254
BecTHMK Ka3HMy №3-2017
UDC 615.468
1S.K.Tanirbergenova, ^.K.Zhylybayeva, 2A.N.Nurgaliyeva, iG.M.Naurzbayeva, ^AMansurov
1Institute of Combustion Problems 2Asfendiyarov Kazakh National Medicai University
DEVELOPMENT OF THE METHODS FOR PRODUCTION OF ABSORBING CARBON NANOPOROUS MATERIALS
WITH THE HEALING EFFECT
In the course of the work fulfillment, carbon materials with high specific surface were synthesized from renewable wastes of plant raw materials. High adsorption ability of dressings based on carbon sorbents is related to not only the extremely developed surface with a great amount of pores of different sizes and the ability to chemical binding of wound excretion also the possibility of retaining the wound exudates with chemical compounds due to inclusion of reactive functional groups. Keywords: carbon materials, sorbent, adsorption ability, adhesive properties
High application of the sorption-active dressings for the treatment of festering wound led to the emergence of the whole direction - sorption applicative therapy. It should be noted that numerical values of sorption ability of dressing materials presented in medical literature are, as a rule, overstated and to a great extent correspond to the sorption ability that characterize mechanical filling of the capillary-porous structure of the material with the sorbate. Using medical sorbents must meet certain requirements: a high sorption ability, to ensure a good outflow of fluid from the wound and sufficiently good adhesion to the wound of surface [1, 2].
Unlike the sorbents obtained by conventional methods, the new sorbents on the basis of plant raw materials have significant porosity, developed specific surface, high sorption ability and selective properties. An obvious advantage of these sorbents is that they are obtained from cheap, annually renewable, ecologically, friendly plant raw materials [3].
In the course of the work fulfillment, a carbon material (CM) was synthesized from rice husks (RH) with its subsequent activation and demineralization. The properties of the sorbent being obtained depend on the methods of carbonization, activation and conditions of production. In the process of carbonization, changing the conditions of production, it is possible to purposefully modify the surface of hydrophilic carbon adsorbents imparting them specific hydrophilic-hydrophobic and hydrophilic properties and preserving the porous structure of the raw materials.
The physic-chemical characteristics of the obtained CM effecting the adsorption ability were studied. Measurement of specific surface by BET method and size of pores was carried out on Sorbtometer of the model M [4]. The investigation results are presented in Table 1.
Table 1 - The results of analyses of the obtained sorbents on Sorbtometer-M
Samples obtained under different conditions Specific surface, m2/g Specific volume of pores, cm3/g Average size of pores, nm
CM based on RH 125.1-142.6 0.055-0.068 1.721
CM powder based on RH 198.3-202.7 0.079-0.092 1.718
CM based on RH after activation 223.4-243.7 0.092-0.100 1.722
Demineralized CM based on RH 216.6-251.5 0.087-0.108 1.721
It is seen from Table 1 that, upon milling the obtained sorbents, the volume of pores increases from 40 to 67%. A particularly considerable increase in the volume of pores is observed during activation and demineralization, i.e. the volume of pores in all samples makes up 1.7 nm. The specific surface of sorbents makes up 125.1- 142.6 m2/g, that of milled sorbents - 198.3- 202.7 m2/g and that of the sorbents after activation and demineralization 223.4-243.7, 216.6-251.5 m2/g, respectively.
Physico-chemical characteristics of the synthesized sorbents were studied by modern physico-chemical methods of analysis (IR-Fourier-, method of electron microscopy, atomic-adsorbtion analysis). Electron-microscope study of the sorbents was carried out on scanning electron probe micro-analyzer JCXA-7334 [5]. Figure 1 presents electron microscopic images of initial RH and RH after carbonization.
a)!
b)l
a - EM image of initial RH; b - EM image of RH after carbonization Figure 1. Electron-microscopic images of initial RH and obtained sorbents
It is shown by EM investigation that by carbonization it is possible to obtain a more developed struction with a greater specific surface and porosity. As is seen in Figure 1, the sample in the initial form is very dense and does not contain pores on its surface, while high temperature carbonization leads to Table 2- Mineral composition of the ash of carbon samples based on RH
morphological changes in the structure of the obtained carbon materials.
The mineral composition of the ash of the obtained carbon sorbents was studied by X-ray micro analysis on microfocus [6]. The results of X-ray micro-analysis are presented in Table 2. obtained under different conditions
BecTHMK Ka3HMy №3-2017
255
Samples obtained under different conditions Composition , % mass.
SiO2 CaO MnO Fe2O3 K2O
CM based on RH 78.05 4.96 0.32 2.03 14.64
CM powder based on RH 83.83 2.32 0.12 4.75 8.98
CM based on RH after activation 90.04 1.12 0.26 3.00 5.58
Demineralized CM based on RH 91.61 0.78 0.26 1.72 5.63
As is seen in Table 2, the mineral part consists mainly of silicon, calcium, manganese, iron and potassium oxides. In the course of treatment, the content of ash changes. In the mineral composition of the ash of the powderlike carbon sorbent one can observe a significant increase in the content of iron and silicon oxides and decrease in the content of calcium, manganese and potassium oxides. The increase in the content of iron oxide in the powderlike sample is explained by pollution of iron, when using a planetary ball mill for milling. In the course of activation and demineralization, the amount of silicon oxide in the sample increases up to 90% on account of the decrease in the content of other metal oxides.
For example, it is shown that during carbonization at the temperature higher than 750°C amorphous silicon oxide contained in rice husks transforms into cristobalite. The carbohydrate part of plant raw materials undergoes more complex transformations as it is known that plant raw materials, in particular, rice husks contain polysaccharides and mineral elements.
The chemical structure of carbon material is quite complex and consists mainly of amorphous and microcrystalline graphite- like parts. Under certain conditions of carbonization, formation of carbon tubes and other fullerene-like structures is possible. The ability of CM to adsorption of different molecules is determined
by the structure of its surface, the nature and concentration of surface reactive groups [7].
The surface properties of CM were studied by IR-Fourie spectroscopic method. In the IR-spectrum of the initial sample there are characteristic absorption bands of stretching vibrations of NH2- (3432 cm-1), bound OH- (3010, 3106 cm-1), C=0- (1645 cm-1), C-O- (1242 cm-1), pendulum deformation vibrations of C-OH-groups (1056, 1158 cm-1), stretching vibrations of C=C-, C=N-bonds (1663 cm-1) and deformation vibrations of CH2-groups (1379 cm-1). In IR-spectra, after carbonization, the spectral pattern somewhat changes, the intensity of adsorption bands of the following groups NH2, -C-OH, -C=O decreases (-twice), bands of C=C-bonds (2170 cm-1) appear. This indicates the presence of the structures of polyaromatic hydrocarbons. On the contrary, activation and demineralization of samples result in the increase in the intensity of adsorption bands of functional groups [8]. Thus, the presence of such structures and reactive functional groups must contribute to the increase of sorption capacity of carbonized sorbents.
Adsorption activity in relation to methylene blue and iodine were performed according to GOST 4483-74 and GOST 6217-74, respectively [9, 10]. The results of sorption capacity in relation to methylene blue and iodine are presented in Table 3.
Table 3 - The results of sorption characteristics of the obtained sorbents
Sorbents obtained under different conditions Adsorption capacity in relation to methylene blue, mg/g Adsorption capacity in relation to iodine, %
CM based on RH 92.4-97.8 56.6-63.9
Powder of CM based on RH 107.6-112.1 60.2-73.2
CM based on RH after activation 137.3-157.6 78.9-96.3
Demineralized CM based on RH 140.8-153.7 89.2-93.1
It is seen in Table 3 that, when demineralizing carbon sorbent based on RH, adsorption capacity in relation to methylene blue and iodine increases by 50-60%. On the basis of the obtained results one can conclude that nanostructured carbon sorbents manifest high sorption properties. It is known that the processes taking place on the surface of the modified sorbent, when interacting, are characterized by several kinds of interactions: sorption, ion-exchange and complex formation ones. One of the main characteristics of dressing materials is their adhesive properties. Adhesive properties of dressings are determined by their ability to be fixed on the wound. On the one hand, a dressing must fit closely to the wound, i.e. the surface energy at the boundary dressing wound must be minimal in
order to decrease maximum the extent of traumatization, when taking it off [11].
To prepare dressings, scraps of cloth with the sizes of 60 x 40 cm were taken and coated by a thin layer of carbon materials obtained under different conditions.
The obtained dressing materials were marked as follows: Gauze dressing (bondage) based on CM (GDCM); Gauze dressing based on activated CM (GDDCM); Gause dressing based on CM (VDACM); Viscose dressing based on CM (VDCM); Viscose dressing based on activated CM (VDCM); Viscose dressing based on demineralized CM (VDDCM).
The adhesion ability of dressing materials is studied by the method of Yu.R. Abaev [12]. The obtained results are presented in Table 4.
Table 4- Adhesive properties of the obtained carbon dressings
Carbon dressings The value of the angle formed between preparations from the wound surface (YE)
Gauze 9 ± 0.5
GDCM 18 ± 1.9
GDACM 17 ± 2.1
GDDCM 19 ± 2.1
Viscose 33 ± 3.2
VDCM 34 ± 3.2
VDACM 38 ± 3.2
VDDCM 38 ± 3.2
It is seen in Table 4 that minimal value of the angle formed between a tangent line in the drop base and the material surface in the medical gauze made up 9,0±0,5°. This indicates the fact that a widely distributed gauze has high adhesive properties compared to other obtained dressings. The experiments demonstrated that carbon coating in gauze dressings provides the decrease of adhesive properties almost twice. The adhesive properties of viscose and viscose dressing based on carbon is considerably low and make up from 33 to 38±3,2°.
A conventional method of determining the adsorption ability of dressing materials is based on weighting of materials after holding in liquid. However, this method allows to determine mainly mechanical filling of the system of capillaries and pores of the material under study by the liquid and its components. It is expedient to call the determined index as not adsorption but absorption ability [13].
The true adsorption ability of the dressing providing fixation of molecules of liquid and its components with the help of physical
256
Вестник КазНМУ №3-2017
and chemical bonds by active functional groups of macromolecules of the dressing can be determined by the method developed by O.S. Mirsharev et al. (1988). It is as follows weighed amounts of the materials under study (0.40 g) allowed to stand in the model liquid (water, albumin, plasma, whole blood and oth.) in the ratio 1:100 at room temperature for 1h. Then, they are drawn out, let the liquid trickle down for 10s and after that they are centrifuged during 45 min at 6000r/m. The
difference in the sample masses before and after standing in liquid allows to determine the percentage of gain in weight and, consequently, their absorption activity. And the difference in the masses of initial and final (after standing in liquid and centrifugating) samples allows to determine the percentage of the gain in weight of the samples, i.e. adsorption activity [14]. Table 5 presents the results of investigation of absorption and adsorption properties of carbon dressing materials.
Table 5 -Sorption ability of carbon dressing materials
Dressing materials Absorption ability, % Sorbtion The ratio of absorption and sorption
ability, % abilities
Gauze 1072.5 ± 17.7 50.4 ± 0.5 21.3
GDCM 1216.6 ± 19.0 82.2 ± 0.5 14.8
GDACM 1896.3 ± 21.8 240.1 ± 0.5 7.9
GDDACM 2113.4 ± 28.4 377.4 ± 0.5 5.6
Viscose 1648.3 ± 12.3 66.7 ± 0.5 24.7
VDCM 1576.5 ± 15.9 141.6 ± 0.5 11.2
VDACM 1967.3 ± 18.4 351.3 ± 0.5 5.6
VDDCM 2403.6 ± 21.7 775.4 ± 0.5 3.1
It is seen from Table 5 that the average gain in weight which indicates the absorption ability of the obtained dressings was in the range of 1072.5-2403.6%.
The ratio between the absorption and adsorption abilities depends directly on the structure and properties of the material. Conventional dressings (gauze, viscose) are characterized by comparatively low indexes of absorption ability close in value (50.4 ± 0.5; 66.7 ± 0.5 %, respectively). Contrifuging after absorption of whole blood by these dressings decreased the initial gain of gauze 21.3 times and that of viscose 24.7 times. The materials having high specific surface and able to physic-chemical binding of the wound exudates are distinguished by practically irreversible adsorption.
Adsorption ability of dressings based on activated and demineralized carbon sorbent is maximal and makes up 240.1775.4%. Centrifuging after absorption of whole blood by these dressings decreased the initial gain 3.1-7.9 times. Thus, high adsorption ability of dressings based on carbon sorbent is explained by not only extremely developed surface with a great amount of pores of different sized and ability to chemical binding of wound excretion but also the possibility to retain the wound exudates with chemical compounds due to inclusion of reactive functional groups. The experimentally observed that the obtained dressings based on carbon have sufficiently high adsorptive, absorptive and lower adhesive properties.
REFERENCES
1 Abaev Yu.K. Surgical dressing. - Minsk: Belorussia. 2005. - 150 p.
2 Kuzin M.I. Wounds and wound infection. - М.: Medicine. 1990. - 592 p.
3 Shaposhnikov Yu.G., Shalnev A.N., Bulgakov V.G. The use of carbon sorbents in combination with antioxidants in healing of wounds // Intern. surgical congress "Wounds. Burns. Dressings". - Tel-Avib. - 1998. - P. 53-55.
4 Closed joint-stock company «Katakon». Analyzer of specific surface Sorbtometr - M. Manual on the work with the program sorbtometr. KNGU 101.00.00.00. Novosibirsk. 2010. - 25 p.
5 Hayat M. А. Principles and methods of electron microscopy in biological investigations. Combridge. 2000. - 340 p.
6 Dulov E.N., Ivailov N.G. X-ray spectral fluorescent analysis: Lecture notes. - Kazan: KazSU, 2008. - 50 p.
7 Luybaroski M.S., Letyagin A.Yu., Gabitov V.Kh. Sorption carbon-mineral preparations in pus-septic surgery.- Novosibirsk, 1994. - 132 p.
8 Kazitsyna A.A., Kupletskaya N.B. The use of UV, NMR and mass- spectroscopy in organic chemistry. - M.: МГУ, 1979. - P. 61-87.
9 GOST 6217-74 Active coal, charcoal, crushed coal.- Specifications dated 01.01.1976. - 7 p.
10 GOST 4453-74 Coal active, char, lightening, powder-like - Specifications dated 01.01.1976. - 22 p.
11 Pavlov V.V., Pleshakov V.P., Maiborodin I.V. Complications of sorption application therapy of festering wounds // Surgery. - 1999. - № 1.
- P 12-14.
12 Abayev Yu.K.. Medicinal preparations in healing wounds // Med.knowledge. - 2010. № 6. - P. 2-5.
13 Ryazantseva N.V., Khandorin G.P., Khassanov O.L. et.al. Experimental foundation of the efficiency of wound absorbing dressing.// Bulletin of the Siberian medicine. - 2009. - Vol. 8, № 4. - P. 60-63.
14 Efimenko I.A., Nuzhdin O.N. The use of sorption materials in complex healing of festering wounds //Military-med.journal. - 1998. - № 7.
- P 28-32.
1С.К.Танирбергенова, 'Н.К.Жылыбаева, 2А.Н.Нургалиева, 1Г.М.Наурзбаева, ^.А.Мансуров
1Жану проблемалары институты
2С.ЖАсфендияров атындагы Казац ¥лттыцмедициналыцуниверситетi
ЖАРАНЫ ЖАЗАТЫН ЭСЕР1 БАР СОРБЦИЯЛАУШЫ К0М1РТЕКТ1 НАНОКЕУЕКТ1 МАТЕРИАЛДАРДЫ АЛУ
Тушн: Жумысты орындау барысында жогары меншшт бетп кем1ртект1 материалдар ;алпына келтсршетш еймдш шиюзаттарыныц ;алдык;тарынан алынды. KeMipTercri сорбенттер непзшдеп тацгыш материалдардыц жогары адсорбциялы; ;асиет олардыц беттш ауданында кеп мелшерде эртYрлi елшемд кеуектердщ болуы мен жарадан белшетш суйьщтыкрен байланысына гана емес, реакцияга ;абшетт функциональды топтардыц жарадан белшетш суйы;ты;пен химиялы; байланысумен TYсiндiрiледi.
Тушцщ сездер: кемiртектi материалдар, адсорбциялы; ;абшет^ адгезиялы; ;асиет
Вестник КазНМУ №3-2017
257
!С.К. Танирбергенова, Щ.К. Жылыбаева, 2А.Н. Нургалиева, Т.М. Наурзбаева, !З.А. Мансуров
1Институт проблем горения 2Казахский Национальный медицинский университет им.С.Д.Асфендиярова
МЕТОДЫ ПОЛУЧЕНИЯ АБСОРБИРУЮЩИХ УГЛЕРОДНЫХ НАНОПОРИСТЫХ МАТЕРИАЛОВ
С ЗАЖИВЛЯЮЩИМ ЭФФЕКТОМ
Резюме: В ходе выполнения работ были синтезированы углеродные материалы с высокой удельной поверхностью из возобновляемых отходов растительного сырья. Высокая адсорбционная способность перевязочных материалов на основе углеродного сорбента объясняется не только чрезвычайно развитой поверхностью с большим количеством пор различного размера и способностью к химическому связыванию раневого отделяемого, но и возможностью удержания раневого экссудата химическими соединениями, благодаря включению реакционно-способных функциональных групп. Ключевые слова: углеродные материалы, адсорбционная способность, адгезивные свойства
УДК: 615.276: 65.9(каз).21(574).
Э.М. Бисенбаев, Г.М. Кадырбаева, К.С. Турсынова, А.Н. Рахменбердиева
С.Ж. Асфендияров атындагы Казац улттыц медицина университетI
ИБУПРОФЕН ^ОСЬЬОТАН ДЭР1Л1К К¥РАЛДАРДЫН КАЗАХСТАН РЕСПУБЛИКАСЫ ФАРМАЦЕВТИКАЛЬЩ НАРЫFЫНДАFЫ
МАРКЕТИНГТ1К ТАЛДАУЫ
Мацалада курамында ибупрофен бар дэршк цуралдардыц Казахстан Республикасы фармацевтикалыц нарыгындагымаркетингт!к талдауыныц нэтижелер! керсетыген.Ибупрофен нег!з!нде жасалынган дэршк куралдар ауруды басатын,ыстыцты тус!рет!н жэне цабынуга царсы дэршк препарат ретнде кещнен цолданылады.
ТYйiндi свздер: маркетингт!к талдау, ибупрофен ,цабынуга царсы стероидты емес препараттар, дэршк заттардыц реестрI, контент -талдау.
Каз!рг! замангы педиатриялык жэне терапевтикалык тэж1рибелерде бурынгыдай езект! болып безгек ауруларын емдеу болып табылады. Ереже бойынша гипертермияны жец!лдету уш!н кеп жагдайда стероидты емес кабынуга карсы курал ибупрофен колданылады. Бул Дуниежуз!л!к денсаулы; са;тау уйымымен (ДДС¥) усынылган ез!нд!к б!регей эсер етуш! заттыц халыкаралык патенттелмеген атауы.Бул на;ты химиялы; формуласы бар куралдарга тагайындалады.Ибупрофеннщ терапиялы; эсер! простагландиндерд!ц синтез!не(кабыну реакциясыныц даму себеб!) жауап берет!н циклооксигеназа (ЦОГ) ферментшщ тежелу!не нег!зделген. Баска ыстыкты тус!рет!н жэне кабынуга карсы дэр!л!к препараттарды пайдалану (ацетилсалицил кышкылы, анальгин, амидопирин) педиатриялык тэж!рибеде усынылмайды. Дуниежуз!л!к денсаулык сактау уйымы (ДДС¥) ресми турде тек ибупрофен жэне парацетамолды ККСД рет!нде, кау!пс!зд!к елшемдер!не толыгымен жауап берет!н жэне тшмдтпмен педиатриялык тэж1рибеде сондай-ак балалар ушш колдануды усынады.
Каз!рг! тацда ибупрофен дуние жузшдег! 120-дан астам елде танылган жэне миллиондаган адам турл! аурулар мен безгект! емдеуде ти!мд! пайдалануда. Нег!з!нде ибупрофен бар оннан астам генерик препараттар,сондай-ак турл! дэр!л!к калыпта шыгарылатын кептеген саудалык атаулары белг!л!: Бефрон, Бруфен, Бруфен форте, Гиненорм, Долгит крем, Ибупар, Ибупрофен, Инфорин, Ибуфен, Ибуфен бэби, Ивалгин, Интрафен, Миг 400, Миг балаларга арналган, Не-Бол, Неофен, Нурофен, Риболь, Педеа, Фаспик. Жакында ибупрофеннщ кутпеген касиеттер! ашылды, ягни куык асты без!н!ц обыры кез!нде рак клеткаларыныц есу!н, !шек катерл! !с!гшщ кейб!р турлерш жэне баска да аз таралган катерл! ¡с1к ауруларын токтату мумкшд!г!. Америкалык жэне ресейл!к галымдар ибупрофен дэр!л!к препаратыныц ем!рд! узартатын каб!лет!н байкаган. 0з зерттеулер!нде галымдар ибупрофенн!ц наубайханалык ашыткы (Saccharomyces cerevisiae), ерк!н ем!р суретш нематодтар (CaenorhabdШs elegans) жэне кара денел!
дрозофилалардыц (Drosophila melanogaster) ем!р суру узактыгын кебейтет!шн керсетт!. Баска дэстурл! ККСД -КСК жэне ацетаминофеннен айырмашылыгы ибупрофенн!ц артык дозалану кауш! темен. Ибупрофен уш!н ец теменг! ел!м дозасы белг!ленбеген.
Зерттеудщ максаты: жогарыда керсет!лгендей, б!зд!ц зерттеу!м!здщ максаты Казакстан Республикасыныц нарыгында т!ркелген курамында ибупрофен бар дэр!л!к препараттарга маркетингт!к талдау жасау болып табылады. Зерттеудщ мiндеттерi:
- Казакстан нарыгында т!ркелген курамында ибупрофен бар дэр!л!к заттардыц ассортимент^ зерттеу.
- Осы дэр!л!к заттармен жабдыктаушылардыц курылымын анализден етк!зу.
- Курамында ибупрофен бар дэр!л!к калып турлерш зерттеу.
Зерттеу эдкг контент-талдау.
Нэтижелер жэне оларды талкылау. Курамында белсенд! компонент рет!нде ибупрофен бар дэр!л!к препараттардыц маркетингт!к зерттеулер! бел!г!нде нег!зг! багыт болып осы дэр!л!к препараттардыц ассортимент! мен тутынушылык касиеттерш зерттеу болып табылды. Кужаттардыц сандык талдауыныц (КР дэр!л!к заттарыныц Мемлекетт!к Реестр!) формаланган эд!с! болып табылатын контент-талдаудыц кемег!мен алдын-ала курамында ибупрофен бар дэр!л!к препараттардыц ассортимент! зерттелд!. Талдау нэтежиес! бойынша курамында ибупрофен бар 54 препарат Казакстан Республикасыныц нарыгында т!ркелген!н керсетт!.
Контент-талдау кемег!мен рэс!мделген эд!с болып табылатын кужаттарды сандык талдау,б!зд!ц жагдайда Казакстан Республикасыныц дэр!л!к заттарыныц Мемлекетт!к т!з!м! бойынша, курамында ибупрофен бар кабынуга карсы, ыстыкты тус!ретш жэне ауруды басуга арналган дэр!л!к заттардыц акпаратык массив! курылды (1-кесте).
1 кесте - Курамында ибупрофен бар дэр!л!к заттардыц акпаратык массив!
Тауар атауы ДэрШк заттар саны
Абс. %
1 2 3
1. С01ЕВ16 Журек ауруларын емдеуге арналFан препараттар
Педеа 1 1,8