the energy of the band gap energy, the mobility of charge carriers, the structure of the energy zone, cannot meet the requirements of the current rapidly developing electronics industry [1-3]. Therefore, today it is of scientific and practical importance to study the effect of binary compounds on the crystal lattice of silicon, which lead to fundamental changes in the properties of silicon [4-5]. The authors [6-7] obtained GaSb layers on various substrates using the modern electron beam epitaxy method and their properties were studied by XRD [8], Raman [9], and TEM [10-11]. The possibility of making high-speed electronic devices [12-14] and the possibility of obtaining infrared detectors [15-16] have been shown. New nanoscale effects [17-19] have been recorded in structures where GaSb layers are limited by one, two or even three sides. However, the modern molecular beam epitaxy method, which is currently used to obtain nanoscale structures, requires both expensive and complex technological processes [20]. In this work, the formation of GaSb binary compound in the Si crystal lattice by diffusion technology was theoretically considered. All calculations were made using MathCad software.

THEORETICAL CALCULATIONS

The authors' works [21-22] shows the diffusion parameters of gallium and antimony elements in silicon.

( B[ev] ^

D = A • e kT ' - (1)

Here, A is a quantity equal to the diffusion coefficient when the temperature is infinite; B-activation energy; Di-diffusion coefficient.

Table 1.

Elements A B

Al 0.317 -3.023

As 8.85 -3.97

B 3.79 -3.645

Bi 1.08 -3.85

Ga 3.81 -3.552

In 3.13 -3.668

N 200000 -3.24

P 1.03 -3.507

Sb 40.9 -4.158

Tl 1.37 -3.7

Table 1 and equation (1) can be used to calcu certain temperature.

ate the diffusion coefficient which at the

10

-i—i—|—i—|—i—|—i—|—i—|—i—|—i—|—i—|-0,60 0,62 0,64 0,66 0,68 0,70 0,72 0,74 0,76 0,78 0,80

1000/T, K-1

Figure 1. Graph of diffusion coefficients of gallium and antimony elements as a function of

temperature.

The graph of the dependence of the concentration of elements on the depth of penetration

is determined using the following expression (2):

f \

C ( x) = C0 ■ erfc

2 V D(T ) ■ t

(2)

Here is C(x) —the concentration of the element, C0 —the maximum solubility of the element in silicon, x—is the penetration depth, D(T) —the diffusion coefficient, and t —the diffusion time.

The maximum solubility of gallium and antimony elements in silicon at a given temperature can be determined using the following graph:

Figure 2. Temperature graph of the solubility of some impurity atoms in silicon. Using Figure 2, we can construct Table 2 below.

Table 2.

T, °C C0 (X -1019), cm 3

Sb Ga

1000 4 3>2

1050 5>4 4>3

1100 5>4 4>3

1150 6>5 4

1200 6>5 4

1250 6 4

1300 7>6 4>3

Using equations (1) and (2) and table 2, we can obtain the distribution of the concentrations of gallium and antimony elements at temperatures of 1000^1300 °C during the same period of time (5 hours).

10»-

10" n 10' 10"-, 1 10" -I

E

i101 1014 "!

101

101

1011!

101

10' 101 101 10" n 10"-, , 10" 1014 10" 101' t 10"; in10

a

b

i 4

x, mm

c

102

1019J

1018J

1017J

-f 1016 j I

s, 101 £

101 101

1012n 1011 -j 101

n10

>■.-.__ - - Ng.

---Ns,

\

\ X

\

\ V \ \ \ \ \

0123456789 10 11 12

4 ^ - - No.

V N ^^^ ---Nsb n\ng.-nsi\

\

\

\

\

\

\

\

\

\

\

d

0

8 10 12 14 16 18 x, mm

1020 1019 1018 1017

f 1016

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

X

Sj 1015

sf

1014 1013 1012 1011 1010

N - - No.

V N ---Nsb

1 \ N

\

\ ^

\

\

\

\

\

\

\

\ \ ^^ 1 \ N. " " Neu —Nsb N\No-Nsi\

\

\ \

\

\

\

\

\

\

\

10 15 20 25 30 35 x, mm

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 0

x, mm

f g Figure 3. Depth distribution of concentrations of gallium and antimony atoms entering silicon simultaneously at temperatures of 1000^1300 °C and during the same time (5 hours).

Figure 3 shows a one-step diffusion, i.e., the situation in which both gallium and antimony atoms are simultaneously diffused into silicon at temperatures of 1000^1300 °C for 5 hours.

Figure 3 shows the concentration of Noa - gallium input atoms, Nsb - concentration of antimony input atoms, N\oa-Sb\ - the distribution of the difference in the concentration of gallium and antimony input atoms by depth in silicon. Here, in Fig. 3 a - T=1000 °C, b - T=1050 °C, c -T=1100 °C, d - T=1150 °C, e - T=1200 °C, f - T=1250 ° Theoretically calculated distributions for temperatures C, g - T=1300 °C are presented.

2

4

6

20

e

j.I

19

18

17

16

15

14

13

12

S, 101

1,0 1,5

x, mm

a

<■) 1016 T §

1 n15

- - NG.

-■- NSb

\ \NGa-NSb\

\

\

\

\

\

\

\

\

\

\

0,5 1,0 1,5 2,0 2,5 3,0 3,5 x, mm

10

1019

1018

1017

1 1016 I

s, 101s 1014 1013 1012 1011 1010

- - ng.

---Nsb

\

\

\ \

\

\

\

\

\ \ \ \

0,0 0,5

1,5 x, mm

2,0 2,5

- - NG.

- ■ - NSb

\ x NgNI

V s

\ \

\

\ \

\

\

\

\

\

\

\

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 x, mm

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

d

Sb

\Ngu-NJ

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,510,0 x, mm

- - NGa

\ x _ ^.....^ ---Nsb

V -NGN

\

\

\ N.

\ N.

\ \

\

\

\

\

\

\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x, mm

- - Ng.

- ■ - NSb

f X ^^^^ \Na.-Nib\

\

\

\ ^N

\ N^

\ \

\ ^

\

\

\

\

\ »

2 4 6 8 10 12 14 16 18 x, mm

20 22 24

f g

Figure 4. Depth distribution of gallium and antimony atoms successively introduced into silicon at temperatures of 1000^1300 °C, during diffusion.

20

20

0

10

19

0

10

18

18

0

10

17

17

0

10

16

10

10

10

14

14

0

10

13

0

10

12

0

10

11

0

11

10

10

0

10

10

0,0

0,5

2.0

2.5

1,0

5-0

b

10

18

14

10

11

10

10

5,5 6,0 6,5

0,0

4,0

c

e

10

10

0

0

10

10

Figure 4 shows two-stage diffusion graphs. In the first stage, gallium atoms were diffused into the silicon sample for 1 hour, and in the second stage, antimony atoms were diffused into the same samples for 4 hours.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Figure 4 shows the concentration of Noa - gallium input atoms, NSb - concentration of antimony input atoms, N\oa-Sb\ - the distribution of the difference in the concentration of gallium and antimony input atoms by depth in silicon. Here, in Fig. 3 a - T=1000 °C, b - T=1050 °C, c -T=1100 °C, d - T=1150 °C, e - T=1200 °C, f- T=1250 °C, g - T=1300 °C Theoretically calculated distributions for temperatures are presented.

DISCUSSION

From the graphs in Figures 3 and 4, the depth x where the concentrations of gallium and antimony impurity atoms are equal for both cases is presented in the following table 3.

Table 3

Temperature T, °C x, |im

One-step diffusion Two-step diffusion

1000 0.07 0.12

1050 0.17 0.19

1100 0.27 0.36

1150 0.57 0.64

1200 1.12 1.22

1250 2.03 2.3

1300 3.65 4.1

It can be seen from Table 3 that at temperatures below 1200 °C, gallium and antimony inclusions can be combined on the silicon surface (x<7 |im). At temperatures of 1200 and 1250 °C, GaSb compounds can be formed in the surface and near-surface areas (x~1.K2.3 |im). At a temperature of 1300 °C, the GaSb compound can be formed on the surface, in the subsurface area, and in the volume of silicon (x~3^5 |im). CONCLUSION

Based on these calculated results, we can design experiments that we can conduct. The essence of theoretical calculations and mathematical modeling of the diffusion process is that it reduces the number of unnecessary experiments, helps us to achieve the result faster and easier, reduces energy consumption and somewhat reduces costs.

In our future work, we will consider how well the experimental results confirm the theoretical calculations.

REFERENCES

1. Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, and Daoxin Dai. 2018 Journal of Semiconductors. 39 (6), 061009/1-8.

2. Wenyu Yang, Yajie Li, Fangyuan Meng, Hongyan Yu, Mengqi Wang, Pengfei Wang, Guangzhen Luo, Xuliang Zhou, and Jiaoqing Pan. 2019 Journal of Semiconductors 40(101305), 1-9.

3. Levinshtein M., Rumyantsev S. and Shur M. 1996 Handbook series on semiconductor parameters. Volume 1. Pp 1-31.

4. Ahmed Ali Mohammad Monzur-Ul-Akhir, Masayuki Mori, and Koichi Maezawa. 2017 Phys. Status Solidi B. 254 (2) 1600528.

5. Monzur-Ul-Akhir A. A. Md., Masayuki Mori, and Koichi Maezawa. 2019 Japanese Journal of Applied Physics. 58 (SIIA17) 1-9.

6. Bertru N., Nouaoura M., Bonnet J., Lassabatere L. 1996 Journal of Crystal Growth. 160 pp 1-6.

7. Ryuto Machida, Kouichi Akahane, Issei Watanabe, Shinsuke Hara, Sachie Fujikawa, Akifumi Kasamatsu, Hiroki I. Fujishiro. 2019 Journal of Crystal Growth 507 pp 357-361.

8. Rodriguez J.B., Madiomanana K., Cerutti L., Castellano A., Tournie E. 2016 Journal of Crystal Growth 439 pp. 33-39.

9. Mitsuaki Yano, Hiroshi Furuse, Yoshio Iwai, Kanji Yoh and Masataka Inoue. 1993 Journal of Crystal Growth 127 pp. 807-811.

10. Guivarc'h A., Ballini Y., Toudic Y., Minier M., Auvray P., Guenais B., Caulet J., Le Merdy B., Lambert B., and Regreny A. 1994 Journal of Applied Physics 75 pp. 2876-2883.

11. Kannan Krishnaswami, Shivashankar R. Vangala, Helen M. Dauplaise, Lisa P. Allen, Gordon Dallas, Daniel Bakken, David F. Bliss, William D. Goodhue. 2008 Journal of Crystal Growth 310 pp. 1619-1626.

12. Kim Y.H., Noh Y.K., Kim M.D., Oh J.E., Chung K.S. 2010 Thin Solid Films 518 pp. 22802284.

13. Kim Y.H., Lee J.Y., Noh Y.G., Kim M.D., Oh J.E. 2007 Applied physics letters 90 (241915) 1-3.

14. Wiersma R.D., Stotz J.A.H., Pitts O.J., Wang C.X., Thewalt M.L.W., and Watkins S.P. 2003 Physical review B 67 (165202) 1-8.

15. Kitchin M.R., Hagon J.P. and Jaros M. 2003 Semiconductor Science and Technology 18 pp. 225-233.

16. Ruiting Hao, Shukang Deng, Lanxian Shen, Peizhi Yang, Jielei Tu, Hua Liao, Yingqiang Xu, Zhichuan Niu. 2010 Thin Solid Films 519 pp. 228-230.

17. Pathak R, Dadwal U and Singh R. 2017 Journal of Physics D: Applied Physics 50 (285301) pp. 1-7.

18. Ahmad Kamarudin M, Hayne M, Zhuang Q.D., Kolosov O, Nuytten T, Moshchalkov V.V. and Dinelli F. 2010 Journal ofphysics D: Applied physics 43 (065402) pp. 1-5.

19. Marcus Tornberg, Erik K Märtensson, Reza R Zamani, Sebastian Lehmann, Kimberly A Dick and Sepideh Gorji Ghalamestani. 2016 Nanotechnology 27 (175602) pp. 1-8.

20. Bakhadyrkhanov M.K., Iliev Kh.M., Ayupov K.S., Abdurakhmonov B.A., Krivenko P.Yu., and Kholmukhamedov R.L. 2011 Inorganic Materials 47 (9) pp. 962-964.

21. Ahmad Mostafa, Mamoun Medraj. Jurnal Materials 2017, 10, 676; doi:10.3390/ma10060676.

22. B.O. Isakov, SCIENCE and SOCIETY, 2, 19-20 (2022).

i Надоели баннеры? Вы всегда можете отключить рекламу.