УДК: 544.122
DFT ИЗУЧЕНИЕ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ 5,10,15,20-ТЕТРАКИС(4'-ГАЛОГЕНФЕНИЛ)ПОРФИНОВ И ИХ ИЗОМЕРОВ
И.Ю. Курочкин, А.Е. Погонин, А.А. Отлетов, А.Н. Киселев, Г.В. Гиричев
Иван Юрьевич Курочкин, Арсений Андреевич Отлетов, Георгий Васильевич Гиричев
Кафедра физики, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000
E-mail: [email protected], [email protected], [email protected] Александр Евгеньевич Погонин*
Кафедра технологии керамики и наноматериалов, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000 E-mail: [email protected]*
Алексей Николаевич Киселев
Кафедра органической химии, Ивановский государственный химико -технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000 E-mail: [email protected]
Настоящая статья является продолжением работ по установлению чувствительности электронографического метода в отношении определения конформационного состава макроциклических молекул, осложненных введением групп-заместителей различной природы. С помощью квантово-химических расчетов (метод DFT, функционал B3LYP) изучено конформационное многообразие 5,10,15,20-тетракис(4'-Х)фенилпорфинов ^-4CHX-HP: X = F, Br). Рассмотренные конформеры отличаются положением -4CHXгрупп относительно макроцикла. Относительные энергии конформеров CH4F-HP были вычислены с использованием различных базисных наборов с целью подбора варианта, наиболее оптимального по соотношению «качество расчета/вычислительная стоимость». Согласно результатам расчетов наиболее энергетически выгодной структурой п-4СНХ-НР является кон-формер симметрии С2» В то же время, относительные энергии других конформеров весьма малы, поэтому их возможное присутствие в паре необходимо учитывать при обработке экспериментальных электронографических (ЭГ) данных. Замена атомов Fна атомы Br при переходе 4CH4F-HP^4CHBr-HP не приводит к значительным изменениям строения пор-фиринового остова. Выполнен анализ чувствительности метода газовой электронографии к структурным изменениям, обусловленным различным положением галогенфенильных заместителей. Сопоставлены теоретические функции радиального распределения f(r) конформеров п-4CHX-HP,а также мета- и орто-изомеров - м-4CHX-HP и о-4CHX-HP. Результаты моделирования свидетельствуют о возможности надежного экспериментального определения расстояний между химически связанными атомами, в то время как уточнение положения галогенфенильных заместителей относительно макроциклического остова молекулы находится на пределе возможностей метода. На основе экспериментальных данных можно надежно различить мета- и орто- изомеры 4CHX-HP, в особенности, в случае бромзамещенных фенильных групп.
Ключевые квантово-химические расчеты, теория функционала плотности, порфирин, конформа-ционный анализ
Для цитирования:
Курочкин И.Ю., Погонин А.Е., Отлетов А.А., Киселев А.Н., Гиричев Г.В. DFT изучение молекулярной структуры 5,10,15,20-тетракис(4'-галогенфенил)порфинов и их изомеров. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 1. С. 51-57
For citation:
Kurochkin I.Yu., Pogonin A.E., Otlyotov A.A., Kiselev A.N., Girichev G.V. DFT study of molecular structure of 5,10,15,20-tetrakis(4'-halogenophenyl)porphyrins and their isomers. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.]. 2020. V. 63. N 1. P. 51-57
DFT STUDY OF MOLECULAR STRUCTURE OF 5,10,15,20-TETRAKIS(4'-HALOGENOPHENYL)PORPHYRINS AND THEIR ISOMERS
I.Yu. Kurochkin, A.E. Pogonin, A.A. Otlyotov, A.N. Kiselev, G.V. Girichev
Ivan Yu. Kurochkin, Arseniy A. Otlyotov, Georgy V. Girichev
Department of Physics, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia
E-mail: [email protected], [email protected], [email protected] Alexander E. Pogonin*
Department of Nanomaterials and Ceramic Technology, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia E-mail: [email protected]*
Aleksey N. Kiselev
Department of Organic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia E-mail: [email protected]
Conformational manifold of 5,10,15,20-tetrakis(4'-halogenophenyl)porphyrins (p-4CHX-HP; X=F, Br) was studied by DFT calculations (functional B3LYP). The conformers are different by positions of -4CHX groups relative to the macrocyclic core. Relative energies of the conformers of 4C6H4F-H2P were calculated with use of different basis sets in order to find the optimal ratio «quality./ computational cost». According to the results of the calculations, conformers of C2V symmetry are the most energetically favorable. However, relative energies of other conformers are quite low, therefore they should be taken into account at the treatment of the gas-phase electron diffraction (GED) experimental data. The sensitivity of the GED method to structural changes induced by different relative positions of halogenophenyl substituents was examined. Model radial distribution curves f(r) for conformers of p-4CHX-HP, as well as meta- and ortho- isomers (m-4CHX-HP and o-4C6H4X-H2P) were compared. The results of the model studies demonstrate that the bond distances can be reliably determined from experimental data, while the refinement of the positions of halogenophenyl substituents relative to the macrocyclic core is at the limit of the possibilities of the GED method. Meta- and ortho- isomers of 4CHX-HP can be distinguished based on the experimental data, especially in the case of bromine-substituted phenyl groups.
Key words: quantum chemical calculations, DFT, porphyrin, conformational analysis
INTRODUCTION phase electron diffraction (GED). The structures determined by GED can be used for the development of cor-
According to modern TO^p^ the under- responding subsections of stereochemistry and for the
standing of electronic and geometry structure of a mol- assessment of performance of various theoretical
ecule is the key point in interpretation and prediction methods. However, in the case of large molecules the
of chemica^ physical and biol°gical properties of a structural refinement of GED data is usually a nontri-
c°mp°und. The structural studies commonly exploit a vial procedure [1]. In particular, macroheterocyclic li-
number of theoretical (quantum-chemical) and experi- gands and their metal complexes are characterized by
mental (X-ray diffraction, gas-phase electron diffrac- a low volatility and require very high temperatures during
tion, etc.) methods. It should, however, be mentioned effusion experiments [2]. The macroheterocyclic com-
that the solid state structures determined by X-ray dif- pounds can exhibit different types of non-planar distor-
fraction are usually distorted due to intermolecular in- tions depending on the nature of central metal atom and
teractions. Gas-phase structures do not suffer from kind of substituent [3-5], and this circumstance brings
these interactions and reflect the properties of a free the additional difficulties in the structural analysis.
molecule. The most common experimental method for Therefore, only few structures of macroheterocycles
structural determination of free molecules is the gas- have been determined experimentally so far, while
most studies of the free molecules of porphyrin derivatives were limited to quantum-chemical calculations.
In the literature one can find a series of GED investigations of the structures of phthalocyanine complexes [6-12]. However, among the porphyrins, only copper and tin octamethylporphyrins [13, 14] and copper and zinc etioporphyrins-II [15, 16] were studied by GED. The sensitivity of the GED method to the determination of the conformational composition of macro-cyclic compounds bearing hydrocarbonic substutuents was examined and the refinement procedure was adjusted in [15, 16]. In the case of the metal etioporphyrins-II [15, 16] only the geometry of the macrocyclic framework, but not the relative positions of the -CH3 and -C2H5 substituents can be reliably determined.
The present contribution continues the series of studies devoted to determination of sensitivity of GED method to the determination of conformational composition of macrocycles, but deals with substitu-ents containing halogen atoms. The objects of study are 5,10,15,20-tetrakis(4'-halogenophenyl) porphyrin (P-4C6H4X-H2P; X=F, Br).
The structures and the conformational diversity were examined with use of quantum-chemical calculations. Theoretical consideration of the sensitivity of GED method to the determination of conformational and isomeric composition of the vapor was also performed. For this purpose, meta- and ortho-isomers were also calculated: 5,10,15,20-tetrakis(3' -halogenophenyl)porphyrin (m-4C6H4X-H2P; X=F, Br) and 5,10,15,20-tetrakis(2'-halogenophenyl) porphyrin (0-4C6H4X-H2P; X=F, Br).
Fig. 1. Molecular structure and atom numbering of 0-4C6H4X-
H2P, ra-4C6H4X-H2P, ,р-4СбШХ-Н2Р (X=F, Br) Рис. 1. Молекулярная структура и нумерация атомов для о-4C6H4X-H2P, .M-4C6H4X-H2P, «-4C6H4X-H2P (X=F, Br)
COMPUTATIONAL DETAILS
Structural parameters of P-4C6H4X-H2P (X = F, Br) were optimized under C2V, C2h (two variants), D2 and D2h (two variants) symmetries, under C2, D2, Ci, C2h (two variants) and C2v symmetries - for m-4C6H4X-
H2P (X = F, Br) and under D2, Ci, C2h (two variants) and C2v symmetries - for 0-4C6H4X-H2P (X = F, Br). Vibrational frequencies were calculated for all the optimized structures. All calculations were performed using DFT (B3LYP functional [17,18]). In order to examine the influence of basis set on relative energies and structural parameters, five basis sets were tested in the case of p-4C6H4F-^P:(A) 6-31G(d,p)[19]; (B) pVTZ, taken from the EMSL library [20] (denoted as «GAMESSpVTZ»); (C) cc-pVTZ [21]; (D) pcseg-2 [22]. Basis set (B) was chosen for the calculations of 4C6H4Br-H2P. Core electrons of Br atom were described by pseudopotential ECP10MDF [23] and the valence shell was described by cc-pVTZ-PP (10s11p9d1f)/[5s4p3d1f] basis set [23]. The calculations were carried out utilizing Gaussian 03 program package. The optimized structures from quantum chemical calculations at B3LYP/(B) level are given in Supplementary material [http://journals.isuct.ru/ctj/article/view/1799].
RESULTS AND DISCUSSION
According to the results of calculations, four optimized structures (conformers p-I - p-IV, see Fig. 2) of P-4C6H4X-H2P correspond to minima on the potential energy surface. Conformer I possesses the lowest energy (see Table 1), however the energies of conformers p-II - p-IV are only slightly higher. Conformation p-V corresponds to the saddle point of 4th order on the PES with imaginary frequencies describing rotation of the groups -C6H4X. Conformation p-VI also corresponds to the saddle point. The imaginary frequencies describe rotation of the substituents and out-of-plane distortions of macrocycle.
Note, that the different basis sets give the same qualitative picture of the relative energies of considered structures (Table 1). The molecular parameters of similar type calculated with use of the basis sets A-D possess close values. The maximum deviation of the bond length is 0.008 A that is close to the typical uncertainty of GED experiment. It should be mentioned that the use of basis sets C-D requires much more computational time as compared to A-B (Table 1). Therefore, the calculations of 4C6H4Br-H2P were only performed with use of basis set pVTZ (B).
Conformational analysis for ortho- and metaisomers of 4C6H4X-H2P was performed in the similar way as in our previous study of metal etioporphyrin-II [15,16]. Models I-V (Fig. 3) differ in the orientation of the halogen atom relative to the macrocyclic fragment. According to the results of calculations, the conform-ers m-I(I) and o-I possess the lowest energies (Table 3) for m-4C6H4X-H2P and P-4C6H4X-H2P, respectively.
Comparison of molecular parameters of similar type for ^-4C6H4F-H2P and ^-4C6H4Br-№P (Table 4) leads to conclusion that the nature of a halogen does not influence significantly the structure of entire molecule. Elongation of the bond C-X by ~0.6 Â in the Br-substituted molecule does not lead to noticeable deformations of macrocycle and, therefore, does practically not influence the relative energies of the conformers.
Fig. 2. Conformer models of P-4C6H4X-H2P Рис. 2. Модели конформеров и-4СбШХ-Н2Р
Table 1
Relative energies of conformers p-I - p-IV, conformations of p-V - p-VI of ^-4СбШХ-ШР, where X=F, Br, and relative CPU time for single point calculations
with use of the different basis sets Таблица 1. Относительные энергии конформеров p-I - p-IV, конформаций p-V - p-VI и-4СбШХ-ШР, где X=F, Br, и относительное время расчетов с использованием различных наборов базисных функций
Structure p-I p-II p-III p-IV p-V p-VI Rel. time a
X Symmetry C2v C2h C2h D2 D2h D2h C2v
ДЕ, kJmol-1(A)b 0.00 1.15 1.30 2.51 5.02 769.37 1.0
F AE, kJmol-1(B)b 0.00 0.43 0.50 0.86 0.99 767.43 6.1
ДЕ, kJmol-1(C)b 0.00 0.26 0.62 1.08 1.31 754.75 16.7
AE, kJmol-1(D)b 0.00 0.47 0.53 0.94 1.12 757.86 34.7
Bi AE, kJmol-1(B)b 0.00 0.42 0.50 0.91 1.10 760.45 -
Notes: a The ratio of CPU time of 5 cycles of SCF procedure within a single point calculation at different theory levels to 5 cycles of a single point CPU time of calculations using basis set (A); b (A), (B), (C), (D) basis sets are described in Computational details
Примечания: а относительное компьютерное время, затраченное на 5 SCF-итераций «Single point» расчета^ наборы базисных функции (A), (B), (C), (D) описаны в разделе Computational details
Table 2
Molecular parameters (internuclear distances, Â; angles, °) of conformer p-I of _p-4C6H4F-H2P calculated
with use of the different basis sets Таблица 2. Молекулярные параметры (межъядерные расстояния, Â; углы, °) W-4C6H4F-H2P (конфор-мер p-I), рассчитанные с использованием различ-
B3LYP/basis sets
Parameter (A) (B) (C) (D)
Ni-Ca (1) 1.367 1.364 1.362 1.361
Ca-Cp (1) 1.460 1.458 1.456 1.456
CP-CP (1) 1.354 1.351 1.348 1.349
Cm-Ca (1) 1.412 1.408 1.406 1.406
Cm-Ca (2) 1.406 1.401 1.399 1.399
Ni-Hi (2) 1.014 1.011 1.010 1.010
Ni-Ca (2) 1.376 1.374 1.372 1.372
Ca-Cp (2) 1.434 1.432 1.430 1.430
CP-CP (2) 1.369 1.367 1.364 1.364
Cm-C1 1.497 1.499 1.496 1.497
C1-C2 1.404 1.399 1.397 1.397
C1-C3 1.405 1.399 1.397 1.397
C2-C4 1.394 1.392 1.390 1.390
C3-C5 1.394 1.392 1.389 1.390
C4-C6 1.390 1.385 1.383 1.383
C5-C6 1.390 1.385 1.383 1.383
C-F 1.349 1.355 1.349 1.351
Ca(2)-Cm-C1 -C2 65.3 72.9 71.9 72.4
Ni-Ca-Cp (1) 110.9 110.7 110.7 110.6
Ca-Cp-Cp (1) 106.3 106.4 106.4 106.4
Ca-Cm-Ca 125.2 125.4 125.3 125.4
Ni-Ca-Cp (2) 106.5 106.4 106.4 106.4
Ca-Cp-Cp (2) 108.2 108.2 108.2 108.2
С j -HalogcnoplicnyLeroiipM-CtH-iX)
Fig. 3. Conformer models of w;-4C6H4X-H2P, о-4СбН4Х-Н2Р. Top view: the orientation of the X-atom (X=F, Br) with respect to the plane of the porphyrin macrocycle: (black)—above the plane,
(white)—below the plane Рис. 3. Модели конформеров .-4C6H4X-H2P и 0-4C6H4X-H2P. Вид сверху показывает ориентацию атомов X (X=F, Br) относительно плоскости порфиринового макроцикла: (черный) -над плоскостью, (белый) - под плоскостью
Table 3
Relative energies of conformers of m-4C6HX-H2P and
0-4C6H4X-H2P, where X=F, Br Таблица 3. Относительные энергии конформеров м-4C6H4X-H2P и Q-4C6H4X-H2P, где X=F, Br
X m- isomer m-I(I) m-I(II) m-II m-III m-IV m-V
symmetry C2 D2 Cl C2h C2h C2v
F AE, kJmol-1(B)a 0.00 0.67 0.21 0.40 0.5S 0.40
Br AE, kJmol-1(B)a 0.00 0.57 0.17 0.36 0.56 0.36
X o- isomer o-I o-II o-III o-IV o-V
symmetry D2 Cl C2h C2h C2v
F AE, kJmol-1(B)a 0.00 0.71 0.50 0.53 1.65
Br AE, kJmol-1(B)a 0.00 0.76 0.65 0.73 1.6S
Analysis of the sensitivity of the GED method to the determination of the conformational and isomeric composition of the 4CHX-HP (X=F, Br) vapor
In order to assess the ability of GED method to distinguish between conformations of ^-4C6HX-H2P molecule, a series of calculations of the model radial distributions curves f(r) was performed using results of B3LYP/(B) calculations. Vibrational amplitudes and corrections to the internuclear distances at the estimated temperature of GED experiment of T = 600 K were calculated with the use of VibModule program [24] (second approximation) on the basis of the force field obtained from quantum chemical calculations at B3LYP/(B) level.
Note: a (B) basis sets are described in Computational details Примечание: a базисные функции (B) описаны в разделе Computational details
Table 4
Comparison of structural parameters (internuclear distances, A; angles, °) for 4C6H4X-H2P (p-, m-, o- isomers,
X=F, Br) from B3LYP/(B) calculations Таблица 4. Структурные параметры (межъядерные расстояния, A; углы, °) 4C6H4X-H2P (и-, м-, o- изомеры),
Parameter X=F(p-I conf) p-iso- X=Br(p-Iconf.) p- X=F (C2) m- X=Br (C2) X=F (D2) o- X=Br (D2) o-
mer isomer isomer m-isomer isomer isomer
Ni-Ca (1) 1.364 1.364 1.364 1.364 1.363 1.363
Ca-Cß (1) 1.45S 1.45S 1.45S 1.45S 1.45S 1.45S
Cß-Cß (l) 1.351 1.351 1.351 1.351 1.351 1.351
Cm-Ca (l) 1.40S 1.40S 1.40S 1.40S 1.406 1.406
Cm-Ca (2) 1.401 1.401 1.401 1.401 1.399 1.399
Ni-Hi (2) 1.011 1.011 1.011 1.011 1.011 1.011
Ni-Ca (2) 1.374 1.374 1.374 1.374 1.373 1.373
Ca-Cß (2) 1.432 1.432 1.432 1.432 1.432 1.432
Cß-Cß (2) 1.367 1.367 1.366 1.366 1.366 1.366
Cm-Cl 1.499 1.49S 1.499 1.499 1.499 1.500
C1-C2 1.399 1.399 1.399 1.39S 1.400 1.401
C1-C3 1.399 1.399 1.399 1.399 1.393 1.400
C2-C4 1.392 1.393 1.392 1.392 1.392 1.390
C3-C5 1.392 1.392 1.3S5 1.390 1.3S7 1.393
C4-C6 1.3S5 1.390 1.393 1.393 1.393 1.392
C5-C6 1.3S5 1.390 1.3S5 1.390 1.391 1.391
C-X 1.355 1.913 1.356 1.915 1.354 1.916
Ca2-Cm-Cl -C2 72.9 72.5 73.S 74.2 S6.3 S9.9
Ni-Ca-Cß (l) 110.7 110.7 110.S 110.S 110.S 110.S
Ca-Cß-Cß (l) 106.4 106.4 106.4 106.4 106.4 106.4
Ca-Cm-Ca 125.4 125.4 125.5 125.6 125.7 125.7
Ni-Ca-Cß (2) 106.4 106.4 106.5 106.5 106.5 106.5
Ca-Cß-Cß (2) 10S.2 10S.2 10S.2 10S.2 10S.1 10S.1
The results of the calculations are shown on Fig. 4 and 5 (note, that the difference curves Af(r) were calculated relative to 1st curve corresponding to conformer p-I of p-4C6H4X-H2P: A f(r) = fj(r)-fi(r)).
The deviation of 7-th curve from 1st curve was characterized by disagreement factor:
RfJ =
Ti=i(s^(si)model 1 — s^(si)model j)2
between the theoretical molecular scattering intensities corresponding to different models (Rfj is disagreement factor; sM(si)model 1 - theoretical molecular scattering intensities for conformer p-I; sM(si)model j - theoretical molecular scattering intensities for corresponding conformer or isomer). The difference between f(r) curves in the case ofp-4C6H4F-H2P (in the ranges ~3.1-3.6 A and ~4.4-4.8 A) molecule is caused by change of distances Cph...Cporph due to different orientation of the halogenophenyl groups relative to the porphyrin core: the torsional angles x(Ca2-Cm-Ci-C2) are: 72.9° (p-I) and 81.3° (p-IV); 72.5° (p-I) and 80.1° (p-IV) for 4C6H4F-H2P and 4C6HBr-H2P, respectively. The analogous study for copper and zinc etioporphyrins-II [15,16] yielded the values of Rf<1.1% with the values of relative energies between the conformers being as low as ~0.3 kJ mol-1.
An attempt to distinguish between the isomers of 4C6H4X-H2P (ortho-, meta-, para-) was also made.
According to the difference curves Af(r), the ortho- and meta-isomers of 4C6H4X-H2P can be quite well distinguished from the most energetically favorable para-isomer. The differences are caused by significant changes in the distances between non-bonded atoms X...X, N...X, C...X and C...C. The bond lengths in the porphyrin core and phenyl rings are almost the same in the para-, ortho- and meta-isomers (see Table 4). Note, that the differences in f(r) between the isomers are much more pronounced in the case of 4C6H4Br-H2P due to higher scattering ability of the Br atom as compared to F.
According to the results of theoretical modeling performed in the present study, bond lengths and bond angles in the macrocyclic core and halogen-substituted phenyl rings are almost the same values in all conform-ers of p-4C6H4X-H2P considered. However, the changes in the distances between non-bonded atoms influence the model molecular intensities sM(s) and therefore an attempt can be made to distinguish between the con-formers based on the experimental GED data. It should be noted that this problem is at the limit of the possibilities of GED method and only the effective position of halogenophenyl groups are apparently refinable. At the same time, bond lengths and bond angles can be refined with a typical accuracy of GED method. Therefore, the geometry structures of macrocyclic core and halogenophenyl rings can be reliable determined.
-----3
1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1 0 2 4 6 8 10 12 14 16 18 20 22
r, A
Fig. 4. Comparison of theoretical radial distribution functions f(r) of 4C6H4F-H2P models: 1 - conformer p-I, 2 - conformer p-II, 3 - conformer p-III, 4 - conformer p-IV, 5 - m-I(I) conformer of m-iso-mer, 6 - o-I conformer of o-isomer; comparison of differences functions Af(r) concerning 1: 2 - conformer p-II (Rf =2.36 %), 3 - conformer p-Ш (Rf =2.75 %), p-4 - conformer IV (Rf = 5.08 %), 5 - m-I(I) conformer of m-isomer (Rf =4.98 %), 6 - o-I conformer of o-iso-mer (Rf =5.86 %). Molecular parameters were calculated at B3LYP/(B) theory level Рис. 4. Сравнение теоретических функций радиального распределения f(r) для 4C6H4F-H2P: 1 - конформер p-I, 2 - конформер p-II, 3 - конформер p-III, 4 - конформер p-IV, 5 - m-I(I) конформер м-изомера, 6 - o-I конформер о-изомера; разностных функций Af(r), рассчитаны относительно 1: 2 - конформер p-II (Rf =2,36 %), 3 - конформер p-III (Rf =2,75 %), 4 - конформер p-IV (Rf =5,08 %), 5 - m-I(I) конформер м-изомера C2 (Rf =4,98 %), 6 - o-I конформер о-изомера (Rf =5,86 %). Молекулярные параметры рассчитаны в приближении B3LYP/(B)
-3
-.------
I-1-1-■-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-■-1-1-1
0 2 4 6 8 10 12 14 16 18 20 22
r, A
Fig. 5. Comparison of theoretical radial distribution functions f(r) of 4C6H4Br-H2P models: 1 - conformer p-I, 2 - conformer p-II, 3 - conformer p-III, 4 - conformer p-IV, 5 - m-I(I) conformer of m-isomer, 6 -o-I conformer of o-isomer; comparison of differences functions Af(r) concerning 1: 2 - conformer p-II (Rf =2.15 %), 3 - conformer p-III (Rf =2.51 %), 4 - conformer p-IV (Rf =6.09 %), 5 - m-I(I) conformer of m-isomer (Rf=17.33 %), 6 - o-I conformer of o-isomer (Rf=18.50 %).
Molecular parameters were calculated at B3LYP/(B) theory level Рис. 5. Сравнение теоретических функций радиального распределения f(r) для 4C6H4Br-H2P: 1 - конформер p-I, 2 - конформер pII, 3 - конформер p-III, 4 - конформер p-IV, 5 - m-I(I) конформер м-изомера, 6 - o-I конформер о-изомера; разностных функций Af(r), рассчитаны относительно 1: 2 - конформер p-II (Rf =2,15 %), 3 - конформер p-III (Rf =2,51 %), 4 - конформер p-IV (Rf =6,09 %), 5 - m-I(I) конформер м-изомера (Rf=17,33 %), 6 - o-I конформер о-изомера (Rf=18,50 %). Молекулярные параметры рассчитаны в приближении B3LYP/(B)
ACKNOWLEDGEMENTS
The reported study was funded by RFBR according to the research project № 18-33-01199. The
research was carried out using the equipment of the
Center for collective use at Ivanovo State University of
Chemistry and Technology.
REFERENCES ЛИТЕРАТУРА
1. Zhabanov Y.A., Pogonin A.E. An alternative approach to structural analysis for gas electron diffraction method. Comput Theor. Chem. 2018. V. 1123. P. 149-153. DOI: 10.1016/j.comptc.2017.11.024.
2. Pogonin A.E., Krasnov A.V., Zhabanov Yu.A., Perov A.A., Rumyantseva V.D., Ischenko A.A., Girichev G.V. Mass-spectro-metric study of cobalt, nickel, copper and zinc etioporphyrin-II sublimation, MN4C32H36. Macroheterocycles. 2012. V. 5. N 4-5. P. 315-320. DOI: 10.6060/mhc2012.121109g. Погонин А.Е., Краснов А.В., Жабанов Ю.А., Перов А.А., Румянцева В.Д., Ищенко А.А., Гиричев Г.В. Масс-спектрометрическое изучение сублимации этиопорфиринатш-П кобальта, никеля, меди и цинка, MN4C32H36. Макрогетероциклы. 2012. Т. 5. N 4-5. С. 315-320. DOI: 10.6060/mhc2012.121109g.
3. Medforth C.J., Haddad R.E., Muzzi CM., Dooley NR., Jaquinod L., Shyr D. C., Nurco D.J., Olmstead M.M., Smith K.M., Ma J.-G., Shelnutt J.A. Unusual aryl-porphyrin rotational barriers in peripherally crowded porphyrins. Inorg. Chem. 2003. V. 42. N 7. P. 2227-2241. DOI: 10.1021/ic010958a.
4. Kozlowski P.M., Bingham J.R., Jarzecki A.A. Theoretical analysis of core size effect in metalloporphyrins. J. Phys. Chem. A. 2008. V. 112. N 50. P. 12781-12788. DOI: 10.1021/jp801696c.
5. Stoll L.K., Zgierski M.Z., Kozlowski P.M. Density functional theory analysis of nickel octaethylporphyrin ruffling. J. Phys. Chem. A. 2002. V. 106. N 1. P. 170-175. DOI: 10.1021/jp012416k.
6. Strenalyuk T., Samdal S., Volden H.V. Molecular structures of phthalocyaninatozinc and hexadecafluorophthalocyaninatozinc studied by gas-phase electron diffraction and quantum chemical calculations. J. Phys. Chem. A. 2007. V. 111. N 47. P. 12011-12018. DOI: 10.1021/jp074455n.
7. Strenalyuk T., Samdal S., Volden H.V. Molecular structure of phthalocyaninatotin(II) studied by gas-phase electron diffraction and high-level quantum chemical calculations. J. Phys. Chem. A. 2008. V. 112. N 40. P. 10046-10052. DOI: 10.1021/jp804809e.
8. Strenalyuk T., Samdal S., Volden H.V. Molecular structures of chloro(phthalocyaninato)-aluminum(III) and -gallium(III) as determined by gas electron diffraction and quantum chemical calculations: quantum chemical calculations on fluoro(phthalocyaninato)-aluminum(III) and -gallium(III), chloro(tetrakis(1,2,5-thiadia-zole)porphyrazinato)-aluminum(III) and -gallium(III) and comparison with their X-ray structures. J. Phys. Chem. A. 2008. V. 112. N 38. P. 9075-9082. DOI: 10.1021/jp804105d.
9. Strenalyuk T., Samdal S., Volden H.V. Molecular structure of the trans and cis isomers of metal-free phthalocyanine studied by gasphase electron diffraction and high-level quantum chemical calculations: NH tautomerization and calculated vibrational frequencies. J. Phys. Chem. A. 2008. V. 112. N 21. P. 4853-4860. DOI: 10.1021/jp801284c.
10. Tverdova N.V., Girichev G.V., Giricheva N.I., Pimenov O.A. Accurate molecular structure of copper phthalocyanine (CuN8C32H16) determined by gas-phase electron diffraction and quantum-chemical calculations. Struct. Chem. 2011. V. 22. P. 319-325. DOI: 10.1007/s11224-010-9715-6.
11. Tverdova N.V., Girichev G.V., Krasnov A.V., Pimenov O.A., Koifman O.I. The molecular structure, bonding, and energetics of oxovanadium phthalocyanine: an experimental and computational study. Struct. Chem. 2013. V. 24. P. 883-890. DOI: 10.1007/s11224-013-0259-4.
12. Tverdova N.V., Pimenov O.A., Girichev G.V., Shlykov S.A., Giricheva N.I., Mayzlish V.E., Koifman O.I. Accurate molecular structure of nickel phthalocyanine (NiN8C32H16): gas-phase electron diffraction and quantum-chemical calculations. J. Mol. Struct. 2012. V. 1023. P. 227-233. DOI: 10.1016/j.molstruc.2012.05.066.
13. Girichev G.V., Giricheva N.I., Golubchikov O.A., Mimenkov Y.V., Semeikin A.S., Shlykov S.A. Octamethylporphyrin copper, C28H28№Cu - A first experimental structure determination of porphyrins in gas phase. J. Mol. Struct. 2010. V. 978. P. 163-169. DOI: 10.1016/j.molstruc.2010.02.029.
14. Girichev G.V., Giricheva N.I., Koifman O.I., Minenkov Y.V., Pogonin A.E., Semeikin A.S., Shlykov S.A. Molecular structure and bonding in octamethylporphyrin tin(II), Sn№C28H28. Dalton Trans. 2012. V. 41. N 25. P. 7550-7558. DOI: 10.1039/c2dt12499h.
15. Pogonin A.E., Tverdova N.V., Ischenko A.A., Rumyantseva V.D., Koifman O.I., Giricheva N.I., Girichev G.V. Conformation analysis of copper(II) etioporphyrin-II by combined gas electron diffraction/mass-spectrometry methods and DFT calculations. J. Mol. Struct. 2015. V. 1085. P. 276-285. DOI: 10.1016/j.mol-struc.2014.12.089.
16. Tverdova N.V., Pogonin A.E., Ischenko A.A., Rumyantseva V.D., Koifman O.I., Giricheva N.I., Girichev G.V. Combined gasphase electron diffraction/mass spectrometry and DFT study of the molecular structure of zinc(II) etioporphyrin-II. Struct. Chem. 2015. V. 26. N 5-6. P. 1521-1530. DOI: 10.1007/s11224-015-0656-y.
17. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. V. 98. N 7. P. 5648-5652. DOI: 10.1063/1.464913
18. Lee C., Yang W., Parr R.G. Development of the Colle-Sal-vetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. V. 37. N 2. P. 785. DOI: 10.1103/PhysRevB.37.785.
19. Hariharan P.C., Pople J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta. 1973. V. 28. N 3. P. 213-222. DOI: 10.1007/BF00533485.
20. Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007. V. 47. N 3. P. 1045-1052. DOI: 10.1021/ci600510j.
21. Dunning T.H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989. V. 90. N 2. P. 1007-1023. DOI: 10.1063/1.456153.
22. Jensen F. Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets. J. Chem. Theory Comput. 2014. V. 10. N 3. P. 1074-1085. DOI: 10.1021/ct401026a.
23. Peterson K.A., Figgen D., Goll E., Stoll H., Dolg M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 2003. V. 119. N 21. P. 11113-11123. DOI: 10.1063/1.1622924.
24. Vishnevskiy Yu.V., Zhabanov Yu.A. New implementation of the first-order perturbationtheory for calculation of interatomic vi-brationalamplitudes and corrections in gas electrondiffraction. J. Phys.: Conf. Ser. 2015. 633. P. 012076. DOI: 10.1088/17426596/633/1/012076.
Поступила в редакцию (Received) 10.12.2018 Принята к опубликованию (Accepted) 28.11.2019