Научная статья на тему 'DFT STUDIES OF STRUCTURAL PARAMETERS, VIBRATIONAL FREQUENCIES AND NMR SPECTRA OF 3-(1H-BENZO[D]IMIDAZOL1-YL)-N'-(TOSYLOXY)PROPANIMIDAMIDE'

DFT STUDIES OF STRUCTURAL PARAMETERS, VIBRATIONAL FREQUENCIES AND NMR SPECTRA OF 3-(1H-BENZO[D]IMIDAZOL1-YL)-N'-(TOSYLOXY)PROPANIMIDAMIDE Текст научной статьи по специальности «Химические науки»

CC BY
61
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
β AMINOPROPIOAMIDOXIMES / TOSYLATION / IR SPECTROSCOPY / NMR SPECTROSCOPY / DFT METHOD

Аннотация научной статьи по химическим наукам, автор научной работы — Yergaliyeva E.M., Kayukova L.A., Vologzhanina A.V., Baitursynova G.P., Vazhev V.V.

Amidoxime derivatives have practically valuable biological properties. We have previously obtained new spiropyrazolinium compounds by arylsulfochlorination of β-aminopropioamidoximes, but in case of β-(benzimidazol-1-yl)propioamidoxime we have obtained O-substitution product - 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide. The aim of the work is predicting of structural parameters (bond lengths, bond angles), vibrational frequencies and NMR spectra of 3-(1H-benzo-[d]imidazol-1-yl)N'-(tosyloxy)propanimidamide. The calculations were performed using Gaussian 09 package. Structural parameters and vibrational frequencies was calculated using DFT (B3LYP/B3PW91/WB97XD)/6-31G(d,p). 1H and 13C NMR was predicted using DFT B3LYP/6-31G(d,p)-GIAO in DMSO. All calculated values are in good agreement with experimental data. The calculated bond lengths and bond angles were compared with results of X-ray structural analysis. The best correlation coefficient was 0.981 (calculations with B3LYP level). For bond angles, the best result was obtained with B3LYP level (0.990). For vibrational frequencies correlation coefficients between the calculated and experimental values were 0.997 (B3LYP), 0.996 (B3PW91) and 0.995 (WB97XD). The most accurate method was used for predicting NMR spectrum. The correlation coefficients between the experimental and calculated 1H and 13C chemical shifts were 0.949 and 0.999 respectively.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DFT STUDIES OF STRUCTURAL PARAMETERS, VIBRATIONAL FREQUENCIES AND NMR SPECTRA OF 3-(1H-BENZO[D]IMIDAZOL1-YL)-N'-(TOSYLOXY)PROPANIMIDAMIDE»

Chemical Journal of Kazakhstan

ISSN 1813-1107, elSSN 2710-1185 https://doi.org/10.51580/2021-1/2710-1185.46

Volume 4, Number 76 (2021), 15 - 25

UDC 547.447

DFT STUDIES OF STRUCTURAL PARAMETERS, VIBRATIONAL FREQUENCIES AND NMR SPECTRA OF 3-(1H-BENZO[D]IMIDAZOL-1-YL)-N'-(TOSYLOXY)PROPANIMIDAMIDE

E.M. Yergaliyeva1 , L.A. Kayukova1, A.V. Vologzhanina2, G.P. Baitursynova1, V.V. Vazhev3

1JSC «A.B. Bekturov Institute of Chemical Sciences», Almaty, Kazakhstan 2A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow, Russia 3 Kostanay Social Technical University named after the Academician Z. Aldamzhar,

Kostanay, Kazakhstan E-mail: erg_el@mail.ru

Abstract: Amidoxime derivatives have practically valuable biological properties. We have previously obtained new spiropyrazolinium compounds by arylsulfo-chlorination of P-aminopropioamidoximes, but in case of P-(benzimidazol-1-yl)pro-pioamidoxime we have obtained O-substitution product - 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)pro-panimidamide. The aim of the work is predicting of structural parameters (bond lengths, bond angles), vibrational frequencies and NMR spectra of 3-(1H-benzo-[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide. The calculations were performed using Gaussian 09 package. Structural parameters and vibrational frequencies was calculated using DFT (B 3 LYP/B 3PW91 /WB97XD)/6-31G(d,p). 1H and 13C NMR was predicted using DFT B3LYP/6-31G(d,p)-GIAO in DMSO. All calculated values are in good agreement with experimental data. The calculated bond lengths and bond angles were compared with results of X-ray structural analysis. The best correlation coefficient was 0.981 (calculations with B3LYP level). For bond angles, the best result was obtained with B3LYP level (0.990). For vibrational frequencies correlation coefficients between the calculated and experimental values were 0.997 (B3LYP), 0.996 (B3PW91) and 0.995 (WB97XD). The most accurate method was used for predic-ting NMR spectrum. The correlation coefficients between the experimental and calculated :H and 13C chemical shifts were 0.949 and 0.999 respectively.

Key words: P-aminopropioamidoximes, tosylation, IR spectroscopy, NMR spectroscopy, DFT method, Gaussian 09.

Citation: Yergaliyeva E.M., Kayukova L.A., Vologzhanina A.V., Baitursynova G.P., Vazhev V.V. DFT studies of structural parameters, vibrational frequencies and NMR spectra of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide. Chem. J. Kaz., 2021, 4(76), 15-25. DOI: https://doi.org/10.51580/2021-1/2710-1185.46

1. Introduction

Amidoximes can be used as intermediates for the synthesis of heterocyclic compounds [1, 2]. They are usually used for derivatisation biologically active compounds with various functional groups [3-5]. We previously reported [6] on the results of />ara-toluenesulfochlorination of P-aminopropioamidoximes in the presence of DIPEA, as a result of which, in the case of the initial P- aminopro-pioamidoximes (P-amino group: piperidin-1-yl, morpholin-1-yl, 4-phenylpipe-razin-1-yl) toluenesulfonates of the corresponding spiropyrazolinium compounds were obtained. It should be noted that the tosylation of P-(benzimidazol-1-yl)propioamidoxime leads to the formation of O-arylsulfochlorination product -3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide.

Differences in the structure of the obtained compounds lead to differences in their physicochemical characteristics, such as melting points, NMR shifts and vibrational frequencies. The aim of this work is predicting of structural parameters (bond lengths, bond angles), vibrational frequencies and NMR spectra of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide using DFT method with the B3LYP, B3PW91 and WB97XD functionals and 6-31G(d,p) basis set. DFT (density functional theory) is the modern computational method of quantum chemistry, that shows high predictive abilities when calculating molecular structures and vibrational frequencies [7-9], and allows to use it for analytical purposes. We have presented the results of calculations of structural parameters of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide using DFT B3LYP/6-31G(d,p) method. In this paper, we present a comparison of similar calculations for several functionals (B3LYP, B3PW91 and WB97XD). The DFT method makes it possible to simulate NMR spectra of organic molecules [7, 10-12], which we represent in this work. All calculated values were compared with experimental data.

2. Results and discussion

The bond lengths and bond angles calculated and obtained using X-ray structural analysis are summarized in table 1. The correlation between the experimental and calculated data is characterized by the correlation coefficient (R), root mean square error (rms) and average differences (Av. dif.), given in the table. The computed bond lengths differed from the experimental values by 0.023 A (1.6%) for B3LYP level, 0.021 A (1.5%) for B3PW91 level and 0.026 A (1.8%) for WB97XD level (on the average). The best correlation coefficient between the experimentally found and calculated bond lengths in the case of B3LYP level is 0.981. Using the level B3PW91, the correlation coefficient was 0.979, for the level WB97XD - 0.964. For bond angles, the best result was also obtained at the B3LYP level (0.990). In the case of using both B3PW91 and WB97XD levels, correlation coefficient was 0.988. The calculated angles differ from the experimental angles by 1.036° (0.8%), 1.145° (1%) and 1.152° (1%) at

B3LYP, B3PW91 and WB97XD levels respectively. A comparison of the calculated values and the X-ray data shows that the most accurate level for the calculation of structural parameters is B3LYP level.

Table 1 - Bond lengths (A) and bond angles (°) for 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy) propanimidamide

Bond X-ray B3LYP B3PW91 WB97XD

1 2 3 4 5

Bond lengths (A)

C2-C3 1.378 1.391 1.389 1.385

C2-C7 1.400 1.400 1.399 1.398

C3-C4 1.403 1.409 1.407 1.408

C4-C5 1.383 1.393 1.390 1.387

C5-C6 1.397 1.397 1.396 1.395

C6-C7 1.399 1.416 1.414 1.406

N1-C1 1.355 1.381 1.375 1.373

N1-C6 1.385 1.388 1.383 1.380

N1-C8 1.458 1.451 1.448 1.451

N2-C1 1.312 1.307 1.306 1.304

n2-c7 1.396 1.389 1.384 1.385

C8-C9 1.531 1.545 1.531 1.530

C9-C10 1.511 1.507 1.505 1.507

N3-C10 1.330 1.366 1.359 1.355

N4-C10 1.294 1.294 1.292 1.391

O1-N4 1.491 1.455 1.435 1.435

S1-O1 1.589 1.671 1.661 1.646

S1-O2 1.430 1.458 1.453 1.446

S1-O3 1.432 1.458 1.453 1.444

S1-C11 1.751 1.781 1.773 1.777

C11-C12 1.390 1.396 1.394 1.391

C11-C16 1.393 1.396 1.393 1.390

C12-C13 1.384 1.392 1.390 1.389

C13-C14 1.390 1.402 1.401 1.399

C14-C15 1.392 1.403 1.400 1.399

C14-C17 1.505 1.509 1.504 1.506

C15-C16 1.378 1.392 1.391 1.389

N3-C10 1.330 1.366 1.359 1.355

R - 0.981 0.979 0.964

rms - 0.023 0.021 0.026

Av.dif. - 0.011 -0.006 -0.007

Bond angles (°)

C1-N1-C6 106.5 105.8 105.9 105.7

Continuation table 1

1 2 3 4 5

C1-N1-C8 127.8 126.7 126.9 129.4

c1-n2-c7 104.3 104.4 104.3 104.2

C2-C3-C4 121.6 121.4 121.4 121.4

C2-C7-C6 119.8 119.8 119.7 119.7

C3-C2-C7 117.7 118.1 118.1 118.0

C3-C4-C5 121.8 121.5 121.6 121.5

C4-C5-C6 116.1 116.8 116.6 116.6

C5-C6-C7 122.9 122.4 122.5 122.8

C6-N1-C8 125.5 127.3 127.1 124.9

Ni-C6-C5 131.8 132.6 132.5 131.9

N1-C6-C7 105.3 105.0 104.9 105.3

n1-c1-n2 114.1 114.4 114.5 114.5

Ni-C8-C9 113.6 112.6 111.6 112.2

n2-c7-c2 130.3 129.8 129.8 130.0

N2-C7-C6 109.8 110.4 110.4 110.3

C8-C9-C10 113.6 111.7 113.9 110.2

N3-C10-C9 119.6 118.0 117.4 118.2

N4-C10-C9 113.0 115.9 116.9 116.1

N3-C10-N4 127.5 125.9 125.6 125.6

C10-N4-O1 107.5 108.1 108.3 107.9

n4-o1-s1 111.1 111.1 111.0 110.3

O1-S1-O2 102.3 101.9 101.7 102.4

O1-S1-O3 110.5 108.8 109.0 110.1

O1-S1-C11 103.4 103.5 103.3 101.4

O2-S1-O3 119.3 122.1 122.3 121.8

O2-S1-C11 109.4 109.5 109.5 110.5

O3-S1-C11 110.6 109.2 109.2 108.7

S1-C11-C16 119.2 119.6 119.6 119.3

S1-C11-C12 120.0 119.0 119.0 119.5

C12-C11-C16 120.8 121.4 121.4 121.3

C11-C16-C15 118.9 118.8 118.9 118.9

C11-C12-C13 119.0 118.9 118.9 119.0

C14-C15-C16 121.7 121.2 121.2 121.2

C12-C13-C14 121.5 121.2 121.2 121.1

C13-C14-C15 118.2 118.5 118.5 118.5

C15-C14-C17 120.8 120.7 120.8 120.5

C13-C14-C17 121.0 120.8 120.7 121.0

R — 0.990 0.988 0.988

rms - 1.036 1.145 1.152

Av.dif. - -0.079 0.045 0.155

Molecular structure of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosy-loxy)pro-panimidamide with atomic numbering:

H

C2

H2

H Hi^ X

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

VH7

Hl/ VA

H

H10

^H0

H5

V

O

SHR

©

H

O

15 H

C C

Cq—^Cio

16

/ \ H19 "C8 .^ii-C14_H

V / H

Cl3-Cl2

S2 O

3

20

n21

'13_

H

18

H

17

As shown by the above calculations, the use of this approximation is a reliable theoretical method for solving molecular modeling problems. High accuracy of molecular modeling and structure parameters prediction is a prerequisite for adequate modeling of the vibrational spectrum. The analysis of the calculated (DFT B3LYP, B3PW91, WB97XD) and experimental vibrational frequencies was carried out. Table 2 shows the characteristic vibrational frequencies of the compound. In the IR spectra of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide, symmetric and asymmetric stretching vibrations of the SO2 group located in the region 1190 cm-1 and 1358 cm-1. According to calculations using B3LYP level, the corresponding vibrations of this group are displaced in the region 1161 cm-1 and 1365 cm-1. For B3PW91 method the prediction is more accurate: symmetric vibrations 1180 cm-1 and asymmetric ones 1370 cm-1. The least accurate method turned out to be the WB97XD level (1130 cm-1 and 1430 cm-1 respectively).

The C=C stretching band was strongly seen in the region v 1617 cm1, whereas the calculated values was displaced in the regions 1634 cm1, 1640 cm1, 1663 cm1 for B3LYP, B3PW91, WB97XD calculations respectively. Experimental stretching vibrational mode of Csp2-H bonds was observed in the region > > 3000 cm-1 also was observed in this area for all calculations. Calculated C=N vibration at B3LYP (1671 cm-1) and B3PW91 (1625 cm-1) levels showed slight deviation from the experimental value, while WB97XD calculation (1640 cm-1) was in good agreement with experiment (1648 cm-1). The stretching (N-H)2 vibrations observed in the region of 3417 cm-1 are significantly shifted in all the calculated spectrum. This significant difference may be attributed to the physical and electronic effect of neighboring atoms.

Table 2 - Most characteristic experimental and vibrational frequencies of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy )propanimidamide

Method Stretching vibrations of bonds, v, cm 1 R s

vc=N Vc=c v S02 v(N-H)2 vCsp3-H vCsp2-H

asym. sym.

Experimental 1648 1617 1358 1190 3417 2791, 2920 3110,3237 - -

B3LYP 1671 1634 1365 1161 3586 3042, 3061 3181,3235 0.997 75

B3PW91 1625 1640 1370 1180 3621 3053, 3098 3194,3243 0.996 80

WB97XD 1640 1663 1430 1130 3657 3070, 3083 3216, 3227 0.995 91

Correlation analysis was studied, and the correlation coefficients between the calculated and experimental vibrational frequencies are 0.997 (B3LYP), 0.996 (B3PW91) and 0.995 (WB97XD). In general, the calculated frequencies are in good agreement with the experimental data, which makes it possible to use them for analytical purposes.

Thus, the most accurate method for predicting the geometry and vibration frequencies of the compound under study is DFT with the B3LYP functional and 6-31G(d,p) basis set. This method was used to calculate the 1H and 13C NMR spectrum of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide in DMSO. The experimental and calculated 1H and 13C chemical shift values are presented in table 3.

Table 3 - 1H and 13C NMR spectra of 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide

Chemical shift, 5, ppm

'Н 13С

Atoms Experimental B3LYP Atoms Experimental B3LYP

1 2 3 4 5 6

H1 7.99 8.28 С1 158.0 158.8

H2 7.64 7.85 С2 119.8 124.2

H3 7.18 7.73 С3 121.9 126.3

H4 7.18 7.78 С4 122.7 126.5

H5 7.64 8.18 С5 110.8 114.4

H6 4.33 4.52 С6 133.5 140.4

H7 4.33 4.35 С7 143.7 147.7

H8 2.50 2.70 С8 31.2 41.5

H9 2.50 3.14 С9 41.6 49.2

H10 6.80 4.54 С10 144.7 153.2

Continuation table 2

1 2 3 4 5 6

H11 6.80 5.56 C11 134.0 142.9

H12 7.36 7.84 C12 128.5 133.4

H13 7.70 8.36 C13 130.0 134.5

H14 7.70 8.37 C14 144.3 149.0

H15 7.36 8.11 C15 128.5 131.8

H16 2.38 2.40 C16 130.0 133.8

H17 2.38 2.85 C17 21.6 30.4

H18 2.38 2.85 - - -

R 0.949 R 0.999

s 0.751 s 2.135

The calculated :H chemical shift values are in good agreement with the experimental values, except those of H10 and H11 (deviation of 2.26 and 1.24 respectively). These deviations can be explained by the peculiarities of the functional and basis set combination used. No significant deviations are observed in 13C shifts. For :H and 13C chemical shifts, significant correlation coefficients were obtained between the experimental and calculated values (0,949 and 0,999 respectively).

3. Conclusion

A quantum chemical study of the molecular structure and vibrational frequencies of 3 -(1H-benzo[d]imidazol-1 -yl)-N'-(tosyloxy)propanimidamide is reported. Computed geometrical and electronic parameters at DFT-B3LYP, -B3PW91, -WB97XD/6-31G(d,p) confirmed by X-ray analysis and IR spectroscopy. Good correlation coefficients between experimental and calculated values make it possible to use the DFT method to predict the molecular structure and interpret the IR spectra of synthesized compound and its analogues. :H and 13C NMR chemical shifts was calculated using the DFT-B3LYP/6-31G(d,p)-GIAO in DMSO. Results show very good agreement with experimental data. The correlation coefficients between the experimental and calculated :H and 13C chemical shifts are 0.949 and 0.999 respectively. The calculated NMR spectrum can be used for analytical purposes.

4. Experimental part

Methods for obtaining 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)pro-panimidamide, characteristics and identification were published in [6].

The paper uses bond lengths and angles in 3-(1H-benzo[d]imidazol-1-yl)-N'-(tosyloxy)propanimidamide crystal obtained as a result of X-ray analysis. The experimentally established crystal and molecular structure of the compound will be published later.

IR spectra were obtained on a Thermo Scientific Nicolet 5700 FTIR instrument in KBr pellets. 1H and 13C NMR spectra were recorded on a Bruker Avance III 500 MHz NMR spectrometer (500 and 126 MHz, respectively).

The calculations were performed using Gaussian 09 package. The molecular structure of compounds was fully optimized using density functional theory at the B3LYP, B3PW91 and WB97XD levels with 6-31G(d,p) basis set. The absence of imaginary (negative) frequencies in the calculation results indicates that a local minimum was found. The NMR chemical shifts were calculated at DFT-B3LYP/6-31G(d,p) in DMSO. Gauge-including atomic orbitals (GIAO) approximation was used [13]. Chemical shifts were derived on a S-scale in relation to the TMS.

Funding: This study was supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (IRN: BR10965255).

Acknowledgments: NMR spectra (1H and 13C) obtained in National scientific laboratory, S. Amanzholov East Kazakhstan State University by K. Akatan. Conflicts of Interest: The authors declare no conflict of interest.

Information about authors:

Yergaliyeva E.M. - PhD student, Junior researcher; e-mail: erg_el@mail.ru; ORCID ID: 0000-0001-9615-2575

Kayukova L.A. - Dr. of chemical sciences, Professor, Chief Researcher; e-mail: lkayukova@mail.ru; ORCID ID: 0000-0002-1900-1228

Vologzhanina A.V. - Senior Researcher, PhD in Chemistry; e-mail: vologzhanina@mail.ru; Web of Science Researcher ID: G-2125-2014

Baitursynova G.P. - PhD, Researcher; e-mail: guni-27@mail.ru; ORCID ID: 0000-0002-8883-0695

Vazhev V.V. - Dr. of chemical sciences, Professor; vladimir.vazhev@gmail.com; ORCID ID: 0000-0002-0493-7461

References

1. Tarasenko M.V., Kotlyarova V.D., Baykov S.V. 2-(1,2,4-Oxadiazol-5-yl)anilines based on amidoximes and isatoic anhydrides: synthesis and structure features. Russ. J. Gen. Chem, 2021, 91, 768-778. DOI: 10.1134/S1070363221050030

2. Camacho C.M., Pizzio M.G., Roces D.L., Boggián D.B., Mata E.G., Bellizzi Y., Roguin L.P. Design, synthesis and cytotoxic evaluation of a library of oxadiazole-containing hybrids. RSC Advances, 2021, 11(47), 29741-29751. DOI: 10.1039/D1RA05602F

3. Kayukova L., Vologzhanina A., Praliyev K., Dyusembaeva G., Baitursynova G., Uzakova A., Bismilda V., Chingissova L., Akatan K. Boulton-Katritzky rearrangement of 5-substituted phenyl-3-[2-(morpholin-1-yl) ethyl]-1,2,4-oxadiazoles as a synthetic path to spiropyrazoline benzoates and chloride with antitubercular properties. Molecules, 2021, 26(4), 967. DOI: 10.3390/molecules26040967

4. Oliveira R.J., Santos C.S., Caiana R.R.A., Farias K.J.S., de Almeida Júnior R.F., Machado P.R.L., Freitas J.C.R. Design, Synthesis and Antitumoral Activity of New O-Alkylamidoximes. Chemistry Select. 2021, 6(33), 8774-8778. DOI: 10.1002/slct.202102128

5. Papastergiou A., Perontsis S., Gritzapis P., Koumbis A. E., Koffa M., Psomas G., Fylak-takidou K.C. Evaluation of O-alkyl and aryl sulfonyl aromatic and heteroaromatic amidoximes as

novel potent DNA photo-cleavers. Photochemical & Photobiological Sciences, 2016, 15(3), 351-360. DOI: 10.1039/x0xx00000x

6. Kayukova L.A., Baitursynova G.P., Yergaliyeva E.M., Zhaksylyk B.A., Yelibayeva N.S. Arylsulphonates of spiropyrazolines and o-tosilate-P-(benzimidazol-1-yl)propioamidoxyme as the products of P-aminopropioamidoximes tosylation. Chem. J. Kaz., 2021, 2(74), 22-32. DOI: 10.51580/2021-1/2710-1185.25

7. Gummidi L., Kerru N., Ibeji C.U., Singh P. Crystal structure and DFT studies of (E)-1-(4-fluorophenyl)-3-(1H-indol-1-yl)-4-styrylazetidin-2-one. J. Mol. Struct., 2019, 1187, 50-58. DOI: 10.1016/j.molstruc.2019.03.053

8. Ulahannan R.T., Kannan V., Vidya V., Sreekumar K. Synthesis and DFT studies of the structure-NLO activity evaluation of 2-(4-methoxyphenyl)-1,4,5-triphenyl-2,5-dihydro-1H-imida-zole. J. Mol. Struct., 2020, 1199, 127004. DOI: 10.1016/j.molstruc.2019.127004

9. Odame F., Hosten E.C. Synthesis, characterization and computational studies of two triazaspiro tetracycles. Acta Chimica Slovenica, 2018, 65(3), 531-538. DOI: 10.17344/acsi.2017.4084

10. Gao P., Zhang J., Peng Q., Zhang J., Glezakou V.A. General protocol for the accurate prediction of molecular 13C/1H NMR chemical shifts via machine learning augmented DFT. Journal of Chemical Information and Modeling, 2020, 60(8), 3746-3754. DOI: 10.1021/acs.jcim.0c00388

11. Yesiltepe Y., Nunez J.R., Colby S.M., Thomas D.G., Borkum M.I., Reardon P.N., Renslow R.S. An automated framework for NMR chemical shift calculations of small organic molecules. Journal of cheminformatics, 2018, 10(1), 1-16. DOI: 10.1016/j.carbpol.2020.115846.

12. Alam M.J., Khan A.U., Alam M., Ahmad S. Spectroscopic (FTIR, FT-Raman, 1H NMR and UV-Vis) and DFT/TD-DFT studies on cholesteno[4,6-b,c]-2',5'-dihydro-1',5'-benzothiazepine. J. Mol. Struct., 2019, 1178, 570-582. DOI: 10.1016/j.molstruc.2018.10.063

13. Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc., 1990, 112(23), 8251-8260. DOI: 10.1021/ja00179a005

Тушндеме

DFT ЭД1С1МЕН 3-(Ш-БЕШОр]ИМИДАЗОЛ-1-ИЛ)-У-(ТОЗИЛОКСИ)ПРОПАНИМИДАМИДТЩ К;¥РЫЛЫМДЬЩ ПАРАМЕТРЛЕР1Н, ТЕРБЕЛМЕЛ1 ЖШЛ1КТЕРШ ЖЭНЕ ЯМР-СПЕКТР1Н ЗЕРТТЕУ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Э.М. Ергалиева1, Л.А. Каюкова1, А.В. Вологжанина2, Г.П. Байтурсынова1, В.В. Важев3

1АК «Э.Б. Бектуров атътдагы химия гылымдары институты», Алматы, Казахстан

2Ресей Fъlлъm Академиясыныц А. Н. Несмеянов атындагы элементорганикалыц цосылыстар институты, Мэскеу, Ресей

3З. Алдамжар атындагы Костанай элеуметтж-техникалыц университетi, Костанай, Казацстан E-mail: erg_el@mail.ru

Амидоксим туындылары ic жYзiндe к¥нды биологияльщ касиеттерге ие болып келедг Осыган дешн ß-аминопропиоамидокcимдeрдi арилсульфохлорлау жолымен жана спиропиразолиний косылыстарын алган болатынбыз, 6ipaK ß-^ен-зимидазол-1 -ил)пропиоамидоксим жагдайында 3 -(1Н-бензо [d]имидaзол-1 -ил)-№-(тозилок-си)пропанимидамид о-алмастырылган внiмi алынды. Б^л ж^мыстын мак-саты 3-(1Н-бензо [d]имидaзол-1 -ил)-N'-(тозилокcи)пропaнимидaмид к¥рылымдык пара-

метрлерш (байланыс узындыгы мен б^рыштары), тербелмелi жиiлiктерiн жэне ЯМР cneKTpiH болжау болып табылады. Барлык есептеулер Gaussian 09 багдарламасын колдана отырып, к¥рылымдьщ параметрлер жэне тербелю жиiлiк-терi DFT (B3LYP/B3PW91/WB97XD)/6-31g(d,p) кемепмен есептелiндi. 1H жэне 13C ЯМР спектрлк болжау ДМСО-да DFT B3LYP/6-31G(d,p)-GIAO колдану аркылы жYрri-зiлдi. Барлык есептелiнген мэндер тэжiрибелiк мэлiметтерге сэйкес келедк Есепте-лiнген узындьщтар мен байланыс б^рыштары рентгендiк к¥рылымдьщ талдау деректерiмен салыстырылды. Байланыс узындыгыньщ ен жогары корреляция коэффициентi 0.981 керсетл (B3LYP функционалдыгын колдану аркылы есептеу). Валентпк б^рыштар Yшiн ен жогары корреляция коэффициента B3LYP денгейiмен (0.990) орындалды. Тербелмелi жиiлiктер Yшiн есептелген жэне тэшрибелж мэндер арасындагы корреляция коэффициенте^ 0.997 (B3LYP), 0.996 (B3PW91) жэне 0.995 (WB97XD) мэндерш керсетп. Пайдаланылган эдiстердiн ен нактысы ЯМР спектрш болжау Yшiн тандалды. :Н жэне 13C есептелiнген жэне тэшрибелж химиялык ауысулар арасындагы корреляция коэффициента сэйкесiнше 0.949 жэне 0.999 мэндердi к¥райды.

ТYЙiндi сездер: ß-аминопропиоамидоксимдер, тозилдеу, ИК-спектроскопия, ЯМР спектроскопиясы, DFT эдiсi, Gaussian 09.

Резюме

ИЗУЧЕНИЕ СТРУКТУРНЫХ ПАРАМЕТРОВ, КОЛЕБАТЕЛЬНЫХ ЧАСТОТ И ЯМР СПЕКТРА 3-(1И-БЕШОр]ИМИДАЗОЛ-1-ИЛ)-]У-(ТОЗИЛОКСИ)ПРОПАНИМИДАМИДА МЕТОДОМ DFT

Э.М. Ергалиева1, Л.А. Каюкова1, А.В. Вологжанина2, Г.П. Байтурсынова1, В.В. Важев3

'АО «Институт химических наук имени А.Б. Бектурова», Алматы, Казахстан 2Институт элементоорганических соединений Российской Академии наук имени А. Н. Несмеянова, Москва, Россия

3Костанайский социально-технический университет имени академика З. Алдамжара, Костанай, Казахстан E-mail: erg_el@mail.ru

Производные амидоксимов обладают практически ценными биологическими свойствами. Ранее нами были получены новые спиропиразолиниевые соединения путем арилсульфохлорирования ß-аминопропиоамидоксимов, но в случае ß- (бензи-мидазол-1-ил)пропиоамидоксима нами был получен продукт O-замещения - 3-(1Н-бензоИимидазол-1-ил)-№-(тозилокси)пропанимидамид. Цель настоящей работы состоит в прогнозировании структурных параметров (длин и углов связей), колебательных частот и ЯМР спектра 3-(1Н-бензоВДимидазол-1-ил)-№-(тозилокси)пропа-нимидамида. Все расчеты были выполнены с использованием программы Gaussian 09 Структурные параметры и колебательные частоты рассчитаны с ипользованием DFT (B3LYP/B3PW91/WB97XD)/6-31G(d,p). Прогнозирование 1Н и 13C ЯМР спектра проводилось с применением DFT B3LYP/6-31G(d,p)-GIAO в ДМСО. Все рассчитанные значения хорошо согласуются с экспериментальными данными. Рассчитанные длины и углы связей сравнивались с данными РСА. Лучший

коэффициент корреляции длин связей составил 0.981 (расчет с применением функционала B3LYP). Для валентных углов лучший коэффициент корреляции также достигнут с уровнем B3LYP (0.990). Для колебательных частот коэффициенты корреляции между рассчитанными и экспериментальными значениями составили 0.997 (B3LYP), 0.996 (B3PW91) и 0.995 (WB97XD). Наиболее точный из использованных методов был выбран для прогно-зирования спектра ЯМР. Коэффициент корреляции между рассчитанными и экспериментальными химическими сдвигами 1H и 13C равны 0.949 и 0.999 соответственно.

Ключевые слова: p-аминопропиоамидоксимы, тозилирование, ИК спектроскопия, спектроскопия ЯМР, DFT метод, Gaussian 09.

i Надоели баннеры? Вы всегда можете отключить рекламу.