Научная статья на тему 'DEVELOPMENT OF A TECHNOLOGICAL SCHEME OF SAMPLE ENRICHMENT TITANIUM-MAGNETIC ORE OF THE TEBINBULAK DEPOSIT'

DEVELOPMENT OF A TECHNOLOGICAL SCHEME OF SAMPLE ENRICHMENT TITANIUM-MAGNETIC ORE OF THE TEBINBULAK DEPOSIT Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
54
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Gravioconcentrate / Tails / Ore / gravity concentration / extraction / magnetic separation / Grinding to various sizes / Non-magnet. Fraction / deposit

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Uchqun Khudoynazar O’G’Li Eshonqulov, Azamat Abdurashidovich Umirzoqov, Amirjon Murodovich Khodjakulov, Husniddin Juraevich Quziyev

In clause the results of enrichment of technological tests of ore of a deposit Tebinbulak are resulted. Are executed gravitation and magnetic separation experiences. As a result of the executed tests recommended scheme for processing ore is magnetic separation. Under this circuit is received the iron concentrate containing 56,14 % of iron at extraction of it 41,84% from ore.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DEVELOPMENT OF A TECHNOLOGICAL SCHEME OF SAMPLE ENRICHMENT TITANIUM-MAGNETIC ORE OF THE TEBINBULAK DEPOSIT»

DEVELOPMENT OF A TECHNOLOGICAL SCHEME OF SAMPLE ENRICHMENT TITANIUM-MAGNETIC ORE OF THE TEBINBULAK

DEPOSIT

Uchqun Khudoynazar o'g'li Eshonqulov

Karshi Engineering Economics Institute

Azamat Abdurashidovich Umirzoqov

Tashkent State Technical University named after Islam Karimov

Amirjon Murodovich Khodjakulov

Karshi Engineering Economics Institute

Husniddin Juraevich Quziyev

Tashkent State Technical University named after Islam Karimov

ABSTRACT

In clause the results of enrichment of technological tests of ore of a deposit Tebinbulak are resulted. Are executed gravitation and magnetic separation experiences. As a result of the executed tests recommended scheme for processing ore is magnetic separation. Under this circuit is received the iron concentrate containing 56,14 % of iron at extraction of it 41,84% from ore.

Keywords: Gravioconcentrate, Tails, Ore, gravity concentration, extraction, magnetic separation, Grinding to various sizes, Non-magnet. Fraction, deposit

We in [1] presented the results of studying the material composition of an ore sample from the Tebinbulak deposit.

This paper presents the results of the enrichment of the specified ore sample [1-9]. The ore was beneficiated by methods of gravity, dry and wet magnetic separation. Table 1 shows the results of gravitational concentration of ore at different grinding sizes [10-18].

Table 1

Results of experiments on gravity concentration of an ore sample

Size grinding, mm Products enrichment Output, % Iron content, % Iron extraction, %

-1+0 Gravioconcentrat e 15,35 27,3 32,73

Tails 84,65 10,24 67,27

Ore 100 12,8 100

-0,5+0 Gravioconcentrat e 17,37 33,6 41,15

Tails 82,63 10,1 58,85

Ore 100 14,18 100

-0,315+0 Gravioconcentrat e 13,61 42,0 42,48

Tails 86,39 8,96 57,52

Ore 100 13,46 100

As can be seen from the data in Table 3.1, a concentrate containing 27.3-42% of iron was obtained during gravity concentration, while its extraction was 32.7-42.48%. GRAVITATIONAL SCHEME OF ENRICHMENT OF IRON-CONTAINING ORE

SAMPLE OF TEBINBULAK DEPOSIT Ore

irs-

SCREENING

CONCENTRATION ON THE TABLE

cl.+ Grinding to

various siz

es

T

Re-cleaning

Middling prodUct

Concentrate

Tails

Pic.1.

SCHEME OF MAGNETIC SEPARATION OF ORE

Ore -3+0 mm

~~r~

_Grinding to various sizes

I

Magnetic separation

1

Re-cleaning

Non-magnetic fraction

Magnetic fraction

Pic.2.

Experiments were carried out on dry and wet magnetic separation of samples (Pic.2). For dry magnetic separation, the current strength was 0.25-0.5 A, for wet magnetic separation - 5-7 A [19-24]. The results of experiments with dry magnetic separation of ore are given in Table 4, for wet magnetic separation - Table 3.

Table 2

Results of dry magnetic separation of ore

Coarseness, mm Fortification products Output, % Content, iron, % Iron extraction, %

Current strength 0,25 А

-2+0 Magnet. fraction 36,79 24,7 64,3

Non-magnet. fraction 63,21 7,98 35,7

Руда 100 14,13 100

-1+0 Magnet. fraction 28,86 30,5 60,79

Non-magnet. fraction 71,14 7,98 39,21

Ore 100 14,48 100

-0,5+0 Magnet. fraction 19,73 40,95 57,71

Non-magnet. fraction 80,27 7,38 42,29

Ore 100 14,0 100

-0,315+0 Magnet. fraction 25,93 31,5 57,35

Non-magnet. fraction 74,07 8,2 42,65

Ore 100 14,24 100

Current strength 0,5 А

-2+0 Magnet. fraction 46,31 17,85 69,05

Non-magnet. fraction 53,69 6,9 30,95

Ore 100 11,97 100

-1+0 Magnet. fraction 30,64 27,3 64,94

Non-magnet. fraction 69,36 6,51 35,06

Ore 100 12,88 100

-0,5+0 Magnet. fraction 35,45 25,73 65,66

Non-magnet. fraction 64,55 7,39 34,34

Ore 100 13,89 100

-0,315+0 Magnet. fraction 42,18 21,53 70,38

Non-magnet. fraction 57,82 6,61 29,62

Ore 100 12,9 100

With dry magnetic separation, the best result is obtained with magnetic separation of ore with a size of -0.5 + 0 mm at a current of 0.25A [25-28]. Under these conditions, a concentrate was obtained containing 40.95% of iron with an extraction of 57.71%.

Table 3

Results of wet magnetic separation of ore

Size, mm Fortification products Output, % Content, iron, % Iron extraction, %

1 2 3 4 5

Current strength 5 A

-1+0 Magnet. fraction 12,82 40,81 38,89

Non-magnet. fraction 87,18 9,43 61,11

Ore 100 13,45 100

-0,5+0 Magnet. fraction 11,37 49,19 40,35

Non-magnet. fraction 88,63 9,33 59,65

Ore 100 13,86 100

-0,315+0 Magnet. fraction 9,08 56,14 37,54

Non-magnet. fraction 90,92 9,33 62,46

Ore 100 13,58 100

1 2 3 4 5

Current strength 7 A

-1+0 Magnet. fraction 17,1 35,22 42,77

Non-magnet. fraction 82,9 9,72 57,23

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ore 100 14,08 100

-0,5+0 Magnet. fraction 11,29 49,77 40,44

Non-magnet. fraction 88,71 9,33 59,56

Ore 100 13,89 100

-0,315+0 Magnet. fraction 10,38 56,14 41,84

Non-magnet. fraction 89,62 9,04 58,16

Ore 100 13,93 100

With wet magnetic separation of ore, concentrates were obtained containing 35.2256.14% of iron while recovering it 37.54-41.84%.

Based on the studies performed, wet magnetic separation with the release of iron concentrate is proposed for the processing of ore from the Tebinbulak deposit. According to the recommended scheme, a magnetic fraction was obtained containing 56.14% of iron while extracting it 41.84%. Ore can be classified as refractory type.

REFERENCES

[1] Хакимов К.Ж., Каюмов О.А., Эшонкулов У.Х., Соатов Б.Ш. Техногенные отходы Перспективное сырье для металлургии Узбекистана в оценке отвальных хвостов фильтрации медно-молибденовых руд // UNIVERSUM: ТЕХНИЧЕСКИЕ НАУКИ - Москва, 2020. № 12 (81_1) C. 54-59

[2] Хакимов К.Ж., Эшонкулов У.Х., Умирзоков А. Complex Processing Of Lead-Containing Technogenic Waste From Mining And Metallurgical Industries In The Urals. THE AMERICAN JOURNAL OF ENGINEERING AND TECHNOLOGY (TAJET) SJIF-5.32 DOI-10.37547/tajet Volume 2 Issue 9, 2020 ISSN 2689-0984 The USA Journals, USA

[3 Хакимов К.Ж., Хасанов А.С., Шукуров А.Ю., Нурхонов Ф. Features of involvement in the processing of industrial waste from mining and m Эшонкулов У.Х., Ахмедов Х. Изучение вещественного состава титаномагнетитовой руды месторождения Тебинбулак. Техника юлдузлари, 2015 г., №_

[4] Абрамов А.А.Переработка, обогащение и комплексное использование твердых полезных ископаемых. Том II. Технология обогащения полезных ископаемых. М., 2004, 510с.

[5] Фишман М.А. Технология полезных ископаемых. М., ГосНТИ литературы по черной и цветной металлургии, 1955, 736с.

[6] Справочник по обогащению руд. Т.3, М., «Недра», 1964.

[7] Хайитов, О., Джураев, С., Умирзоков, А., Бекманов, Н., & Искандаров, Ж. (2021). НЕКОТОРЫЕ АСПЕКТЫ РЕЗУЛЬТАТОВ ВСКРЫТИЯ, ИСПЫТАНИЯ И ОСВОЕНИЯ ПОИСКОВО-РАЗВЕДОЧНЫХ СКВАЖИН. Зб1рник наукових праць SCIENTIA.

[8] Хайитов, О., Умирзоков, А., Усмонов, К., & Эдилов, Н. (2020). Анализ геолого-геофизический изученности юго-восточной части бухаро-хивинского региона. Збгрник наукових праць ЛОГОЕ, 69-73.

[9] Акрамов, Б., Хайитов, О., Нуритдинов, Ж., Давлатбоев, Ж., & Умирзоков, А. (2021). Интенсификация добычи нефти из месторождений с трудноизвлекаемыми запасами. Збгрник наукових праць SCIENTIA.

[10] Mukhamedova, Z. G., & Khromova, G. A. (2017). Yutkina IS Mathematical Model of Oscillations of Bearing Body Frame of Emergency and Repair Railcar. Journal«Transport Problems, 12(1), 93-103.

[11] Мухамедова, З. Г. (2015). Динамическая модель для исследования продольных колебаний главной рамы электровоза с учетом установки демпфирующего поглощающего аппарата в автосцепке. Известия Транссиба, (2 (22)).

[12] Khromova, G., Mukhamedova, Z., & Yutkina, I. (2017). Mathematical model of oscillations of bearing body frame of emergency and repair railcars. Transport problems, 12

[13] Mukhamedova, Z. (2015). Development of generalized dynamic model of oscillations of the main frame and running gear of rail service cars. Transport Problems, 711.

[14] Khromova, G. A., Mukhamedova, Z. G., & Yutkina, I. S. Optimization of dynamic characteristics of emergency rail service cars. Monograph. ISBN 978-9943-975-966.-Tashkent:" Fan va tekhnologiya", 2016.-253 p.

[15] Gafurdjanovna, M. Z. (2020). Reliability improvement of special self-propelled rolling stock based on its technical diagnostics. Journal of Critical Reviews, 7(12), 186189.

[16] Mukhamedova, Z. (2017). Mathematical Model for Calculation of Oscillations in the Main Bearing Frame of Railcar with Changing Stiffness and Physical Parameters.

[17] Эшонкулов, У. Х. У., Олимов, Ф. М. У., Саидахмедов, А. А., Туробов, Ш. Н., Шодиев, А. Н. У., & Сирожов, Т. Т. (2018). Обоснование параметров контурного взрывания при сооружении горных выработок большого сечения в крепких породах. Достижения науки и образования, (19 (41)).

[18] Каюмов, О. А. У., Хакимов, К. Ж., Эшонкулов, У. Х. У., Боймуродов, Н. А., & Норкулов, Н. М. У. (2021). ИЗУЧЕНИЕ ХИМИЧЕСКОГО, ГРАНУЛОМЕТРИЧЕСКОГО, ФАЗОВОГО СОСТАВА ЗОЛОТОСОДЕРЖАЩИХ СМЕШАННЫХ РУД. Universum: технические науки, (3-3 (84)), 45-49.

[19] Adilhodzhaev, A., Igamberdiev, B., Kodirova, D., Davlyatov, S., Marufjonov, A., & Shaumarov, S. (2020). THE STUDY OF THE INTERACTION OF ADHESIVE WITH THE SUBSTRATE SURFACE IN A NEW COMPOSITE MATERIAL BASED ON MODIFIED GYPSUM AND TREATED RICE STRAW. European Journal of Molecular & Clinical Medicine, 7(2), 683-689.

[20] Davlyatov, S. M., & Makhsudov, B. A. (2020). Technologies for producing high-strength gypsum from gypsum-containing wastes of sulfur production-flotation tailings. ACADEMICIA: An International Multidisciplinary Research Journal, 10(10), 724-728.

[21] Akhrarovich, A. K., & Muradovich, D. S. (2016). Calculation of cylindrical shells of tower type, reinforced along the generatrix by circular panels. European science review, (3-4).

[22] Шалшський, В. В., Давлятов, М. А., Ахметов, Ж. Д., Давлятов, Ш. М., Ткачук, I. А., Перетятько, Ю. Г., ... & Гром, А. А. ОВ Шимановський.

[23] Акрамов, Х. А., Давлятов, Ш. М., & Хазраткулов, У. У. (2016). Методы расчета общей устойчивости цилиндрических оболочек, подкрепленных в

продольном направлении цилиндрическими панелями. Молодой ученый, (7-2), 2934.

[24] Muratovich, D. S. (2016). Study of functioning of reservoirs in the form of cylindrical shells. European science review, (9-10).

[25] Murodov, M. M., Xudoyarov, O. F., & Urozov, M. Q. (2018). Technology of making carboxymethylcellulose by using local raw materials. Advanced Engineering Forum Vols. 8-9 (2018) pp 411-412/©. Trans Tech Publications, Switzerland. doi, 10, 8-9.

[26] Ibragimkhodjayev, A. M., Rakhmonberdiyev, G. R., Murodov, M. M., & Kodirov, O. S. (2009). "Influence of ripening process of cellulose from topinambour on its fractional composition. Chemistry and chemical technology. Tashkent, (4), 57.

[27] Муродов, М. Х., & Муродов, Б. Х. У. (2015). Фотоэлектрическая станция с автоматическим управлением мощностью 20 кВт для учебного заведения. Science Time, (12 (24)).

[28] Qulturaevich, U. M., Elievich, C. L., Murodovich, M. M., & Fattahovna, Y. N. (2021, May). TECHNOLOGIES FOR PRODUCING CELLULOSE FROM SAFLOR PLANTS AND PRODUCING CARBOXYMETHYL CELLULOSE BASED ON IT. In Euro-Asia Conferences (Vol. 5, No. 1, pp. 1-4).

i Надоели баннеры? Вы всегда можете отключить рекламу.