Научная статья на тему 'Development of the Analitical method for nonlinear circuits analysis with the use of the admittance and resistance orthogonal components'

Development of the Analitical method for nonlinear circuits analysis with the use of the admittance and resistance orthogonal components Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
81
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МИТТєВА ПРОВіДНіСТЬ / МИТТєВИЙ ОПіР / ЧАСТОТНА ОБЛАСТЬ / FREQUENCY DOMAIN / ЕЛЕКТРИЧНЕ КОЛО / НЕЛіНіЙНіСТЬ / АНАЛіТИЧНИЙ МЕТО / INSTANTANEOUS ADMITTANCE / INSTANTANEOUS RESIS-TANCE / ELECTRIC CIRCUIT / NONLINEARITY / ANALYTICAL METHOD

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Saleh Al-Mashakbeh Atef

Предложен метод анализа нелинейных электрических цепей с использованием ортогональных составляющих мгновенной проводимости и сопротивления. Показан механизм формирования ортогональных составляющих мгновенной проводимости нелинейной электрической цепи. Приведены и проанализированы аналитические выражения для составляющих мгновенной проводимости и сопротивления. Проведен анализ уравнений баланса составляющих мгновенных проводимости и сопротивления, на основании которых были определены гармонические составляющие тока нелинейной электрической цепи

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Saleh Al-Mashakbeh Atef

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Development of the Analitical method for nonlinear circuits analysis with the use of the admittance and resistance orthogonal components»

ENERGY-SAVING TECHNOLOGIES AND EQUIPMENT

Запропоновано метод аналiзу нелтшних електрич-них кш з використанням ортогональних складових миттевог провiдностi та опору. Показан мехатзм формування ортогональних складових миттевог про-вiдностi нелтшного електричного кола. Наведено та проаналiзовано аналтичш вирази для складових миттевог провiдностi та опору. Проведено аналiз рiвнянь балансу складових миттевог проводностi та опору, на базi яких були визначеш гармошчш складовi струму нелтшного електричного кола

Ключовi слова: миттева провгдтсть, миттевий отр, частотна область, електричне коло, нелтш-

тсть, аналтичний метод

□-□

Предложен метод анализа нелинейных электрических цепей с использованием ортогональных составляющих мгновенной проводимости и сопротивления. Показан механизм формирования ортогональных составляющих мгновенной проводимости нелинейной электрической цепи. Приведены и проанализированы аналитические выражения для составляющих мгновенной проводимости и сопротивления. Проведен анализ уравнений баланса составляющих мгновенных проводимости и сопротивления, на основании которых были определены гармонические составляющие тока нелинейной электрической цепи

Ключевые слова: миттева провгдшсть, миттевий отр, частотна область, електричне коло, нелтш-тсть, аналтичний метод

UDC 621.3.011

[DPI: 10.15587/1729-4061.2018.121874|

DEVELOPMENT OF THE ANALITICAL METHOD FOR NONLINEAR CIRCUITS ANALYSIS WITH THE USE OF THE ADMITTANCE AND RESISTANCE ORTHOGONAL COMPONENTS

Atef Saleh Al-Mashakbeh

PhD, Associate Professor Department of Electrical Engineering Tafila Technical University Et Tafila New Hauway str., 179, Tafila, Et Tafila, Jordan, 66110 E-mail: dr.atef_almashakbeh@yahoo.com

1. Introduction

The calculation of nonlinear electric circuits is known to be the basis of the analysis of various electric engineering devices [1-6], as nonlinearity is inherent in practically all electrical engineering devices without exception [7-14]. The calculation of nonlinear electric circuits comes to the solution of the direct (currents are determined by the known parameters of the circuit) and the inverse (the circuit parameters are determined by the known values of current and voltage) problems of electrical engineering [15, 16]. As is generally known, most classical, as well as modern, approaches to the analysis of energy processes [17-19], taking place in electrotechnical systems enable only numerical evaluation of the parameters. Also, it should be mentioned that the latter do not provide comprehensive information on the processes in nonlinear electric circuits [20-22].

In practice, researchers have to apply a combination of several methods, which, in turn, results in complication of the calculation dependences and provokes an increase in the calculation errors [1-3, 6, 23, 24]. To achieve sufficient accuracy of the determination of the parameters of the electric circuits of the electrotechnical devices, including various nonlinear elements, an efficient calculation method, simple in realization, is required.

As is known, the choice of the means for active and passive filtration is a topical problem nowadays [20, 33-35]. However, the correct choice of the means for active and passive filtration requires the analysis of the characteristics of the operation of the connected nonlinear load, which is possible due to the use of the analytical calculation methods. That is why it is expedient to develop the method for the analysis of the electrotechnical system nonlinear electric circuits in the analytical form, which will provide a possibility to determine the current harmonic composition, meet the requirements of acceptable accuracy and good adaptation to the automation of analytical calculations.

2. Literature review and problem statement

The calculation of nonlinear electric circuits is known to come to the calculation of nonlinear equations describing the physical phenomena in electric circuits [1, 4, 8-10, 12, 13, 15, 17]. The literature review revealed that the method of small parameter is a well-known representative of the classical methods for the solution of such equations [10, 13, 15]. The use of this method is restricted by the following drawbacks: the complication of mathematical and calculation dependences with each consecutive approximation and

©

with the growth of the number of nonlinear elements, as well as limited accuracy [15].

Because of these drawbacks of the small parameter method, new methods enabling the calculation of both steady and transient processes in nonlinear electric circuits have recently appeared [25-29]. The methods for the calculation of the steady processes of nonlinear circuits belong to a wide class of calculation methods in the time [2-4, 10, 11, 16, 17, 25-27] or frequency domain [30-36]. In the calculation of nonlinear circuits in the time domain, three main restrictions can be singled out: the unavailability of the methods in the wide frequency range [2, 3]; the difficulty of use for the calculation of the circuits with several frequency exciters [4]; the deterioration of the calculation efficiency for circuits containing a large number of coils and capacitors.

The harmonic balance (HB) method is most widely used for the calculation of the steady modes of circuits in the frequency domain [10, 11, 15]. The essential advantage of this method consists in the fact that the harmonic composition of the parameters of the researched circuit is directly obtained due to the solution. Fourier series are used for the expansion of the unknown quantities in the researched circuit. This method has a number of modifications:

a) HB method based on Galerkin-Urabe's approach [4], widely used for the solution of various applied problems;

b) Newton's hybrid H B method for the solution of a combined circuit with the use of Newton-Raphson method [6];

c) relaxation hybrid HB method based on the relaxation method [5].

However, to achieve an accurate solution with the use of the mentioned modifications of the HB method in the process of its realization, it is necessary to perform a discrete Fourier transform and an inverse discrete Fourier transform more than once. This requires considerable time and results in errors [5]. Besides, the calculation efficiency sharply decreases with the increase of the number of nonlinear elements as the equation system for the determination of Fourier coefficients becomes very ponderous [17, 37]. Therefore, none of the existing analytical methods provides comprehensive information on the processes in the nonlinear circuits, so in practice one has to use a combination of several methods. This results in the complication of the calculation dependences and provokes an increase in calculation errors [3].

Taking into account the above, an approach based on the analysis of instantaneous power (IP) components, well described by the authors [18, 21, 30, 31, 36], was chosen for the analysis of nonlinear electric systems of various configurations and complexity. This method provides the possibility not only to determine the values of the harmonic components of the power signal parameters, but also makes it possible to analyze electric circuits on the basis of the analytical balance equations of IP components.

In the paper [15], the author proposes to determine the active and reactive power of electric circuits by the introduction of the value of instantaneous resistance into the calculation. The electric circuit instantaneous resistance is determined via instantaneous voltage u(t) and instantaneous current i(t):

y it)-_!_ - M

y (t ) z (t) u (t).

z(t)- Uitl '(t) i(t).

(1)

Instantaneous admittance can be used to determine the current in a nonlinear electric circuit i(t)=y(t)u(t), i. e. to solve the direct problem of electric engineering

3. The aim and objectives of the study

The aim of the study consists in the development of the method of nonlinear electric circuit analysis with the use of the components of instantaneous admittance and resistance in the frequency domain.

To achieve the aim the following objectives were formulated:

- to analyze the mechanism of the formation of the components of admittance and resistance in the frequency and time domains;

- to develop an efficient and easily realized analytical method for the analysis of the nonlinear processes, which will allow evaluating the significance and influence of the circuit parameters on the current' spectrum;

- to improve the efficiency of the analysis of nonlinear electric circuits by the adaptation of the method of nonlinear electric circuits analysis to the automation of the analytical calculations in the frequency domain.

4. The research of the processes of the formation of admittance components in the frequency and time domains

4. 1. The formation of the admittance components in the frequency and time domains when the current is represented by two harmonics

Consider the formation of the admittance components for several cases.

Supply voltage u(t) is assigned by the sine components of the first harmonic: u(t)=Ub1sin(wt), current - by the first and the third harmonics:

i(t)=Iaicos(rat)+Ibisin(rat)+Ia3cos(3rat)+Ib3sin(3rat).

Then the expression for the instantaneous admittance will be of the form:

t)= Ia1cos (wt) + Ib1sin (wt) _

Ub1sin (wt) Ub1sin (wt)

+ Ia3cos (3wt) + Ib3sin (3wt)

Ub1sin (wt) Ub1sin (wt) '

(3)

It is known that instantaneous admittance is the reciprocal of instantaneous resistance:

where Ia, Ib -the current cosine and sine harmonic components, respectively, Uji - the voltage harmonic component represented by the first harmonic, o> - angular frequency.

To pass from the time domain into the frequency domain of assigning the instantaneous admittance, the expression (3) was transformed with the use of trigonometric transformations. To make it clearer, a mathematical transformation is shown below for each separate summand (Table 1).

Using the basic trigonometric identities and transformation formulae (addition formulae, the trigonometric functions of double argument, the transformation of the sine and cosine degrees), we will get:

y (t ) = ^ ctg (wt ) + jb- + ^a3 ctg (wt )-

Uu

Uu Uu

-2 -^sin (2wt ) + + 2 —^cos (2wt ). U, ^ ' tt TT \ )

U

U

Table 1

The transformation of instantaneous admittance components in the trigonometric form

Reg. No.

The trigonometric transformation of the instantaneous admittance components

hi.cos (wt ) = IaL cg (wt ) Um sin (wt) Uu S{ '

hi sin (wt) = ibi Ubi sin (wt) UM

Ia3 cos (3wt) Ia3 cos (2wt + wt) Ubi sin (wt) Ubi sin (wt) Ia3 cos (2wt) cos (wt)- sin (2wt) sin (wt) Ubi sin (wt)

I (cos2 (wt)-sin2 (wt)) cos (wt)-2sin2 (wt) cos (wt)

(wt )

sin (wt) - 3sin (wt) cos (wt)

Ia3

---03 [ctg (wt ) cos2 (wt ) - 3sin (wt ) cos (wt )] =

ctg (wt )| i + -|cos (2wt) |- 3sin (wt ) cos (wt )

= -a3 [ctg (wt)(l - sin2 (wt)) - 3sin (wt) cos (wt)] =

Ubi

= —— [ctg (wt) - ctg (wt) sin2 (wt) - 3sin (wt) cos (wt)] =

Ubi

= — [ctg (wt) - 4 sin (wt) cos (wt)] =

Ubi

= ctg (wt) - 2 Io3-sin (2 wt)

Ib3 sin (3wt) Ib3 sin (2wt + wt) Ub1 sin (wt) Ub1 sin (wt) Ib3 sin (2wt) cos (wt) + cos (2 wt) sin (wt) Ub1 sin (wt)

Ii3 2 sin (wt) cos2 (wt) + 2 (cos2 (wt) -1) sin (wt) Ub1 sin (wt)

4 sin (wt) cos2 (wt) - sin (wt) sin (wt)

= ^ [4cos2 (wt) -1] = - (1 + cos (2wt) -1) Ub1 Ub1 [ 2

-_Iil. + 2 l^Lcos (2wt )

Ub1 Ub1 { '

of the shift of the current first and third harmonic components, respectively 9i=tc/6, 93=tc/6.5.

(4)

Fig. 1. Voltage u(t) and current (t) signal curves, where (---)

is the current curve calculated with the use of instantaneous admittance, (---) is the current initial curve

It should be noted that in (4) the components without the trigonometric function, as well as the coefficients at ctg(rot) correspond to the cosine and sine components of the instantaneous admittance of the zero frequency, respectively. The coefficients at cos(krot) and sin(krot) -to the real and imaginary components of the instantaneous admittance of the corresponding harmonic k, respectively. According to the above and (4), the instantaneous admittance and supply voltage in the frequency domain will be written down in the form of arrays:

Yak =

Ib1 + Ib3 Ï f I1 +1 a1 a

Ub1 Ut1

0 bY k = 0

Ib3 Ia3

Ub1 J l Ub1

f 0N ' 0 N

0 ; Ubn = Ub1

10. | 0 .

To check the adequacy of the obtained trigonometric expression (4), the initial current signal curve (Fig. 1) was compared with the current curve built with the use of the value of instantaneous admittance i(t)=y(t)u(t). The initial values for the analysis of the current and voltage: the amplitude values of voltage and current, respectively Ub1=10 V, Ia1=-2.5 A, Ib1=4.33 A, Ia3=-1.859 A, Ib3=3.542 A, the angle

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

U =

where n, k - the numbers of the harmonics of voltage and admittance, respectively.

To verify the correctness of the formation of the arrays of instantaneous admittance components, using the automated method of IP components formation [36] on the basis of the algorithm of the discrete convolution [1] of two series, we will determine the current harmonic components. The obtained arrays of the required current orthogonal components correspond to the initial ones:

where m - the numbers of the current harmonics. This confirms the correctness of the method of the formation of the instantaneous admittance components arrays.

4. 2. The formation of the admittance components in the frequency and time domains when the current is represented by three harmonics

Supply voltage u(t) is specified similarly to the first case: u(t)=^b1sin(rat), a and the current - by the first, third and fifth harmonics:

0 N f 0 >

- I<l1 0 ; Ibm Ib1 0

Ia3 . VIb3 J

1

2

3

a 3

4

i(t)=Iaicos(rat)+Ibisin(rat)+Ia3cos(3rat)+ +Ib3sin(3wt)+Ia5cos(5wt)+Ib5sin(5wt).

The expression for the instantaneous admittance is written down as follows:

To verify the correctness of the formation of the instantaneous admittance components arrays, we will determine the current harmonic components. The obtained arrays of the current desired orthogonal components correspond to the initial ones:

y (t )=

Ia1 C0S )

Ib1 sin (wt )

Ia3 C0S (3Wt)

Ub1sin (wt ) Ub1sin (wt ) Ub1sin (wt )

Ib3 Sin (3wt) , Ia5 Cos (5wt) , Ib5 sin (5wt)

(5)

Ub1sin (wt) Ub1sin (wt) Ub1sin (wt) After trigonometric transformations (5), we will obtain:

0 > ' 0 ^

- Ia1 Ib1

0 -Ia3 ' ^bm 0 Ib3

0 0

Ia5 V Ib5

y (t ) = ^ ctg (wt ) + jb- + if^ ctg (wt )-

U,

Ubi Ubi

-2 I^sin (2wt ) + ^ + 2 ^ ctg (2wt ) +

U

U

+Ip ctg (wt ) + ^ - 2 -^sin (2wt ) + 2 ^cos (2wt )-

U

U

U

-2 -^sin (4wt ) + 2 —^cos (4wt ). Ub1 Ub1

(6)

Yak =

Ib1 + Ib 3 + Ib5 fI,+I 3+I a1 a3 o

Ub1 Ub1

0 0

Ib3 + Ib5 ; Ybt = I 3+1 5 a3 a5

Ub1 bk Ub1

0 0

Ib5 Ia 5

Ub1 V Ub1

Fig. 2. Current /(t) and voltage u(t) signal curves,

(---) — current curve calculated with the use of

instantaneous admittance, (---) — current initial curve

The equality of the obtained and the initial orthogonal components of current for the two cases analyzed above confirm the correctness of the formation of the arrays of the instantaneous admittance orthogonal components and the applicability of the proposed method for the determination of current.

On the basis of (4) and (6), it is possible to write down the expression for the instantaneous admittance in the trigonometric form more generally:

The arrays of the orthogonal components of the instantaneous admittance in the frequency domain are presented below:

y (t )=y Ur+y Uf-ctg (wt )+ Ub1 Ub1

+2 y Ibm cos (kwt )- 2 y ^ sin (kwt ).

Ub1 Ub1

(7)

Thus, according to (7), the instantaneous admittance orthogonal components can be presented in the general form:

Y =

J_

U

1

( M

y I

^^ bm

V m=1

Yak =

U

M

— y I

^^ bm

\ m=k+1

Yb0 = u | y Iam I; Ybk = jj | y

U

b1 V m=k+1

The correctness of the obtained expression is confirmed by the coincidence of the current signal curves shown in Fig. 2. The curves shown below are built using the following data: the amplitude values of voltage and current, respectively Ub1=10 V, Ia1=-2.5 A, Ib1=4.33 A, Ia3=-1.859 A, Ib3=3.542 A, Ia5=-1.302 A, Ib5=2.703 A, the angle of shift of the current first, third and fifth harmonic components, respectively 9i=n/6, 93=tc/6.5, 95=tc/7.

where Y0 - admittance constant component, M - the number of the current harmonic components.

5. The research of the nonlinear electric circuit by means of the analysis of the components of the instantaneous admittance and resistance

To demonstrate the practical use of the proposed approach to the analysis of the components of instantaneous admittance Y(t) and resistance Z(t) to determine the harmonic components of the electric circuits current, we will consider the simplest electric circuit of linear and nonlinear resistances connected in series. The following parameters were chosen for the calculation R0=1 Ohm, R2=2 Ohm for the case of one sine harmonic component in the voltage signal u(t)=Ujisin(wt), Uji_10 V. The nonlinear resistance is described by the expression R(I)=R2i2(t). The equivalent circuit is shown in Fig. 3.

It follows from the energy conservation law that pS (t)= =Pc(t) [36], where pS(t) - the power supply IP, pC(t) - the consumers' IP.

The power supply IP is determined by the product of the corresponding components of voltage and current pS(t)=u(t)i(t) [36]. In turn, for the considered case (Fig. 3),

the consumers' IP is equal to the sum of all the elements IPs Pc(t)=PRo(t)+PR(i}(t), where pRo(t)=Roi2(t), PR(I)(t)=R2i4(t) -IP at the linear and nonlinear resistances, respectively.

Fig. 3. The researched electric circuit

Taking into account expressions (1) and (2), it is possible to state that the discrete convolution of arrays I2 and Z is equal to the convolution of arrays U2 and Y, also, it is equal to the power supply IP PS:

12 *Z = U2 *Y = PS,

(8)

IP cosine components Psa, W Pea, W YU2, W ZI2, W

( 9.22 ^ ( 9.2 ^ ( 9.22 ^ (9.308^

0 0 0 0

-3.79 -3.87 -3.79 -3.76

0 0 0 0

Numerical values -0.45 0 -0.38 0 0 0 „ 0 , -0.78 0 -0.41 0 0.12 0 k 0.05 j -0.45 0 -0.16 0 -0.22 0 „ 0 j -0.43 0 -0.99 0 0.31 0 , 0.11 j

The data shown in Table 2 prove that equality (8) is true. The accuracy of the values obtained for the zero, second, and fourth harmonic components of IP is sufficiently high. The discrepancy of the results in the higher harmonics can be explained by the calculation error resulting from the limited number of the analyzed current harmonics.

Taking into account (1) and (2), it is possible to write down U=I*Z, I=U*Y, then the expression PS=I*U can be written down in the following way PS= I*Z* U*Y. Hence, the convolution of the spectra of the instantaneous admittance Y and instantaneous resistance Z equals to one:

Z *Y = 1.

(9)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

where * - the discrete convolution operation, I2, U2 - the orthogonal components of the squared current and voltage, respectively, Z, Y - the orthogonal components of the impedance and admittance, respectively.

To confirm the above, we provide the numerical values obtained with the use of the automated method of formation of IP components based on the algorithm of discrete convolution (Table 2). The values of the amplitude components of current and voltage of the equivalent circuit of the researched electric circuit were obtained as a result of the calculation of the mathematical model in a mathematical package MATLAB. During the analysis of the electric circuit (Fig. 3), containing only active linear and nonlinear resistances, the currents will be presented only by the sine components. To simplify the calculation, we will limit ourselves with the most important (the first, the third and the fifth) current harmonics.

Table 2

The numerical values of the balance of the IP components for the researched electric circuit, obtained in different ways

Expression (9) makes it possible to write down in an analytical form and numerically find the solution to the system of equations with the desired harmonic components of the electric circuit current (Fig. 3). Below there are analytical expressions for the orthogonal components of instantaneous admittance and resistance:

(2IM2 + 2IM2 + 2I452 )R2 + R 0

(-V + 2Vm + 2Ii3Ib5 )R 0

(-2Ib3 Ibi + 2Ib5lbi )R 0

(-2Ib5Ibi + Ib32 ) R2 0

(-2Ib3Ib5 )R2 0

(Ib52)R2

Zbx =

0 0 0 0 0 0 0 0

0 0

Yak =

Ib1 + Ib 3 + Ib5

Ub1 (

0

0

Ib3 + Ib5 0

Ub1 0

0

0

Ib5 ; Ybt = 0

Ub1 " bk 0

0

0

0

0

0

0

0

0

0 \ /

0 j

where Z - the orthogonal components of resistance, x - the Ij3=-0.164 A, Ib5=-0.084 A were compared with the ones number of the harmonic components of resistance. obtained as a result of the calculation of the mathematical

Using the above expressions, we will present (9) in the model of the considered circuit in the mathematical package

MathCAD. The relative errors by the first 8(Ibi), third S(Ib3) and fifth S(IM) harmonic components were calculated; they were 0.8 %, 0 %, 10.5 %, respectively. The obtained values

frequency domain:

r(2IM2 + 2IM2 + 2I452) R2 + R0

0

K12 + 2IMIM + 2IMI45) R2 0

(-21,3I41 + 2I45I41) R2 0

(-2I45I41 + Ib32 )R 0

(-2Ib31,5 ) R2 0

(Ib52 ) R2

Ib1 + 43 + Ib5

U,1 0

Ib3 + Ib5

U

Ub1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

Using the automated method of the formation of IP components, we will obtain an equation system (10) in the analytical form. Its solution will allow the determination of the desired harmonic components of the analyzed electric circuit current.

Ib1 + Ib3 + Ib5

Uu

R

2133 + 2I,1 + 61,3 Ib1 + 2I3s + 6Ib23 Ib5 + 6I,5 Ib1 + 6I,51,3

U

Ib3 + Ib5

U

R0 -

-312 I -6I I2 -213 -2I3 -312 I + 13 -6I I I

J-'b1Jb3 UJb3Jb5 ZJb5 ZJb3 b5^ Jb1 "Jb1Jb3Jb5

Uu

confirm the adequacy and sufficient accuracy of the proposed method of the solution of the direct problem of electric engineering.

To solve the inverse problem (the circuit parameters are determined by the known currents and voltages), one can use the expression of the researched circuit voltages balance:

I * Z = U. (11)

Let us write down (11) in the frequency domain:

(2Ib12 + 2Ib32 + 2Ib52) R2 + R0 0

(-Ib12 + 2IbsIb1 + 2Ib3lb5 )R 0

(-2Ib3 Ib1 + 2Ib5 Ib1) R2 0

(-2Ib5Ib1 + Ib32) R2 0

(-2Ib3Ib5 )R2 0

(Ib52 )R2

R

R2

R0

2 I + 312 I + 212 -312 I - 1

J-'b1J b5^°1b31 b5^'L1b5 °1b11 b3 1 b3

Uu

R0

^3IhIb5 + 3I23Ib1 + Ib33 + 3I23Ib5 + Il, ^

Uu

R0

6Ib1Ib3 Ib5 + Ib33 + 3Ib3Ib5 + 3Ib3Ib5 + Ib5 I

U

^bIs + Hb3 Ib5 + Hb3 Ij> 5 + Ij> 5

Ub1 0

T-2 T-3 '

R

R

-3I 12 - Id

b5 b5

U

b1

R

zIbi

V Ub1 7

R2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0 0 0 0 0 0 0 0 0 0 0 0

0 0

.(10)

Jb1 0

Ib3 0

0 0 0

0 0

0

Ub1 0 0 0 0 0 0 0

0 0

The solution of the obtained equation system, i. e. the determination of the first, third and fifth harmonic components

of the current, was performed by the numerical method of Using the automated method of IP components forma-

Levenberg-Marquardt. The calculated values Ibi=-0.93 A, tion, we will get the equation system in the analytical form:

IbR +(3^ + 6^ + 6I425Im

3Ib1Ib3 - 6IbiIb31b5 + 3Ib231b5 )-R

0

« + (6Ib2lIb3 + 3Ib23 + 6I2Jb3 - Ibl + 6IbiIb3Ib5 - 3Ib2lIb5 ) R 0

« +(-3Ib2lIb3 + 6IbVb5 + 3Ib23lb1 + 6^5 + 3^ )R 0

(-3Ib2iIb5 + 6IbiIb3Ib5 + 3Ib25Ib3 -3^1«)R 0

(-6IbiIb3lb5 + 3Ib25lbi - Ib33 ) R 0

(-3IbiIb25 - 31 b3Ib5 ) R2 0

- 3Ib2sIb3R2 0

-13 R

Equation system (12), as well as (10), was calculated by Levenberg-Marquardt method [1]. When solving (12), it is reasonable to neglect some higher harmonics in the array I*Z. Taking into account the limited number of current harmonics, it is possible to explain the increase of the error with the growth of the harmonic number during the solution of the equation system. The calculated values of the parameters R0=1.064 Ohm and R2=1.959 Ohm were compared with the initial ones. The obtained values of the relative errors of the value of resistance were 8(R0)=6.4 %, 8(R2)=2.04 %, which demonstrates the efficiency of the proposed method for the solution of the nonlinear electric circuit with the use of the components of instantaneous admittance and resistance.

6. The discussion of the results of the research of the developed analytical method for the analysis of nonlinear electric circuits

The research results presented in the paper made it possible to solve the problem of achieving sufficient accuracy in the determination of the parameters of the nonlinear electric circuits of electrical engineering devices due to the use of the developed efficient and easily realized analytical method with the use of admittance and resistance components.

It is proposed to realize the trigonometric transformations and numerical calculations in the frequency domain with the use of the developed automated method of the formation of electric values components. In comparison with the methods described in the second part, this method essentially facilitates the mathematical analysis and shortens the time even if the nonlinear electric circuit configuration is complicated.

0

Ubi 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The proposed analytical method, unlike the known ones, is well adapted to the automation of the calculations in the frequency domain. Besides, this method provides the possibility to assess the researched circuit parameters influence on the current spectrum components.

The advantage of this method consists in the possibility to obtain the predicted result independently of the degree of the approximating polynomial and the number of the .(12) analyzed harmonics.

The presented method makes it possible to analyze qualitatively the connected nonlinear load characteristics and the current spectrum. This is a good basis for the active and passive filtering means choosing method' development The disadvantage of the method is the need to neglect the higher harmonic components during solving the generated equations sets. This entails a decrease in accuracy when solving the direct or inverse electrical engineering tasks. Also, using the presented method, it may be difficult to describe a nonlinear characteristic by a polynomial function. This is due to the fact that to achieve an accurate approximation, it is necessary to use a high-degree polynomial, which will increase the cumbersomeness of analytical expressions.

7. Conclusions

1. The mechanism of the formation of the orthogonal components of the instantaneous admittance on the basis of current and voltage components in the frequency domain has been presented. An automated method for the electrical quantities frequency components formation, realized on the basis of the discrete convolution is used for the possibility of process automation.

2. A method for the analysis of nonlinear electric circuits with the use of the components of instantaneous admittance and resistance has been developed. Along with the determination of the numerical quantities of the desired values, this method makes it possible to perform the analytical analysis of forming the balance equations for the components of instantaneous admittance and resistance.

3. The results of the numerical solution of the equations system of the balance of the components of instantaneous admittance and resistance confirm the high accuracy and efficiency of the proposed method in relation to the analysis of nonlinear electric circuits. In this case, the relative error of the values of the higher harmonic components of the desired current does not exceed 10 % and 7 % during the solution of the direct and inverse problems of electric engineering, respectively. This level of accuracy is provided even at a low degree of the approximating polynomial, which indicates the sufficient accuracy of the obtained results.

References

1. Nayfeh A. H., Chen C.-Y. Perturbation methods with mathematics // Nonlinear dynamic. Wiley, i999. 437 p.

2. Steady-state analysis of nonlinear circuits using discrete singular convolution method / Zhou X., Zhou D., Liu J., Li R., Zeng X., Chiang C. // IEEE Proceedings of the Design, Automation and Test in Europe Conference and Exhibition. 2004. Vol. 2. P. i322-i326. doi: i0.ii09/date.2004.i269078

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A wavelet-balance approach for steady-state analysis of nonlinear circuits / Li X., Hu B., Ling X., Zeng X. // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2002. Vol. 49, Issue 5. P. 689-694. doi: 10.1109/tcsi.2002.1001960 Urabe M. Galerkin's procedure for nonlinear periodic systems // Archive for Rational Mechanics and Analysis. 1965. Vol. 20, Issue 2. doi: 10.1007/bf00284614

Ushida A., Adachi T., Chua L. O. Steady-state analysis of nonlinear circuits based on hybrid methods // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1992. Vol. 39, Issue 8. P. 649-661. doi: 10.1109/81.168917 Zhu L. (Lana), Christoffersen C. E. Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits // EURASIP Journal on Wireless Communications and Networking. 2006. Vol. 2006 P. 1-11. doi: 10.1155/wcn/2006/32097 Prus V., Nikitina A., Zagirnyak M., Miljavec D. Research of rnergy processes in circuits containing iron in saturation condition // Przegl^d Elektrotechniczny (Electrical Review). 2011. Vol. 87, Issue 3/2011. P. 149-152. URL: http://pe.org.pl/arti-0^/2011/3/39^

Osnach A. The different options regarding power components in electric circuits // 11th International Conference on Electrical Power Quality and Utilisation. 2011. doi: 10.1109/epqu.2011.6128830

Slonim M. A. Limits in Application of Main Power Theories for Calculation of Active and Apparent Powers in Linear and Non-Linear Circuits and Systems // 2011 21st International Conference on Systems Engineering. 2011. doi: 10.1109/icseng.2011.64 Zharskyi B. K., Novskyi V. O., Golubev V. V. The conversion of electromagnetic energy parameters valve switches. Kyiv, 2013. 323 p. Takeuchi G. Theory of gating circuit and application to motor control. Leningrad: Energiya, 1973. 279 p.

Zagirnyak M., Kalinov A., Maliakova M. Analysis of instantaneous power components of electric circuit with a semiconductor element // Archives of Electrical Engineering. 2013. Vol. 62, Issue 3. doi: 10.2478/aee-2013-0038

Zagirnyak M., Maliakova M., Kalinov A. Analysis of electric circuits with semiconductor converters with the use of a small parameter method in frequency domain // COMPEL - The international journal for computation and mathematics in electrical and electronic engineering. 2015. Vol. 34, Issue 3. P. 808-823. doi: 10.1108/compel-10-2014-0260

Zagirnyak M. V., Mamchur D. G., Kalinov A. P. Elimination of the influence of supply mains low-quality parameters on the results of induction motor diagnostics // The XIX International Conference on Electrical Machines - ICEM 2010. 2010. doi: 10.1109/ icelmach.2010.5608071

Demirchian K. S., Neiman L. R., Korovkin N. V. Theoretical fundamentals of electrotechnics. Sankr-Reterburg, 2009. 432 p. Krogeris K., Rasevitcs J., Sinka E. AC power. Riga, 1993. 294 p.

Maas S. Nonlinear microwave and RF circuits. Artech House Microwave Library, 2009. 680 p.

Zagirnyak M., Korenkova T. Enhancement of instantaneous power method in the problems of estimation of electromechanical complexes power controllability // Przeglad elektrotechniczny (Electrical review). 2011. Issue 12b. P. 208-212. URL: http://red. pe.org.pl/articles/2011/12b/58.pdf

Zagirnyak M., Kalinov A., Melnykov V. Sensorless vector control systems with the correction of stator windings asymmetry in induction motor // Przeglad elektrotechniczny (Electrical Review). 2013. Issue 12. P. 340-343. URL: http://red.pe.org.pl/arti-cles/201i/12/8i.pdf

Melnykov V., Kalinov A. The increasing of energy characteristics of vector-controlled electric drives by means of compensation the induction motor parametrical asymmetry // Technical electrodynamics. 2012. Issue 3. P. 85-86. URL: http://techned.org. ua/2012_3/st40.pdf

Zagirnyak M., Kalinov A., Chumachova A. Correction of operating condition of a variable-frequency electric drive with a non-linear and asymmetric induction motor // Eurocon 2013. 2013. doi: 10.1109/eurocon.2013.6625108

Al-Din M. S. N., Al-Mashakbeh A. S. Computation of magnetic losses in canned high-field PMSM using finite element method // European Journal of Scientific Research. 2010. Vol. 40, Issue 3. P. 341-345. URL: http://connection.ebscohost.com/c/articles/50881573/ computation-magnetic-losses-canned-high-field-pmsm-using-finite-element-method

Wai-Kai C. Feedback, nonlinear, and distributed circuits, The circuits and filters handbook. CRC Press, New York, 2009. 466 p. Nastov O. J. Spectral methods for circuit analysis. Proceedings of massachusetts institute of technology, 2009. 124 p. Luchetta A., Manetti S., Reatti A. SAPWIN-a symbolic simulator as a support in electrical engineering education // IEEE Transactions on Education. 2001. Vol. 44, Issue 2. doi: 10.1109/13.925868

Huelsman L. P. SAPWIN, Symbolic analysis program for Windows - PC programs for engineers // IEEE circuits and devices magazine. 1996. Vol. 6, Issue 2. P. 4-6.

Moura L., Darwazeh I. Introduction to linear circuit analysis and modelling from DC to RF, MatLAB and SPICE. 1st ed. Newnes, Burlington, 2005. 376 p.

Raju A. B., Karnik S. R. SEQUEL: A Free Circuit Simulation Software as an Aid in Teaching the Principles of Power Electronics to Undergraduate Students // 2009 Second International Conference on Emerging Trends in Engineering & Technology. 2009. doi: 10.1109/icetet.2009.200

Pires V. F., Silva J. F. A. Teaching nonlinear modeling, simulation, and control of electronic power converters using MATLAB/SIM-ULINK // IEEE Transactions on Education. 2002. Vol. 45, Issue 3. P. 253-261. doi: 10.1109/te.2002.1024618 Zagirnyak M., Mamchur D., Kalinov A. A comparison of informative value of motor current and power spectra for the tasks of induction motor diagnostics // 2014 16th International Power Electronics and Motion Control Conference and Exposition. 2014. doi: 10.1109/epepemc.2014.6980549

Zagirnyak M., Mamchur D., Kalinov A. Induction motor diagnostic system based on spectra analysis of current and instantaneous power signals // IEEE SOUTHEASTCON 2014. 2014. doi: 10.1109/secon.2014.6950721

32. Correction of the operating modes of an induction motor with asymmetrical stator windings at vector control / Zagirnyak M., Ka-linov A., Melnykov V., Kochurov I. // 2015 International Conference on Electrical Drives and Power Electronics (EDPE). 2015. doi: 10.1109/edpe.2015.7325303

33. Zagirnyak M., Maliakova M., Kalinov A. Analysis of operation of power components compensation systems at harmonic distortions of mains supply voltage // 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION). 2015. doi: 10.1109/optim.2015.7426958

34. Improvement of compensation method for non-active current components at mains supply voltage unbalance / Al-Mashakbeh A. S., Zagirnyak M., Maliakova M., Kalinov A. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 8 (85). P. 41-49. doi: 10.15587/1729-4061.2017.87316

35. Zagirnyak M., Maliakova M., Kalinov A. Compensation of higher current harmonics at harmonic distortions of mains supply voltage // 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE). 2015. doi: 10.1109/cpee.2015.7333388

36. Zagirnyak M., Kalinov A., Maliakova M. An algorithm for electric circuits calculation based on instantaneous power component balance // Przegl^d elektrotechniczny (Electrical Review). 2011. Issue 12b. P. 212-215. URL: http://pe.org.pl/articles/2011/12b/59.pdf

37. Al-Mashakbeh A. S. O. Modern control design of power system // Australian journal of basic and applied sciences. 2009. Vol. 3, Issue 4. P. 4267-4271. URL: https://www.researchgate.net/publication/294390623_Modern_control_design_of_power_system

Розглянуто модель взаемозв'язку основних показнитв динамти i надiйностi з врахуван-ням конструктивних елементiв охолоджу-ючого пристрою для рiзних режимiв роботи. Одержат стввидношення дозволяють визна-чити час виходу термоелектричного охолод-жуючого пристрою на стащонарний режим i температуру теплопоглинаючого спаю. Показано, що врахування теплофiзичних, конструктивних i енергетичних показнитв дозволяв управляти часом виходу охолоджувача в стащонарний режим

Ключовi слова: термоелектричний охолод-жувач, стащонарний режим, температура тепло поглинаючого спаю, показники надш-ностi

□-□

Рассмотрена модель взаимосвязи основных показателей динамики и надежности с учетом конструктивных элементов охлаждающего устройства для различных режимов работы. Полученные соотношения позволяют определить время выхода термоэлектрического охлаждающего устройства на стационарный режим и температуру теплопоглощающего спая. Показано, что учет теплофизических, конструктивных и энергетических показателей позволяет управлять временем выхода охладителя в стационарный режим

Ключевые слова: термоэлектрический охладитель, стационарный режим, температура теплопоглощающего спая, показатели надежности

UDC 621.362.192

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[DOI: i0.i5587/i729-406i.20i8.i2389i|

ANALYSIS OF RELATIONSHIP BETWEEN THE DYNAMICS OF A THERMOELECTRIC COOLER AND ITS DESIGN AND MODES OF

OPERATION

V. Zaykov

PhD, Head of Sector Research Institute «STORM» Tereshkova str., 27, Odessa, Ukraine, 65076 E-mail: gradan@i.ua V. Mescheryakov Doctor of Technical Sciences, Professor, Head of Department Department of Informatics Odessa State Environmental University Lvivska str., 15, Odessa, Ukraine, 65016 E-mail: gradan@ua.fm Yu. Zhuravlov PhD, Associate Professor Department of Technology of Materials and Ship Repair National University «Odessa Maritime Academy» Didrikhsona str., 8, Odessa, Ukraine, 65029 E-mail: zhuravlov.y@ya.ru

1. Introduction

Determining the time that it takes for a thermoelectric cooling device (TED) to enter a stationary working mode

over the preset temperature range is an interesting task. This is related to the fact that dynamic indicators for the means that enable heat regimes of thermally loaded elements largely define both functional and reliable capabilities of critical

©

i Надоели баннеры? Вы всегда можете отключить рекламу.