Научная статья на тему 'DOES ARBUSCULAR MYCORRHIZA FAVOR INVASION OF SOME ASTERACEAE TRIBES?'

DOES ARBUSCULAR MYCORRHIZA FAVOR INVASION OF SOME ASTERACEAE TRIBES? Текст научной статьи по специальности «Биологические науки»

CC BY
158
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
COMMON MYCORRHIZAL NETWORKS / INVASIVE WEEDS / CARDUEAE / ASTEREAE / ANTHEMIDEAE / SENECIONEAE / CICHORIEAE

Аннотация научной статьи по биологическим наукам, автор научной работы — Malygin Daniil Mikhailovich, Mandryk-Litvinkovich Marina Nikolaevna, Sokornova Sofia Valeryevna

Invasive species, including more than three dozen Asteraceae, such as Solidago canadensis, Leucanthemum vulgare, Senecio inaequidens etc, pose serious threat to ecosystem health. Arbuscular mycorrhizal symbiosis is a key factor for distribution of invasive species of some Asteraceae tribes, including Astereae, Anthemideae, Senecioneae, Gnaphalieae, Cardueae, and Cichorieae. The formation of invasion-friendly plant communities has occurred through increasing nutrient and water availability, hormonal regulation, production of bioactive compounds, and mycorrhiza-induced resistance of host plants. Native species are displaced through the influence on soil microbiota, mycorrhizal and nutrient status of neighboring plants, and several other parameters. Allelopathic influences and symbiotic interactions with bacteria and other fungi can inhibit these processes. Understanding the mycorrhizal status of invasive weeds, in our opinion, is a necessary condition for their successful control.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DOES ARBUSCULAR MYCORRHIZA FAVOR INVASION OF SOME ASTERACEAE TRIBES?»

OECD+WoS: 1.06+RQ (Mycology) https://doi.org/10.31993/2308-6459-2021-104-3-14993

Mini-review

DOES ARBUSCULAR MYCORRHIZA FAVOR INVASION OF SOME ASTERACEAE TRIBES? D.M. Malygin1, M.N. Mandryk-Litvinkovich2, S.V. Sokornova1*

1Russian Institute of Plant Protection, St. Petersburg, Russia 2Institute of Microbiology, National Academy of Science, Minsk, Belarus

*corresponding author, e-mail: [email protected]

Invasive species, including more than three dozen Asteraceae, such as Solidago canadensis, Leucanthemum vulgare, Senecio inaequidens etc, pose serious threat to ecosystem health. Arbuscular mycorrhizal symbiosis is a key factor for distribution of invasive species of some Asteraceae tribes, including Astereae, Anthemideae, Senecioneae, Gnaphalieae, Cardueae, and Cichorieae. The formation of invasion-friendly plant communities has occurred through increasing nutrient and water availability, hormonal regulation, production of bioactive compounds, and mycorrhiza-induced resistance of host plants. Native species are displaced through the influence on soil microbiota, mycorrhizal and nutrient status of neighboring plants, and several other parameters. Allelopathic influences and symbiotic interactions with bacteria and other fungi can inhibit these processes. Understanding the mycorrhizal status of invasive weeds, in our opinion, is a necessary condition for their successful control.

Keywords: common mycorrhizal networks, invasive weeds, Cardueae, Astereae, Anthemideae, Senecioneae, Cichorieae

Submitted: 17.04.2021 Accepted: 05.09.2021

Invasive weeds, including more than three dozen species of Asteraceae, pose serious threat to ecosystem health (Medve, 1984; Mehraj et al., 2021). An important feature of Asteraceae, which often manifests itself alongside allelopathic effects, is the ability to form arbuscular mycorrhiza (AM) and common mycorrhizal networks (CMN) (Bongard et al., 2013; Yuan et al., 2014; Li et al., 2016; Chagnon et al., 2019; Qin, Yu, 2019). For invasive species like Solidago canadensis (Astereae), Helianthus tuberosus (Heliantheae), and Echinops sphaerocephalus (Cardueae), it was shown that AM and CMN contribute to their distribution and introduction successes (Bongard et al., 2013; Dong et al., 2015, 2021, Awaydul et al., 2018, Rezácová et al., 2020, Nacoon et al., 2021). Analysis of scientific literature has established four tribes (Anthemideae, Astereae, Cardueae and Senecioneae) that rely on AM in their distribution (Table 1, Fig. 1). In addition, the analysis of about 40 thousand nucleotide DNA sequences of fungi from 32 genera in Asteraceae family contained in NCBI database and including the most noxious weeds was carried out. The percentage of AMF occurrence among all fungi associated with theseplants was calculated. The soil mycobiota of Senecioneae, Anthemideae, Astereae, Gnaphaliae, Cichorieae, and Cardueae tribes was represented by AMF in more than 50 % of the cases. It was also revealed that the mycobiota of monophyletic Senecioneae, Anthemideae, Astereae, and Gnaphalieae tribes contain AMF species belonging to four orders (Paraglomerales, Archaeosporales, Diversisporales, and Glomerales). In contrast, the Cichorieae and Cardueae tribes are associated mainly with Glomerales (Malygin, Sokornova, 2021). We believe that AM is the key factor for invasion of the species belonging to these tribes.

Senecioneae, Anthemideae, Astereae, and Gnaphalieae tribes originated in South Africa (Mandel et al., 2019). It is

possible that mycorrhiza helped them to spread around the world.

AM is the most ancient and frequent type of mycorrhiza. It is suggested that mycorrhiza helped first plants to leave water and adapt to the aridity of land about 450 million years ago (Provorov, Shtark, 2014; Redecker et al., 2000; Rich et al., 2021).

Assessment of host specificity in mycorrhizal communities is difficult due to the large phylogenetic diversity of plants and fungi that can form AM. Earlier, it was believed that AMF are associated with a wide range of plants (Molina et al., 1992). However, more and more data are now emerging that reveal the association of different genotypes of AMF withh geographic regions or/and host-plant species (Alguacil et al., 2019). Changes in AMF composition of the soil biome occur simultaneously with the development of plant communities (Opik et al., 2013; Mony et al., 2021).

AM can significantly improve plant nutrition, water availability, soil structure and fertility, as well as stress resistance and tolerance (Auge, 2001). For example, AM reduces stress consequences caused by pathogens, heavy metals, and soil salinization (Jentschke, Godbold, 2000; Harrier, Watson, 2004; Whipps, 2004; Smith, Read, 2008). Plants do not receive large benefits from AM when there is high availability of nutrients, but AM enhances plant development under conditions of nutrient deficiency (Hopfner et al., 2015). Depending on the timing of S. canadensis invasion in arid habitats, the relative abundance of the two dominant AMF species significantly varied. For example, on the Chongming island, China, in dry habitats AMF colonization rate increased with distribution of S. canadensis but in lowland habitats there was no such effect (Jin et al., 2004). AMF can stimulate seed germination, enhance growth, and improve the synthesis of biologically active compounds of plants. For example,

© Malygin D.M., Mandryk-Litvinkovich M.N., Sokornova S.V., published by All-Russian Institute of Plant Protection (St. Petersburg). This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Table 1. Distribution and proven ability to form AM of some species of Asteraceae family

Species Tribe Geographic origin Establishment and spread of invasive species AM Reference

Anthemis arvensis Anthemideae Europe, Northern Africa North and South Americas, Australia, New Zealand, Africa + Symbio data

Anthemis cotula Anthemideae Mediterranean Europe, Northern Africa North and South Americas, Australia, North-East Asia, Europe, Siberia + Shah et al., 2008

Anthemis tinctoria Anthemideae Northern part of Eurasia Southern Europe, Eastern Asia, North America + Symbio data

Artemisia campestris Anthemideae Eurasia, North America — + Symbio data

Artemisia maritima Anthemideae Europe, Siberia — + Symbio data

Artemisia verlotiorum Anthemideae China Eurasia, Africa, Australia, New Zealand, North America + Kempel et al., 2013

Artemisia vulgaris Anthemideae Eurasia, Northern Africa North America China, India, North America, southern + Symbio data

Leucanthemum vulgare Anthemideae Europe, Central Asia part of South America, South Africa, Australia, New Zealand + Noori et al., 2014

Eastern and Central Europe Western Europe, Eastern Asia, Australia,

Tanacetum vulgare Anthemideae New Zealand, North America, + Lucero et al., 2020

Tanacetum cinerariifolium southern part of South America

Anthemideae Balkan Peninsula — + Waceke et al., 2002

Tanacetum parthenium Anthemideae South-West Europe Europe, North America, Chile - Symbio data

Tripleurospermum inodorum Anthemideae Eurasia North America + Symbio data

Tripleurospermum maritimum Anthemideae Northern Europe — + Symbio data

Erigeron annuus Astereae North America Western Europe, China + Gucwa-Przepiôra et al., 2016

Erigeron canadensis Astereae North America Eurasia, Australia, New Zealand, North Africa North America, northern and eastern parts + Rezacova, 2020

Erigeron karvinskianus Astereae Central America of South America, Africa, South-West Asia, Australia, New Zealand + Oliveira et al., 2005

Solidago canadensis Astereae North America Europe, Russia, China, India, Australia, New Zealand, Brazil + Awaydul et al., 2018

Solidago gigantea Astereae North America Europe, Asia + Harkes et al., 2021

Solidago nemoralis Astereae North America — + Cumming, Kelly, 2009

Solidago virgaurea Astereae Europe — + Betekhtina et al., 2016

Symphyotrichum x salignum Astereae Europe Western Siberia, Far East of Russia, Japan +* Pendergast IV et al., 2013

Symphyotrichum subu-latus Astereae Southern USA, Mexico, South America China, Iran, South Korea + Wang et al., 2021

Arctium lappa Cardueae Eurasia North America, Australia, New Zealand + Symbio data

Carduus nutans Cardueae Eurasia North America, Argentina, Australia, New Zealand - Wardle et al., 1998

Centaurea cyanus Cardueae Central Europe Eurasia, North America, Australia + Symbio data

Centaurea maculosa Cardueae Eastern Europe North America, New Zealand, Western Europe + Mummey et al., 2006

Centaurea melitensis Cardueae Northern Africa, Southern Europe USA, New Zealand, Australia, South America + Callaway et al., 2001

Centaurea solstitialis Cardueae Mediterranean Europe, Northern Africa Eurasia, North America, Southern South America, Australia, New Zealand + Waller et al., 2016

Cirsium arvense Cardueae Southeastern Europe Eurasia, Australia, New Zealand, South Africa, North America + Eschen et al., 2010

Echinops sphaeroceph-alus Cardueae Southeastern Europe Europe, USA + Rezacova et al., 2020

Cichorium intybus Cichorieae Eurasia, North Africa Australia, New Zealand, South Africa, North and South America + Awaydul et al., 2018

Hieracium alpinum Cichorieae Europe — + Symbio data

Hieracium bifidum Cichorieae Europe — + Symbio data

Hieracium lachenalii Cichorieae Europe North America, Australia + Symbio data

Table 1 continued

Species Tribe Geographic origin Establishment and spread of invasive species AM Reference

Hieracium oistophyllum Cichorieae Europe — + Symbio data

Hieracium umbellatum Cichorieae Eurasia, North America — + Symbio data

Pilosella aurantiacum Cichorieae Europe North America, Russia, Mongolia, Japan, Australia, New Zealand + Weed Control..., 2013

Pilosella officinarum Cichorieae Europe, South-West Asia North America, Argentina, New Zealand + Hopfner et al., 2015

Sonchus arvensis Cichorieae Europe Asia, Australia, New Zealand, North America, few regions of Africa + Symbio data

Taraxacum officinale Cichorieae Greece Eurasia, North and South America, South Africa, Australia, New Zealand + Mariotte et al., 2012

Bidens frondosa Coreopsideae North America Eurasia, New Zealand, Marocco North America, Africa, Western Europe, + Stevens et al., 2010

Bidens pilosa Coreopsideae South and Central America South-West Asia, Australia, New Zealand and islands across Indian and Pacific oceans North and South Korea, Japan + Zhang et al., 2018

Coreopsis drummondii Coreopsideae North America + Chen et al., 2007

Coreopsis grandifola Coreopsideae North America Europe South and South-East Asia, Australia, + Yanfang et al., 2012

Ageratina adenophora Eupatorieae Central Mexico New Zealand, Western Europe, few regions of Africa + Li et al., 2016

Praxelis clematidea Eupatorieae South America China, Thailand, Australia - Intanon et al., 2020

Gnaphalium californicum Gnaphalieae USA — + Vogelsang, Bever, 2009

Gnaphalium supinum Gnaphalieae Eurasia, North America — + Symbio data

Gnaphalium sylvaticum Gnaphalieae Europe, North America — + Symbio data

Gnaphalium uliginosum Gnaphalieae Eurasia, North America — + Symbio data

Ambrosia artemisiifolia Heliantheae North and Central America South America, Eurasia, Australia, New Zealand, North and South Africa + Fumanal et al., 2006; Zhang et al., 2018

Ambrosia psilostachya Heliantheae Western North America Europe, India, Japan, Australia, South Africa + Montagnani et al., 2017

Helianthus annuus Heliantheae North America — + Symbio data

Helianthus tuberosus Heliantheae North America Eurasia, southern part of South America, Australia, New Zealand + Nacoon et al., 2021

Senecio jacobaea Senecioneae Eurasia North America, Brazil, Australia, New Zealand + Symbio data

Senecio vulgaris Senecioneae Eurasia, northern Africa North America, southern part of South America, Australia, New Zealand + Symbio data

* AM was detected in the parental form Symphyotrichum novae-angliae.

multifaceted effects on herbivores and growth of host plants were demonstrated (van der Heijden et al., 1998; Bennett, Bever, 2007; Smith, Read, 2008).

Cuccess of mycorrhizal colonization of plants may also depend on the soil state. In the case of invasive Ambrosia artemisiifolia, for example, the most intensive mycorrhizal colonization was observed in disturbed areas such as roadsides and wastelands while the minimal percentage of mycorrhizal colonization occurred in cultivated areas. This may be due to the differences in physicochemical properties of soils (soil texture, moisture, pH, nutrients) or to the cessation of agricultural methods such as application of fungicides or soil tillage (Fumanal et al., 2006). Moreover, the unfavorable ecological factors (acid precipitation, soil contamination by heavy metal ions, herbicides, etc.) can promote an invasion enhanced by AM (Richardson, Pysek, 2012).

AM can inhibit soil pathogens such as Aphanomyces, Cylindrocladium spathiphylli, Fusarium, Macrophomina phaseolina, Phytophthora, Pythium, Rhizoctonia, Sclerotinium, Verticillium, and Thielaviopsis basicol, as well as nematodes

such as Heterodera, Meloidogyne, Pratylenchus and Radopholus (Harrier, Watson, 2004; Zhang et al., 2009; 2011). The soil microbiota in this case depends on the plant species and AM genotype. AMF are also able to induce nonspecific immune responses in their host plants (Qu et al., 2021). In turn, bacterial soil community can inhibit the development of AMF. For example, analysis of microbial community of Arctium lappa (Asteraceae) rhizosphere showed exceptionally low level (0.05 %) of AMF in presence of a diverse bacterial community (Xing et al., 2020).

There is a relationship between AM and the synthesis of plant phytohormones (Hanlon, Coenen, 2011). Sometimes, allelopathic effects on native flora were observed along with AM. Classic examples of such Asteraceae plant invasions are those of Solidago canadensis (Astereae) and Centaurea maculosa (Cardueae) (Yang et al., 2007; Abhilasha et al., 2008; Zhang et al., 2009; Yuan et al., 2013). However, there are also examples of invasions that rely on allelopathic effect only, including Carduus nutans (Cardueae), Praxelis clematidea (Eupatorieae), and Mikania micrantha (Eupatorieae) (Wardle

Figure 1. The occurrence of AMF among Asteraceae tribes. Phylogenetic relations of weed species representing the respective tribes are inferred from a 342 bp long rDNA sequence dataset (18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence) using the Maximum Likelihood method based on the Tamura-Nei model. The bootstrap consensus tree is obtained using 400 replicates in MEGA7 (Kumar et al., 1993). Branches corresponding to partitions reproduced in less than 40 % bootstrap replicates are collapsed

et al., 1998; Chen et al., 2017; Intanon et al., 2020). AM can influence foliar fungal endophyte community, as it was shown in vitro for Cirsium arvense (Eschen et al., 2010).

Competitiveness of invasive and native plants can be influenced by CMN, which simultaneously colonize root systems of several plants, affecting ecosystem processes and dynamics of plant communities (Selosse et al., 2006; Horton, van der Heijden, 2008; van der Heijden, Horton, 2009; Horton, 2015). A necessary condition for the formation and functioning of a mycorrhizal network is the ability of neighboring plants to be colonized by CMN (Lucero et al., 2020). Structures of mycorrhizal networks depend on the composition of plant species in a given area (Chagnon et al., 2019). The formation of mycorrhizal network was demonstrated for Tanacetum vulgare, S. canadensis, and Cichorium intybus (Awaydul et al., 2018; Lucero et al., 2020).

CMN serve as conductor of various signaling and allelochemical compounds (Barto et al., 2011; Babikova et al., 2013; Johnson and Gilbert, 2015). They also participate in the

distribution of mineral nutrients between the plants (Walder et al., 2012; Merrild et al., 2013; Weremijewicz, Janos, 2013; Fellbaum et al., 2014; Jakobsen, Hammer, 2015; Walder, van der Heijden, 2015; Weremijewicz et al., 2016, 2017). For example, CMN promotes the growth of Linum usitatissimum (Linaceae) by transferring nitrogen, phosphorus, and carbon from Sorghum bicolor (Poaceae) (Walder et al., 2012). It is interesting to note that the functioning of the CMN depends on physiological characteristics of participating plants as well. For example, some AM fungi supply nitrogen preferentially to large light-loving plants (Weremijewicz et al., 2016). CMN of the invasive S. canadensis enhances the uptake of nitrogen and phosphorus and, consequently, enhances the growth of this plant by decreasing the uptake of these elements by Kummerowia striata (Fabaceae). Thus, CMN influence on intraspecific and interspecific competition via unequal distribution of mineral nutrients between plants.

Plants connected through CMN can quickly change their behavior in response to external factors. This is manifested

by a change in the growth rate of roots and shoots, in the processes of photosynthesis and nutrition, and in the plant defense reactions. It was shown that Tanacetum vulgare in association with Solidago canadensis was less attacked by insects and tolerated losses of biomass to a greater extent than the association-free plants (Lucero et al., 2020). The process of CMN development by an invasive plant can affect plant communities, including intra- and interspecific interactions, species coexistence, and biodiversity. These changes are wave-like (Gorzelak et al., 2015).

AM is formed by fungi of the subphylum Glomeromycotina (phylum Mucoromycota) (Spatafora et al. 2016). Currently, species of Glomeromycotina are arranged in three classes, five orders, 16 families, and 41 genera (Goto, Jobim, 2018). The largest order is Glomerales, comprised by about 230 species (Bagyaraj, 2014; Spatafora et al., 2016). According to NCBI, plants in the subfamily Asteroideae are frequently associated with Glomus, Claroideoglomus, Rhizophagus, Septoglomus, Funneliformis, Paraglomus, Diversispora, Acaulospora, Achaeospora, Scutellospora, and Pacispora.

There are certain difficulties associated with the identification of these fungi. AMF do not grow on artificial media. Therefore, traditional method for detecting AM is microscopic identification. There are many morphological types of mycorrhizas (Beck et al., 2007). Molecular research methods used for detection of AMF include nucleic acid amplification techniques, DNA sequencing, and next-generation sequencing (NGS). As many as ten pairs of primers are designed on the base of the LSU-ITS-SSU rDNA to perform phylogenetic analysis with species level resolution (Schwarzott, Schüßler, 2001; Da Silva et al., 2006; Walker et al., 2007; Gamper, Leuchtmann, 2007; Krüger et al., 2009;

Kohout et al., 2014; Morgan, Egerton-Waiburton, 2017; Higo et al., 2020). By a high coverage reference transcriptome assembly of pea Pisum sativum mycorrhizal roots, gene markers of AM development were discovered (Afonin et al., 2020). The study of homologous genes can be used to develop methods for assessing the development of weed AM.

To explain the relationship between AM and invasive plants, two hypotheses have been proposed: the enhanced mutualism (Reinhart, Callaway, 2006) and the degraded mutualism (Vogelsang, Bever, 2009). The first one suggests that invasive plants enhance their competitiveness in the presence of AM. The second one assumes that invasive plants do not form AM, but disrupt mycorrhizal associations among native plants, thereby weakening them and facilitating the process of invasion. Even though researchers contrast the hypotheses of enhanced and degraded mutualism (Shah et al., 2009; Bunn et al., 2015), in our opinion, these are two sides of the same coin. We assume that both scenarios are realized in nature and the prevalence of one over another is determined by the host-plant species and features of ecosystem. Invasive plants of some Asteraceae tribes implement the enhanced mutualism scenario.

Thus, we suggest that AM and CMN favor invasion of Cardueae, Astereae, Anthemideae, and Senecioneae tribes of Asteraceae family. Benefits provided by AM and CMN allows alien species to successfully invade to new areas. Therefore, it is necessary to take this into account when developing measures to control the invasion of Asteraceae weeds. Suppression of AMF in soil may possibly help to control invasive plants of the Asteraceae family without affecting plants that are independent of AM.

References

Abhilasha D, Quintana N, Vivanco J, Joshi J (2008) Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? JEcol 96:993-1001. https://doi.org/10.1111/j.1365-2745.2008.01413.x Afonin AM, Leppyanen IV, Kulaeva OA, Shtark OY et al. (2020) A high coverage reference transcriptome assembly of pea (Pisum sativum L.) mycorrhizal roots. Vavilov Journal of Genetics and Breeding 24(4):331-339. https://doi. org/10.18699/VJ20.625 Alguacil MM, Díaz G, Torres P, Rodríguez-Caballero G, Roldán A. (2019) Host identity and functional traits determine the community composition of the arbuscular mycorrhizal fungi in facultative epiphytic plant species. Fungal Ecology 39:307-315. https://doi.org/10.1016/j. funeco.2019.02.002 Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3-42. https://doi.org/10.1007/s005720100097 Awaydul A, Zhu W, Yuan Y, Xiao J et al. (2018) Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29:2938. https://doi.org/10.1007/s00572-018-0873-5 Babikova Z, Gilbert L, Bruce TJA, Birkett M et al. (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16(7):835-843. https://doi.org/10.1111/ele.12115

Bagyaraj DJ (2014) Mycorrhizal fungi. Proc Indian Natn Sci Acad 80(2):415-428. https://doi.org/10.16943/ptinsa/2014/ v80i2/55118

Barto EK, Antunes PM, Stinson K, Koch AM et al. (2011) Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. Biol Invasions 13(12):2755-2762. https://doi.org/10.1007/ s10530-011-9945-6 Beck A, Haug I, Oberwinkler F, Kottke I (2007) Structural characterization and molecular identification of arbuscular mycorrhiza morphotypes of Alzatea verticillata (Alzateaceae), a prominent tree in the tropical mountain rain forest of South Ecuador. Mycorrhiza 17:607-625. https:// doi.org/10.1007/s00572-007-0139-0 Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88(1):210-218. https://doi. org/10.1890/0012-9658(2007)88[210:MSDAPG]2.0.C0;2 Betekhtina AA, Mukhacheva TA, Kovalev SY, Gusev AP et al. (2016) Abundance and diversity of arbuscular mycorrhizal fungi in invasive Solidago canadensis and indigenous S. virgaurea. Russian Journal of Ecology 47(6):575-579. https://doi.org/10.1134/s1067413616060035 Bongard C, Butler K, Fulthorpe R (2013) Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and

woodland area in Southern Ontario. Nat Conserv 4:55-76. https://doi.org/10.3897/natureconservatioa4.3578 Bunn RA, Ramsey PW, Lekberg Y (2015) Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J Ecol 103(6):1547-1556. https://doi.org/10.1111/1365-2745.12456 Callaway RM, Newingham B, Zabinski CA, Mahall BE (2001) Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol Lett 4(5):429-433. https://doi. org/10.1046/j.1461-0248.2001.00251.x Chagnon PL, Bradley RL, Klironomos JN (2019) Mycorrhizal network assembly in a community context: the presence of neighbours matters. J Ecol 00:1-12. https://doi. org/10.1111/1365-2745.13230 Chen BD, Zhu Y-G, Duan J, Xiao XY, Smith SE (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut, 147(2):374-380. https://doi. org/10.1016/j.envpol.2006.04.027 Chen B, Liao H, Chen W, Wei H et al. (2017) Role of allelopathy in plant invasion and control of invasive plants. Allelopathy J, 41(2):155-166. Cumming JR, Kelly CN (2007) Pinus virginiana invasion influences soils and arbuscular mycorrhizae of a serpentine grassland1. J Torrey Bot Soc 134(1):63-73. https://doi. org/10.3159/1095-5674(2007)134[63:PVIISA]2.0.C0;2 Da Silva GA, Lumini E, Maia LC, Bonfante P et al. (2006) Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza 16(3):183-189. https://doi. org/ 10.1007/s00572-005-0030-9 DiTomaso JM et al. (2013) Weed control in natural areas in the western United States. Davis: University of California Weed Research and Information Center. 544 p. Dong LJ, Yu HW, He WM (2015) What determines positive, neutral and negative impacts of Solidago canadensis invasion on native plant species richness? Sci Rep 5(1):1-9. https://doi.org/10.1038/srep16804 Dong LJ, Ma LN, He WM (2021) Arbuscular mycorrhizal fungi help explain invasion success of Solidago canadensis. Appl Soil Ecol 157:103763. https://doi.org/10.1016/j. apsoil.2020.103763 Eschen R, Hunt S, Mykura C, Gange AC et al. (2010) The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content. Fungal Biol 114(11-12):991-998. https:// doi.org/10.1016/j.funbio.2010.09.009 Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE et al. (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203(2):646-656. https://doi.org/10.1111/ nph.12827

Fumanal B, Plenchette C, Chauvel B, Bretagnolle F (2006) Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17(1):25-35. https://doi.org/10.1007/ s00572-006-0078-1 Gamper H, Leuchtmann A. (2007) Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland. Mycorrhiza 17:145-152. https://doi.org/10.1007/s00572-006-0092-3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Goto BT, Jobim K (2018) Laboratorio de Biologia de Micorrizas. https://glomeromycota.wixsite.com/ lbmicorrizas/sistema-de-classificao (14.04.2021) Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB PLANTS 7(1):plv050. https://doi.org/10.1093/aobpla/ plv050

Gucwa-Przepiora E, Chmura D, Sokolowska K (2016) AM and DSE colonization of invasive plants in urban habitat: a study of Upper Silesia (southern Poland). J Plant Res 129(4):603-614. https://doi.org/10.1007/s10265-016-0802-7 Hanlon MT, Coenen C (2010) Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol 189(3):701-709. https://doi. org/10.1111/j.1469-8137.2010.03567.x Harkes P, van Heumen LJM, van den Elsen SJJ, Mooijman PJW et al. (2021) Characterization of the habitat- and season-independent increase in fungal biomass induced by the invasive giant goldenrod and its impact on the fungivorous nematode community. Microorganisms 9(2):2-16. https:// doi.org/10.3390/microorganisms9020437 Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60(2):149-157. https:// doi.org/10.1002/ps.820 Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. (1998) Ploughing up the wood-wide web? Nature 394: 431443. https://doi.org/10.1038/28764 Higo M, Tatewaki Y, Iida K, Yokota K, Isobe K. (2020) Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci Rep 10:6039. https:// doi.org/10.1038/s41598-020-58942-3 Hopfner I, Beyschlag W, Bartelheimer M, Werner C et al. (2015) Role of mycorrhization and nutrient availability in competitive interactions between the grassland species Plantago lanceolata and Hieracium pilosella. Plant Ecol 216(6):887-899. https://doi.org/10.1007/ s11258-015-0476-6 Horton TR, van der Heijden MGA (2008) The role of symbioses in seedling establishment and survival. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge: Cambridge University Press. 189-213. https:// doi.org/10.1017/cbo9780511815133.011 Horton TR (2015) Mycorrhizal Networks. First Edition. Dordrecht: Springer Netherlands. 286 p. https://doi. org/10.1007/978-94-017-7395-9 Intanon S, Wiengmoon B, Mallory-Smith CA (2020) Seed morphology and allelopathy of invasive Praxelis clematidea. Not Bot Horti Agrobot Cluj-Napoca 48(1):261-272. https:// doi.org/10.15835/nbha48111831 Jakobsen I, Hammer EC (2015) Nutrient dynamics in arbuscular mycorrhizal networks. In: Horton T (ed) Mycorrhizal Networks. Dordrecht: Springer. 91-131. https://doi.org/10.1007/978-94-017-7395-9_4 Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109(2):107-116. https://doi. org/10.1034/j.1399-3054.2000.100201.x

Jin L, Gu Y, Xiao M, Chen J et al. (2004) The history of Solidago canadensis invasion and the development of its mycorrhizal associations in newly-reclaimed land. Funct Plant Biol 31(10):979-976. https://doi.org/10.1071/FP04061 Johnson D, Gilbert L (2015) Interplant signalling through hyphal networks. New Phytol 205(4):1448-1453. https:// doi.org/10.1111/nph.13115 Kempel A, Nater P, Fischer M, van Kleunen M (2013) Plant-microbe-herbivore interactions in invasive and non-invasive alien plant species. Funct Ecol 27(2):498-508. https://doi. org/10.1111/1365-2435.12056 Kohout P, Sudová R, Janousková M, Ctvrtlíková M, Hejda M et al. (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution? Soil Biol Biochem 68:482-493. https://doi.org/10.1016Zj.soilbio.2013.08.027 Krüger M, Stockinger H, Krüger C, Schüftler A. (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212-223. DOI: 10.1111/j.1469-8137.2009.02835.x Kumar S, Stecher G, Tamura K. (1993) MEGA7: Molecular evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33:1870-1874. Li YP, Feng YL, Kang ZL, Zheng YL et al. (2017) Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. J Appl Ecol 54(5):1281-1290. https://doi.org/10.1111/1365-2664.12878 Lucero JE, Arab NM, Meyer ST, Pal RW et al. (2020) Escape from natural enemies depends on the enemies, the invader, and competition. Ecol Evol 10(19):10818-10828. https:// doi.org/10.1002/ece3.6737 Mandel J, Dikow R, Siniscalchi C, Thapa R et al. (2019) A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. PNAS 116(28):14083-14088. https:// doi.org/10.1073/pnas.1903871116 Mariotte P, Meugnier C, Johnson D, Thébault A et al. (2012) Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species. Mycorrhiza 23(4):267-277. https://doi.org/10.1007/ s00572-012-0465-8 Medve RJ (1984) The mycorrhizae of pioneer species in disturbed ecosystems in Western Pennsylvania. Am J Bot 71(6):787-794. https://doi.org/10.2307/2443469 Mehraj G, Khuroo AA, Hamid M, Muzafar I et al. (2021) Floristic diversity and correlates of naturalization of alien flora in urban green spaces of Srinagar city. Urban Ecosyst https://doi.org/10.1007/s11252-021-01105-7 Merrild MP, Ambus P, Rosendahl S, Jakobsen I (2013) Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol 200(1):229-240. https://doi.org/10.1111/nph.12351 Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. New York: Chapman and Hall. 357-423. Montagnani C, Gentili R, Smith M, Guarino MF, Citterio S (2017) The Worldwide spread, success, and impact of ragweed (Ambrosia spp.). CritRev Plant Sci 36(3):139-178. https://doi.org/10.1080/07352689.2017.1360112

Mony C; Gaudu V; Ricono C; Jambon O; Vandenkoornhuyse P (2021) Plant neighbours shape fungal assemblages associated with plant roots: A new understanding of niche-partitioning in plant communities. Funct Ecol 00:1-15. https://doi.org/10.1111/1365-2435.13804 Morgan BST, Egerton-Warburton LM. (2017) Barcoded NS31/ AML2 primers for sequencing of arbuscular mycorrhizal communities in environmental samples. Appl Plant Sci. 5(8):apps.1700017. https://doi.org/10.3732/apps.1700017 Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil 288(1-2):81-90. https://doi.org/10.1007/s11104-006-9091-6 Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Ekprasert J et al. (2021) Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci Rep 11(6501). https://doi.org/10.1038/ s41598-021-86042-3 National Center for Biotechnology Information. https://www.

ncbi.nlm.nih.gov (06.06.2021) Noori AS, Zare MH, Alaie E (2014) Leucanthemum vulgare Lam. germination, growth and mycorrhizal symbiosis under crude oil contamination. Int J Phytoremediat 16(9):962-970. https://doi.org/10.1080/15226514.2013.810577 Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16(1):23-31. https:// doi.org/10.1007/s00572-005-0010-0 Opik M, Zobel M, Cantero JJ, Davison J (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411-430. https://doi.org/10.1007/s00572-013-0482-2 Pendergast IV TH, Burke DJ, Carson WP (2013) Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytol 197(4):1300-1310. https://doi.org/10.1111/nph.12105 Provorov NA, Shtark O. Yu (2014) Directed evolution of fungi and plants in symbiotic systems Mikol. Fitopatol 48(3):151-160.

Qin F, Yu S (2019) Arbuscular mycorrhizal fungi protect native woody species from novel weapons. Plant Soil 440:39-52. https://doi.org/10.1007/s11104-019-04063-4 Qu L, Wang M, Biere A (2021) Interactive effects of mycorrhizae, soil phosphorus, and light on growth and induction and priming of defense in Plantago lanceolata. Front Plant Sci 12:647372. https://doi.org/10.3389/ fpls.2021.647372 Redecker D, Kodner R, Graham LE (2000). Glomalean fungi from the Ordovician. Science 289(5486):1920-1921. https:// doi.org/10.1126/science.289.5486.1920 Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170(3):445-457. https://doi. org/10.1111/j.1469-8137.2006.01715.x Rezácová V, Rezác M, Gryndlerová H, Wilson GWT et al. (2020) Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Sci Rep 10:20287. https://doi. org/10.1038/s41598-020-77030-0

Rich MK, Vigneron M, Libourel C, Keller J et al. (2021) Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 372(6544):864-868. https://doi. org/10.1126/science.abg0929 Richardson DM, Pysek P, Rejmanek M, Barbour MG et al. (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6(2):93-107. https://doi. org/10.1046/j.1472-4642.2000.00083.x Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21(11):621-628. https://doi.org/10.1016Zj.tree.2006.07.003 Shah M, Reshi ZA, Rashid I (2008) Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Appl Soil Ecol 40(2):330-337. https://doi.org/10.1016Zj.apsoil.2008.06.002 Shah MA, Reshi ZA, Khasa DP (2009). Arbuscular Mycorrhizas: Drivers or passengers of alien plant invasion. Bot Rev 75(4):397-417. https://doi.org/10.1007/ s12229-009-9039-7 Smith SE, Read DJ (2008) Microbial Symbiosis. 3rd Edition.

Academic Press. London. 800 p. Spatafora JW, Chang Y, Benny GL, Lazarus K et al. (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028-1046. https://doi.org/10.3852/16-042 Stevens KJ, Wall CB, Janssen JA (2010) Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidensfrondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza 21(4):279-288. https://doi.org/10.1007/ s00572-010-0334-2 Schwarzott D, Schüßler A. (2001) A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203-207. https://doi.org/10.1007/PL00009996 Symbio (2013) Mycorrhizal plant in the UK. https://www. yumpu.com/it/document/view/6610367/mychorrhizal-plant-in-the-uk-symbio (06.06.2021) van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P et al. (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72.

van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97(6):1139-1150. https://doi.org/10.1111/j.1365-2745.2009.01570.x Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90(2):399-407. https://doi. org/10.1890/07-2144.1 Waceke JW, Waudo SW, Sikora R (2002) Effect of inorganic phosphatic fertilizers on the efficacy of an arbuscular mycorrhiza fungus against a root-knot nematode on pyrethrum. Int J Pest Manag 48(4):307-313. https://doi. org/10.1080/09670870210149862 Walder F, Niemann H, Mathimaran N, Lehmann MF et al. (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159(2):789-797. https://doi.org/10.1104/pp.112.195727

Walder F, van der Heijden MGA (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1(15159). https://doi.org/10.1038/nplants.2015.159 Waller LP, Callaway RM, Klironomos JN, Ortega YK et al. (2016) Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant. J Ecol 104(6):1599-1607. https://doi. org/10.1111/1365-2745.12641 Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmuar I, Schüßler A. (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycological Research 111: 137153. https://doi.org/10.1016/j.mycres.2006.11.008 Wardle DA, Nilsson MC, Gallet C, Zackrisson O (1998) An ecosystem-level perspective of allelopathy. Biol Rev 73(3):305-319. https://doi.org/10.1111/j.1469-185x.1998. tb00033.x

Weremijewicz J, Janos DP (2013) Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytol 198(1):203-213. https://doi. org/10.1111/nph.12125 Weremijewicz J, Sternberg LSLOR, Janos DP (2016) Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol 212(2):461-471. https://doi.org/10.1111/nph.14041 Weremijewicz J, Sternberg LSLOR, Janos DP (2017) Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses. Mycorrhiza 28(1):71-83. https://doi.org/10.1007/s00572-017-0801-0 Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82(8):1198-1227. https://doi.org/10.1139/b04-082 Xing Y, Yang Y, Xu L, Hao N et al. (2020) The diversity of associated microorganisms in different organs and rhizospheric soil of Arctium lappa L. Curr Microbiol 77:746-754. https://doi.org/10.1007/s00284-019-01864-9 Yanfang B, Min L, Shaoxia G (2012) Development status of Arbuscular mycorrhizal fungi associated with invasive plant Coreopsis grandiflora Hogg. Afr J Microbiol Res 6(11):2779-2784. https://doi.org/10.5897/AJMR11.1456 Yang RY, Mei LX, Tang JJ, Chen X (2007) Allelopathic effects of invasive Solidago canadensis L. on germination and root growth of native Chinese plants. Allelopathy J 19(1):241-248.

Yuan Y, Wang B, Zhang S, Tang J et al. (2013) Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range. J of Plant Ecol 6(3):253-263. https://doi.org/10.1093/jpe/rts033 Yuan Y, Tang J, Leng D, Hu S et al. (2014) An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon. PLoS ONE 9(5):e97163. https://doi.org/10.1371/journal.pone.0097163 Zhang F, Li Q, Yerger EH, Chen X et al. (2018) AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa. Mycorrhiza 28(8):703-715. https://doi.org/10.1007/ s00572-018-0866-4

Zhang S, Jin Y, Tang J, Chen X (2009) The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Appl Soil Ecol 41(2):215-222. https:// doi.org/10.1016/j.apsoil.2008.11.002

Zhang SS, Zhu WJ, Wang B, Tang JJ et al. (2011) Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum. Appl Soil Ecol 48(3):280-286. https://doi.org/10.1016Zj.apsoil.2011.04.011

Вестник защиты растений, 2021, 104(3), с. 144-152

OECD+WoS: 1.06+RQ (Mycology) https://doi.org/10.31993/2308-6459-2021-104-3-14993

Мини-обзор

СПОСОБСТВУЕТ ЛИ АРБУСКУЛЯРНАЯ МИКОРИЗА ИНВАЗИИ ВИДОВ ASTERACEAE?

Д.М. Малыгин1, М.Н. Мандрик-Литвинкович2, С.В. Сокорнова1*

'Всероссийский научно-исследовательский институт защиты растений, Санкт-Петербург, Россия 2Институт микробиологии, Национальная академия наук, Минск, Беларусь

* ответственный за переписку, e-mail: [email protected]

Более трех десятков видов семейства Asteraceae, таких как Solidago canadensis, Leucanthemum vulgare, Senecio inaequidens etc, являются инвазивными и представляют серьезную опасность для экосистем. Арбускулярная микориза является ключевым фактором распространения инвазивных растений некоторых триб семейства Asteraceae, включая Astereae, Anthemideae, Senecioneae, Gnaphalieae, Cardueae, и Cichorieae. Формирование дружественного для инвазивного растения фитоценоза происходит, в том числе, за счет увеличения доступа питательных веществ и воды, гормональной регуляции и стимулирования неспецифического иммунного ответа растения-хозяина, изменения микоризного статуса окружающих видов, перераспределения между ними питательных веществ, подавления почвенной микробиоты и т.д. Аллелопатические воздействия на АМ со стороны почвенных микроорганизмов и других видов растений могут сдерживать этот процесс. Понимание микоризного статуса нежелательной растительности, на наш взгляд, является необходимым условием для успешного борьбы с ней.

Ключевые слова: арбускулярные микоризные сети, инвазивные сорные растения, Cardueae, Astereae, Anthemideae, Senecioneae, Cichorieae

Поступила в редакцию: 17.04.2021 Принята к печати: 05.09.2021

© Малыгин Д.М., Мандрик-Литвинкович М.Н., Сокорнова С.В. Статья открытого доступа, публикуемая Всероссийским институтом защиты растений (Санкт-Петербург) и распространяемая на условиях Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

i Надоели баннеры? Вы всегда можете отключить рекламу.