Научная статья на тему 'Development of a multimodal optical carbon ion nanosensor using neural networks'

Development of a multimodal optical carbon ion nanosensor using neural networks Текст научной статьи по специальности «Нанотехнологии»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Development of a multimodal optical carbon ion nanosensor using neural networks»

Development of a multimodal optical carbon ion nanosensor

using neural networks

G. Chugreeva1*, K. Laptinskiy1'2, O. Sarmanova1, T. Dolenko1

1- Faculty of Physics, M.V. Lomonosov Moscow State University, Russia 2- D. V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Russia

* chugreeva.gn17@physics.msu.ru

Carbon dots (CD) are nanoparticles with stable intense photoluminescence (PL), depending on the conditions of nanoparticle synthesis and extremely sensitive to changes in environmental parameters [1]. This combination of CD properties opens up broad prospects for the use of nanoparticles as optical nanosensors of the medium [2,3]. In all known publications on the nanosensorics of carbon nanoparticles, CD were considered as nanosensors of 1-2 environmental parameters, while in most practical tasks it is necessary to control changes in several parameters simultaneously.

In this study it is shown that using 2D convolutional neural networks, it is possible to solve the inverse problem of luminescent spectroscopy to determine the type and concentration of several ions in a medium at once using the excitation-emission matrices of PL CD. The results of the development of a photoluminescent nanosensor based on CD, capable to determine the concentrations of heavy metal cations Cu2+, Ni2+, Co2+, Pb2+, Al3+, Cr3+ and anion NO3" in aqueous solutions simultaneously with an average absolute error of 0.77 mM, 1.22 mM, 0.79 mM, 0.58 mM, 0.39 mM, 0.28 mM and 1.64 mM, respectively, are presented (Fig. 1). The accuracy of solving the inverse problem satisfies the needs of monitoring the composition of technological and industrial waters.

Fig. 1. Mean absolute errors (MAE) of ion concentration determination.

This study has been performed at the expense of the grant of Russian Science Foundation № 22-12-00138, https://rscf.ru/project/22-12-00138/.

[1] A.M. Vervald, K.A. Laptinskiy, G.N. Chugreeva, S.A. Burikov, T.A. Dolenko, Quenching of Photoluminescence of Carbon Dots by Metal Cations in Water: Estimation of Contributions of Different Mechanisms, J. Phys. Chem. C, vol. 127, pp. 21617-21628, 2023.

[2] Y. Guo, Z. Wang, H. Shao, Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions, Carbon, vol. 52, pp. 583-589, 2013.

[3] S. Liu, J. Tian, L. Wang, A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose, RSC Adv, vol. 2, pp. 411-413, 2012.

i Надоели баннеры? Вы всегда можете отключить рекламу.