Научная статья на тему 'Development and investigation of the key stream generators on the base of cellular automata'

Development and investigation of the key stream generators on the base of cellular automata Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
107
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
stream cipher / binary key stream generators / cellular automaton / statistical characteristics / secure communications system / потоковый шифр / генератор бинарного ключевого потока / клеточный автомат / статистические характеристи- ки / система защищенного обмена данными

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Val′ O. D., Zhikharevich V. V., Ovchar R. I., Ostapov S. E.

This paper presents the development and investigations of the binary key stream generators statistical characteristics. Developed generators based on the elementary rules of cells interaction: simple, modified and combined classical rules. We believe that elementary rules «30», «86», «135», «149» are most promising from statistical point of view. Modifications were consist of combining of array bits before outputting and combining various elementary rules of automaton cells interaction. It was developed a new simple interaction rule, based on the logical operation XOR. The investigation of statistical properties was performed using NIST STS v1.8. All designed generators showed good statistical characteristics, which indicates their satisfactory cryptoresistance. In addition we’ve investigated the developed generators linear complexity using Berlekamp-Massey algorithm. Obtained results shows the high values of linear complexity (about half of the cellular automaton length), which is typical for such structures type. On the base of the developed generator with own cells interaction rule has developed a system for secure communication of audio, text and file information. The statistical investigations of encrypted file showed that it satisfies all the NIST STS requirements.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

РАЗРАБОТКА И ИССЛЕДОВАНИЕ ГЕНЕРАТОРОВ КЛЮЧЕВОГО ПОТОКА НА ОСНОВЕ КЛЕТОЧНЫХ АВТОМАТОВ

В работе представлены результаты разработки и исследования статистических характеристик генераторов бинарного ключевого потока на основе клеточных автоматов. Разработанные генераторы используют элементарные правила межклеточного взаимодействия, «30», «86», «135» и «149», как наиболее обещающие со статистической точки зрения. Модификации правил заключались как в комбинировании самих правил взаимодействия, так и битов массивов перед выводом очередного бита. Разработано собственное правило межклеточного взаимодействия на основе сложения по модулю два. Исследования статистических характеристик выполнялись с помощью пакета NIST STS v1.8. Все разработанные генераторы продемонстрировали хорошие статистические свойства, которые подтверждают их удовлетворительную криптостойкость. Исследована также линейная сложность разработанных генераторов с использованием алгоритма Берлекемпа-Месси. Получены высокие значения линейной сложности (около половины длины клеточного автомата), что считается традиционным для такого рода систем. На основе исследованных генераторов разработана система защищенного обмена аудио-, текстовой и файловой информацией в реальном времени, что свидетельствует о высоком быстродействии системы защиты. Статистические тесты показывают, что система удовлетворяет всем требованиям NIST STS.

Текст научной работы на тему «Development and investigation of the key stream generators on the base of cellular automata»

ПРОГРЕСИВН1 ЩФОРМАЦГЙШ ТЕХНОЛОГИ

ПРОГРЕСИВН1 1НФОРМАЦ1ЙН1 ТЕХНОЛОГIÏ

ПРОГРЕССИВНЫЕ ИНФОРМАЦИОННЫЕ

ТЕХНОЛОГИИ

PROGRESSIV INFORMATICS TECHNOLOGIES

UDC 004.312.26

Val ' O. D.1, Zhikharevich V. V.2, Ovchar R. I.3, Ostapov S. E.4

1PhD, Associate professor, Associate professor of software department, Chernivtsi Yu. Fed'kovych National University, Chernivtsi,

Ukraine

2PhD, Associate professor, Associate professor of software department, Chernivtsi Yu. Fed'kovych National University, Chernivtsi,

Ukraine

3Assistant professor of software department, Chernivtsi Yu. Fed'kovych National University, Chernivtsi, Ukraine 4Dr. of Science, Professor, Head of the software department, Chernivtsi Yu. Fed'kovych National University, Chernivtsi, Ukraine

DEVELOPMENT AND INVESTIGATION OF THE KEY STREAM GENERATORS ON THE BASE OF CELLULAR AUTOMATA

This paper presents the development and investigations of the binary key stream generators statistical characteristics. Developed generators based on the elementary rules of cells interaction: simple, modified and combined classical rules. We believe that elementary rules «30», «86», «135», «149» are most promising from statistical point of view. Modifications were consist of combining of array bits before outputting and combining various elementary rules of automaton cells interaction. It was developed a new simple interaction rule, based on the logical operation XOR. The investigation of statistical properties was performed using NIST STS v1.8. All designed generators showed good statistical characteristics, which indicates their satisfactory cryptoresistance. In addition we've investigated the developed generators linear complexity using Berlekamp-Massey algorithm. Obtained results shows the high values of linear complexity (about half of the cellular automaton length), which is typical for such structures type. On the base of the developed generator with own cells interaction rule has developed a system for secure communication of audio, text and file information. The statistical investigations of encrypted file showed that it satisfies all the NIST STS requirements.

Keywords: stream cipher, binary key stream generators, cellular automaton, statistical characteristics, secure communications system.

NOMENCLATURE

A[i] is a value of i-th address array elements;

a is a calculated cell address;

B[i] is a buffer array elements;

C[i] is a value of i-th cellular automaton cell;

CA is a cellular automaton;

C'[i] is a value of i-th cellular automaton cell after the interaction act;

CA[a] is a value of CA cell with address A[a]; C'A[i] is a value of CA cell with address A[i] after the interaction act;

CJw] is a value of w-th elementary cellular automaton

PLD is a Programmable Logical Devices; R is an elementary interaction rules; R=30, w is a calculated cell address.

INTRODUCTION

135, 149;

cell;

Cou[w] is a value of w-th resulting CA cell after rules combination;

i,k is an array index; n is a CA length;

NIST STS is a National Institute of Standards and Technologies Statistical Suite;

PIN is a Personal Identification Number;

© Val' O. D., Zhikharevich V. V., Ovchar R. I., Ostapov S. E., 2015 DOI 10.15588/1607-3274-2015-3-7

Today most of us are living in the information society. The result of this is a large amount of information, which is transmitted by the telecommunication systems. With an open data also increase amounts of confidential information, requirements for protection of which considerably amplified. Such tendency is observed in Ukraine, especially with the introduction of the personal data protection law. If at the beginning of the computer systems development means for protection of the files, which are transmitted by the network, were used, then today on foreground is protection of information in real time.

At the same time, in Ukraine smart cards are rapidly introduced into the daily life. Now the introduction of electronic passports, medical cards, student tickets and classification books is discussed. The number of different mobile devices is rapidly increasing. Most of these gadgets have limited computing resources, but they also need to protect data transmitted open communication channels.

In any protection system, such as authentication, PINcode verification and so on, generators of pseudorandom sequences are used. Limitedness of computing resources requires the development of simple generating systems, which would easily compute in parallel. Speed parameters of protection systems and their optimization for specialized real time tasks become crucial. The best for these goals cellular automaton fit.

The main purpose of this paper is the development of the binary key stream generators based on cellular automata, investigation its statistical characteristics and linear complexity.

1 PROBLEM STATEMENT

Let us call the one-dimensional cellular automaton the array C[i], where /=[0, n-1], each element of which are logical zero or one. The automaton state at each time determined by the all its elements states. Automaton transition in a next state is determined by so-called transition rules, which are determined by the elements (cells) interaction with other cells that are at some distance from the selected cell. Elementary interaction rules, defined in [1], set the cell interaction with nearest neighbors.

For example, the famous rule «30» may be written as a Boolean function:

C'[i] = C[i -1] © (C[i +1] v C[i]; or as an arithmetic function:

C'[i] = (C[i-1] + C[i] + C[i+1] + C[i-1]C[i+1]) mod 2.

To avoid the first and last cell's problem automaton is «rolled» in the torus.

Another transition rules are produced similarly. We've used the «86», «135», «149» rules (see Table 1). There are 256 elementary transition rules, as it shown in [1].

Researchers can also design your own transition rules that take into account the interaction with randomly or pseudo-selected cells, or with no-neighboring cells. This makes the CA modifications and their use almost unlimited.

2 REVIEW OF THE LITERATURE

The first conclusions about the usage of CA for pseudorandom binary sequences generation in cryptographic purposes are found in the Stephen Wolfram work [1]. Soon investigations aimed at proving of the feasibility of specific applications realization appear [2-6]. In the past ten years there have been publications that describe specific generation or encryption algorithms based on the cellular automata. Among these works are articles of S. K. Rososhek et al [7] and Jegadish Kumar K. J. [8] which describes the symmetric encryption systems based on two-dimensional CA. B. M. Suhinin article [9] is about developed hardware implementation on PLD of a high-speed pseudorandom binary sequences generator on the basis of

CA. Norziana Jamil article [10] is devoted to the development and researching of hash function, which uses elementary CA rules for mixing bits of a message.

However, despite of the use of the elementary rules of CA cell interactions in the cryptographic purposes, their statistical properties are insufficiently studied. For example, there is no rigorous justification for the certain rules using, the possibility of their combinations using, compatibility, linear complexity, and other characteristics that may influence on the effectiveness of one-dimensional CA application.

Elementary rules of CA interaction were identified and classified by Stephen Wolfram in [11]. Totally 256 rules of the cell interaction, divided into several classes are allocated. Each class is formed of the, so-called, statistically equivalent rules, i.e. those that can be derived from each other using simple logical change - conjunctive, reflexive and conjunctive-reflexive. Also in [1] mentions that the rule «30» by its statistical characteristics can produce qualitative generator of pseudorandom binary sequences. Therefore, for research were selected all rules belonging to one class with the rule «30» («86», «135», «149») and a few others for comparison [12].

Conducted researches prove that all rules which are in a same class with the rule «30» have such statistical properties [8], which allow use them in different modifications for developing of the cryptoresistant pseudorandom binary sequences generator. As modifications, various options of array outputting, the initial generator state effect and etc. were investigated [13].

3 MATERIALS AND METHODS

The next question that should be explained - how these characteristics can be improved by using combinations of cell interaction rules. In [14-15] it is shown that the best results show a combination of rules that belong to the same class, and combined rules must also have good statistical properties. So we have to use a combination of rules «30», «86», «135», «149».

The sequences bits were combined in the following way. We use four cellular automata that implement these intercellular rules. Each CA output bits was selected by the formula:

(log2 n)-1 , w = (i + 3 + Y Ci+3+k 2k) mod n. k=0

The output bits was combined each other in various ways, but the best statistical characteristics was demonstrated by generator, which sequence was formed by the rule:

Cout [w] = (C30 [w] © C86 [w] © 1) © (C30 [w] © © C135 [w] © 1) © (C30[w] © C149[w] © 1). (1)

Table 1 - Elementary transition rules in the cellular automata

No Rules Boolean form Arithmetic form

1 «30» C'[i] = C[i -1] © (C[i +1] v C[i] C'[i] = (C[i-1] + C[i] + C[i+1] + C[i-1] C[i+1]) mod 2

2 «86» C [i] = C[i -1] v (C[i + 1] © C[i]) C'[i]=(C[i-1]+C[i]+C[i-1]C[i]+C[i+1]) mod 2

3 «135» C '[i] = 1 v C[i -1] © (C[i] v C[i +1] C'[i]=(1+C[i-1]+C[i]C[i+1]) mod 2

4 «149» C '[i] = C[i -1] v (C[i] © C[i +1] v 1 C'[i]=(1+C[i-1]C[i]+C[i+1]) mod 2

nPOrPECHBHt IHOOPMA^HHI TEXH0.n0ni

Another way to study the suitability of CA to generate high-quality pseudorandom key sequences was designing of intercellular interaction alternative rules.

We can propose the following rule. CA contains cells with logical «1» and «0». We use the address array A[i] to select the interacting cells. This array contains decimal numbers (cell's addresses) from 1 to n, pseudo-random filled and duplicated in the buffer array B[i]. Cells interact by the simple rule on the base of XOR. Interacted cells are selected as follows:

CA[i] = CA[a] ® CA[i+1] ® CA[i]; (2)

(log2n)-1 (, ) . . a = (i +1 + £ C1+1+k 2(log2n)-1-k )mod n. (3) k=0

First of all, it's necessary to select the target cell address. This cell will contain the interaction result. Its address is determined by the address array A[i]. Then we may determine the address of first interaction cell A[i+1]. The address of a second interacting cell A [a] is calculated by (3). Here we use the CA cells. The interaction result is recorded to the CA cell and outputted as a next key bit. After the interaction act the i-th and a-th elements of the buffer array are swapped: B[i]» B\a\ . If the array index i is reached its end, the address array A[i] is swapped with the buffer array B[i]:

¿A[\]oXB[\].

i=1 i=1

These steps continue as long as necessary for encryption or investigation of the statistical and other generator's characteristics. We have investigated the statistical characteristics and the linear complexity of the obtained key sequences. In the last case we've used the Berlekamp-Massey algorithm [16].

In all cases we have a binary stream, which have been used as key stream in G. Vernam cipher (one-time pad).

4 EXPERIMENTS

Computer programs that implement the proposed generators and encryption systems have been developed. In all cases, we've used cellular automata length of 256 bits.

Statistical investigations of the obtained sequences were performed by the NIST STS technique, which is usual for pseudorandom generators testing [17].

According to this technique it was generated the binary sequences with the length of 108 bits each. The sequences were fed to the input of NIST STS v. 1.8 as a text file. Statistical suite divided these sequences at the 100 equal parts of 106 bits each, making it possible to explore the 100 sequences.

These sequences have been tested by 16-th different groups of tests: frequency and block-frequency tests; cumulative-sums test; runs and longest-run tests; binary matrix rank test; digital Fourier transform; nonperiodic- and overlapping-templates tests; universal test; random-excursions tests; serial test; Lempel-Ziv test; linear-complexity test.

Because of these tests are running with different parameters, we've obtained the vector with 189 values.

Details of the method are described in [11], but we can assume that the whole key sequence have passed the statistical test only if at least 96 of the 100 investigated parts have passed the test.

NIST STS returns the sequence statistical portrait in the text file «FinalAnalysisReport», and than we have built the resulting histograms are shown below.

Additionally we performed linear-complexity tests by the Berlekamp-Massey algorithm for the 256-, 2560- and 25600-bits key sequences. In all cases, we have generated 10 sequences and calculated linear complexity for each of them.

5 RESULTS

Statistical testing results are shown in the fig. 1-2.

The results of linear-complexity investigations are shown in fig. 3. We've studied the various elementary rules for cellular automaton length of 256 bits.

£ if

<m m www m +m • ♦ m 4» M»4«4»-♦ 4

»4» 4M» ♦ ♦

►- ♦ 4— #

0 20 40 60

100 120 140 160 1B0 200

Test No

Figure 1 - Statistical portrait of the generator on the base of rule (1)

0 20 40 60 30 100 120 140 160 130 200

Test No

Figure 2 - Statistical portrait of the generator on the base of rule (2)

£ 126-

* Pule 30

♦ Rule 66 ► Rule 135 A Rule 149

Figure 3 - The results of linear-complexity investigations for the generators on the base of different elementary rules (automaton length - 256 bits)

As a final result of our research, we have developed software for secure data exchange. The software allows you to share encrypted audio information in real time and provides secure text messages (chat) and file exchange. We have used the G. Vernam cipher on the base of developed key sequence generators.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The results of the statistical tests of the input text and encrypted file are shown in fig. 4-5.

0 20 40 50

100 120 140 160 180 200

Figure 4 - Statistical portrait of the input text file

» ♦ ♦ ♦ ♦ *** • ♦ ♦ * *** *** • **•••• *

* i wn n t « *hh ♦♦ ♦ • ****» * *******

mm ♦ *—*******-♦—

• **** m***

100 Test No

Figure 5

Statistical portrait of the text file encrypted by stream cipher

6 DISCUSSION

One can see from fig. 1-2, the developed generators have successfully passed all of the statistical NIST tests. In the first case, almost all tests passed with the value >0.97 and only two of them are below this mark.

In the second case (see fig. 2) only five tests are passed with the value 0.96 and rest of them - with the value 0.97 or higher.

These results indicate the high statistical characteristics of the developed generators.

The high statistical characteristics are confirmed by large values of linear complexity. As one can see from fig. 3, the linear complexity values are located near the half of CA length: ~128 for 256-bit CA; ~ 1280 and 12800 - for 2560 -and 25600-bit CA respectively. It is known (see [18]) that the high linear complexity values are traditional for binary pseudorandom generators, which was demonstrated in our paper. Moreover, the NIST STS also has a linear-complexity test, and all our generators have passed it with the value not less than 0.98. High linear complexity values was shown by those generators, which not demonstrated the satisfactory statistical characteristics, such as rules «22», «54», «73», «150», «158». Perhaps in the future one can use these rules in the hash function or block ciphers construction as an additional diffusion or confusion element.

The statistical portraits of the input text and encrypted by stream cipher file are shown in fig. 4-5. It was necessary to perform such investigations in order to assess the quality of encryption subsystem in the actual operating conditions. Fig. 4 shows that the input file (Microsoft Word document) passed only three from 189 NIST STS tests. The encrypted file passed all 189 tests (see fig. 5). This fact confirms the results of statistical investigation of the generator on the base of (2), which was used in this software.

The aim of this development was to show the potential of the developed generator applying in the stream data exchange systems. This software gives an opportunity of the real time data exchanging for the network users. It can provide secure voice communication or protected text messages transmission (chat) or other files exchange. The software architecture is client-server and can be used in peer-to-peer networks [19].

When two subscribers open the connection generation and synchronization of encryption key using Diffie-Hellman-Merkle algorithm is implemented. The received general key is used for stream encryption based on cellular automata system initialization, or for symmetric cryptosystem based on Blowfish encryption algorithm session key creation.

CONCLUSION

Summarizing the conducted researches, we can make the following conclusions.

1. For the first time the systematic researches of the statistical characteristics of the pseudorandom binary sequences generators on the basis of elementary CA were conducted. The possibility of modified cell interaction rules application for pseudorandom sequences generating is shown.

2. It was shown that one of the effective ways to increase such generators cryptoresistance is a combination of different cell interaction rules.

3. For the first time the simple interaction rule on the base of XOR was proposed. This rule allows generating binary sequences with good statistical characteristics.

4. Secure voice, text and file exchanging software based on the developed generator was created. This software allows perform protection of audio stream in real time, which indicates on their high speed characteristics.

ACKNOWLEDGEMENTS

This investigation is supported by the department research project of Chernivtsi Yury Fed'kovych National University «Dynamic systems: modeling and software development» (state registration number 0110U005858). REFERENCES

1. Wolfram S. Random sequence generation by cellular automata /

5. Wolfram // Advances in Applied Mathematics. - 1986. -Vol. 7. - P. 123-164. DOI: http://dx.doi.org/10.1016/0196-8858(86)90028-X

2. Kar B. K. Theory and applications of cellular automata in cryptography / B. K. Kar, S. Nandi, P. P. Chaundhuri // IEEE Transactions on Computers. - 1994. - Vol. 43(12). - P. 13461357. DOI: http://dx.doi.org/10.1109/12.338094

3. Mazoyer J. Signals in one-dimensional cellular automata / J. Mazoyer, V. Terrier // Theoretical Computer Science. - 1999. -Vol. 217(1). - P. 53-80. DOI: http://dx.doi.org/10.1016/S0304-3975(98)00150-9

ПРОГРЕСИВН1 ЩФОРМАЦГЙШ ТЕХНОЛОГИ

4. Mihaljevic M. A cellular automaton based fast one-way hash function suitable for hardware implementation / M. Mihaljevic, Y. Zheng, H. Imai // Public Key Cryptography : Lecture Notes in Computer Science. - Springer Verlag. - 1988. - P. 217-234. DOI: http://dx.doi.org/10.1007/BFb0054027

5. Porter R. B. Evolving FPGA based cellular automata / R. B. Porter, N. W. Bergmann // In: B. McKay, X. Yao, C. S. Newton, J-H. Kim, and T. Furuhashi (eds.). - SEAL : Lecture Notes in Computer Science. - 1998, Vol. 1585. - P. 114-121. DOI: http://dx.doi.org/10.1007/3-540-48873-1_16

6. Seredynski F. Cellular automata computations and secret key cryptography / F. Seredynski, P. Bouvry, A. V. Zomaya // Parallel Computing. - 2003. - Vol. 30. - P. 753-766. DOI: http:// dx.doi.org/10.1016/j.parco.2003.12.014

7. Росошек С. К. Криптосистемы клеточных автоматов / С. К. Росошек, С. И. Боровков, О. О. Евсютин // Прикладная дискретная математика. - 2008. - Т. 1 (1). - С. 43-49. -[Электронный ресурс]. - Режим доступа: http:// cyberleninka.ru/article/n/kriptosistemy-kletochnyh-avtomatov

8. Jegadish Kumar K. J. Novel and Efficient Cellular Automata Based Symmetric Key Encryption Algorithm for Wireless Sensor Networks / K. J. Jegadish Kumar, K. Chenna Kesava Reddy, S. Salivahanan // International Journal of Computer Applications. -2011. - Vol. 13(4). - P. 30-37. DOI: http://dx.doi.org/10.5120/ 1767-2424

9. Сухинин Б. М. Высокоскоростные генераторы псевдослучайных последовательностей на основе клеточных автоматов / Б. М. Сухинин // Прикладная дискретная математика. - 2010. -Т. 2 (8). - С. 34-41. - [Электронный ресурс]. - Режим доступа: http://cyberleninka.ru/article/n/vysokoskorostnye-generatory-psevdosluchaynyh-posledovatelnostey-na-osnove-kletochnyh-avtomatov

10. Norziana J. A New Cryptographic Hash Function Based on Cellular Automata Rules 30, 134 and Omega-Flip Network / J. Norziana, M. Ramlan, Muhammad Reza Z'aba // 2012 International Conference on Information and Computer networks (ICICN-2012). - IACSIT Press, Singapore. - 2012. - V. 27. - P. 163169. - [Electronic resource]. - Access mode: http:// www.ipcsit.com/vol27/32-ICICN2012-N10006.pdf

11. Wolfram S. A New Kind of Science / S. Wolfram // Wolfram Media, Inc. - 2002. - 1197 p. - [Electronic resource]. - Access mode: http://www.wolframscience.com/nksonline/toc.html

12. Валь Л. О. Розробка та дослщження криптостшкого генератора двшкових послщовностей на основi клгганних автомапв / Л. О. Валь, В. В. Жихаревич, С. Е. Остапов // Науковий вюник Чершвецького ушверситету. Комп 'ютерш системи i компонента. - 2009. - № 479. - С. 147-150.

13. Валь Л. О. Використання клггинних автомапв для генерування псевдовипадкових двшкових послщовностей / Л. О. Валь, В. В. Жихаревич, С. Е. Остапов // Науковий вюник Чершвецького ушверситету. Комп 'ютерш системи i компонента. - 2010. -Т. 1 (1). - С. 67-72.

14. Чайка Л. О. Криптостшкий генератор псевдовипадкових послщовностей на основГ клгганних автомапв / Л. О. Чайка,

B. В. Жихаревич, С. Е. Остапов // Вюник Нащонального ушверситету ¡меш Тараса Шевченко. СерГя фГзико-математич-них наук. - 2011. - № 1. - С. 215-219.

15. Валь О. Д. Розробка та дослщження генераторГв ключового потоку на основГ комбшацп клгганних автомапв / О. Д. Валь, Л. О. Чайка, С. Е. Остапов // Науковий вюник Чершвецького ушверситету. Комп'ютерш системи i компоненти. - 2012. -Т. 3 (2). - С. 6-11.

16. Остапов С. Э. Генераторы псевдослучайных последовательностей на основе клеточных автоматов / С. Э. Остапов, Л. А. Чайка // Информационные технологи и системы в менеджменте, образовании, науке ; под. общей ред. В. С. Поно-маренко. - Харьков : Цифрова друкарня. - 2013. -№ 1. -

C. 178-190.

17. Потш О. В. Метод статистичного тестування NIST STS та математичне обгрунтування тес™ / О. В. Потш, А. В. Леншин, Ю. А. 1збенко // Техшчний звгт 11Т-001-2004. - 1нститут шформацшних технологш. - 2004. - 62 с.

18. Кренгель Е. И. Исследование и разработка новых классов псевдослучайных последовательностей и устройств их генерирования для систем кодовым разделением каналов / Е. И. Кренгель // [Электронный ресурс]. - Режим доступа: http://1-ebook.com/asu-peredacha-dannih/lineynaya-slojnost.html.

19. Система захищеного обмшу даними на основГ клгганних автомапв / [Л. О. Чайка, В. В. Жихаревич, Р. I. Овчар, С. Е. Остапов] // Науковий вюник Чершвецького ушверситету. Комп 'ютерш системи i компоненти. - 2011. - Т. 2 (1). -С. 15-20.

Article was submitted 13.01.2015.

After revision 03.02.2015.

Валь А. Д.1, Жихаревич В. В.2, Овчар Р. И.3, Остапов С. Э.4

'Канд. физ.-мат. наук, доцент, доцент кафедры программного обеспечения компьютерных систем Черновицкого Национального университета имени Юрия Федьковича, Черновцы, Украина

2Канд. физ.-мат. наук, доцент, доцент кафедры программного обеспечения компьютерных систем Черновицкого Национального университета имени Юрия Федьковича, Черновцы, Украина

3Ассистент кафедры программного обеспечения компьютерных систем Черновицкого Национального университета имени Юрия Федьковича, Черновцы, Украина

4Д-р. физ.-мат. наук, профессор, заведующий кафедрой программного обеспечения компьютерных систем Черновицкого Национального университета имени Юрия Федьковича, Черновцы, Украина

РАЗРАБОТКА И ИССЛЕДОВАНИЕ ГЕНЕРАТОРОВ КЛЮЧЕВОГО ПОТОКА НА ОСНОВЕ КЛЕТОЧНЫХ АВТОМАТОВ В работе представлены результаты разработки и исследования статистических характеристик генераторов бинарного ключевого потока на основе клеточных автоматов. Разработанные генераторы используют элементарные правила межклеточного взаимодействия, «30», «86», «135» и «149», как наиболее обещающие со статистической точки зрения. Модификации правил заключались как в комбинировании самих правил взаимодействия, так и битов массивов перед выводом очередного бита. Разработано собственное правило межклеточного взаимодействия на основе сложения по модулю два. Исследования статистических характеристик выполнялись с помощью пакета NIST STS VI.8. Все разработанные генераторы продемонстрировали хорошие статистические свойства, которые подтверждают их удовлетворительную криптостойкость. Исследована также линейная сложность разработанных генераторов с использованием алгоритма Берлекемпа-Месси. Получены высокие значения линейной сложности (около половины длины клеточного автомата), что считается традиционным для такого рода систем. На основе исследованных генераторов разработана система защищенного обмена аудио-, текстовой и файловой информацией в реальном времени, что свидетельствует о высоком быстродействии системы защиты. Статистические тесты показывают, что система удовлетворяет всем требованиям NIST STS.

Ключевые слова: потоковый шифр, генератор бинарного ключевого потока, клеточный автомат, статистические характеристики, система защищенного обмена данными.

Валь О. Д.1, Жихаревич В. В.2, Овчар Р. I.3, Остапов С. Е.4

'Канд. фiз.-мат. наук, доцент, доцент кафедри програмного забезпечення комп'ютерних систем Чершвецького Нацюнального ушверситету iменi Юрiя Федьковича, Чершвщ, Укра1на

2Канд. фiз.-мат. наук, доцент, доцент кафедри програмного забезпечення комп'ютерних систем Чершвецького Нацюнального ушверситету iменi Юрiя Федьковича, Чершвщ, Укра1на

3Асистент кафедри програмного забезпечення комп'ютерних систем Чершвецького Нацюнального ушверситету iменi Юрiя Федьковича, Чернiвцi, Укра!на

4Д-р фiз.-мат. наук, професор, завщувач кафедри програмного забезпечення комп'ютерних систем Чершвецького Нацюнального ушверситету iменi Юрiя Федьковича, Чернiвцi, Укра1на

РОЗРОБКА ТА ДОСЛ1ДЖЕННЯ ГЕНЕРАТОР1В Б1НАРНОГО КЛЮЧОВОГО ПОТОКУ НА ОСНОВ1 КЛ1ТИННИХ АВТОМАТ1В

В робот подано результати розробки та дослщження статистичних характеристик генераторiв бшарного ключового потоку на основi клггинних автоматiв. Розробленi генератори використовують елементарш правила мiжклiтинноl взаемодп, «30», «86», «135» и «149», як найбшьш перспективш зi статистично! точки зору. Модифжаци правил зводилися як до комбшування власне правил взаемодп, так i бiтiв масиву перед виводом чергового бiта. Розроблено власне правило мiжклiтинноl взаемодп на основi додавання за модулем два. Дослщження статистичних характеристик виконувалося за допомогою пакета N181 8Т8 у1.8. Уа розробленi генератори продемонст-рували хорошi статистичнi властивостi, що пiдтверджуе !х задовiльну криптостiйкiсть. Дослiджено також лiнiйну складнiсть з викори-станням алгоритму Берлекемпа-Месс та отримано високi и значення (приблизно половину довжини клiтинного автомата), що вва-жаеться традицшним для такого роду систем. На базi дослiджених генераторiв розроблено систему захищеного обмiну аудiо-, текстовою та файловою iнформацiею в реальному чаа, що свiдчить про високу швидкодто системи захисту. Результати статистичних тес™ демонструють, що система задовольняе ус вимоги N181 8Т8.

Ключовi слова: потоковий шифр, генератор бшарного ключового потоку, клггинний автомат, статистичш характеристики, система захищеного обмшу даними.

REFERENCES

1. Wolfram S. Random sequence generation by cellular automata, Advances in Applied Mathematics, 1986, Vol. 7, pp. 123-164. DOI: http://dx.doi.org/10.1016/0196-8858(86)90028-X

2. Kar B. K., Nandi S., Chaundhuri P. P. Theory and applications of cellular automata in cryptography, IEEE Transactions on Computers, 1994, Vol. 43 (12), pp. 1346-1357. DOI: http:// dx.doi.org/10.1109/12.338094

3. Mazoyer J., Terrier V. Signals in one-dimensional cellular automata, Theoretical Computer Science, 1999, Vol. 217 (1), pp. 53-80. DOI: http://dx.doi.org/10.1016/S0304-3975(98)00150-9

4. Mihaljevic M., Zheng Y., Imai H. A cellular automaton based fast one-way hash function suitable for hardware implementation, Public Key Cryptography: Lecture Notes in Computer Science. Springer Verlag, 1988, pp. 217-234. DOI: http://dx.doi.org/ 10.1007/BFb0054027

5. Porter R. B., Bergmann N. W. Evolving FPGA based cellular automata, In: B. McKay, X. Yao, C. S. Newton, J-H. Kim, and T. Furuhashi (eds.), SEAL : Lecture Notes in Computer Science, 1998, Vol. 1585, pp. 114-121. DOI: http://dx.doi.org/10.1007/ 3-540-48873-1_16

6. Seredynski F., Bouvry P., Zomaya A. V. Cellular automata computations and secret key cryptography, Parallel Computing, 2003, Vol. 30, P. 753-766. DOI: http://dx.doi.org/10.1016/ j.parco.2003.12.014

7. Rososhek S. K., Borovkov S. I., Evsjutin O. O. Kriptosistemy kletochnyh avtomatov, Prikladnaja diskretnaja matematika, 2008, Vol. 1 (1), pp. 43-49. - [Electronic resource]. - Access mode: http://cyberleninka.ru/article/n/kriptosistemy-kletochnyh-avtomatov

8. Jegadish Kumar K. J., Chenna Kesava Reddy K., Salivahanan S. Novel and Efficient Cellular Automata Based Symmetric Key Encryption Algorithm for Wireless Sensor Networks, International Journal of Computer Applications, 2011, Vol. 13(4), pp. 30-37. DOI: http://dx.doi.org/10.5120/1767-2424

9. Suhinin B. M. Vysokoskorostnye generatory psevdosluchajnyh posledovatel'nostej na osnove kletochnyh avtomatov, Prikladnaja diskretnaja matematika, 2010, Vol. 2(8), pp. 3441. [Electronic resource]. Access mode: http://cyberleninka.ru/ article/n/vysokoskorostnye-generatory-psevdosluchaynyh-posledovatelnostey-na-osnove-kletochnyh-avtomatov

10. Norziana J., Ramlan M., Muhammad Reza Z'aba A New Cryptographic Hash Function Based on Cellular Automata Rules 30, 134 and Omega-Flip Network /J. Norziana, M. Ramlan,

Muhammad Reza Z'aba, 2012 International Conference on Information and Computer networks (ICICN-2012), IACSIT Press, Singapore, 2012, Vol. 27, pp. 163-169. [Electronic resource]. Access mode: http://www.ipcsit.com/vol27/32-ICICN2012-N10006.pdf

11. Wolfram S. A New Kind of Science, Wolfram Media, Inc., 2002, 1197 p. [Electronic resource]. Access mode: http:// www.wolframscience.com/nksonline/toc.html

12. Val' L. O., Zhyharevych V. V., Ostapov S. E. Rozrobka ta doslidzhennja kryptostijkogo generatora dvijkovyh poslidovnostej na osnovi klitynnyh avtomativ, Naukovyj visnyk Chernivec 'kogo universytetu. Komp juterni systemy i komponenty, 2009, No. 479, pp. 147-150.

13. Val' L. O., Zhyharevych V. V., Ostapov S. E. Vykorystannja klitynnyh avtomativ dlja generuvannja psevdovypadkovyh dvijkovyh poslidovnostej, Naukovyj visnyk Chernivec'kogo universytetu. Komp'juterni systemy i komponenty, 2010, Vol. 1 (1), pp. 67-72.

14. Chaika L. O., Zhyharevych V. V., Ostapov S. E. Kryptostijkyj generator psevdovypadkovyh poslidovnostej na osnovi klitynnyh avtomativ, Visnyk Nacional'nogo universytetu imeni Tarasa Shevchenko. Serija fizyko-matematychnyh nauk, 2011, No. 1, pp. 215-219.

15. Val' O. D., Chaika L. O., Ostapov S. E. Rozrobka ta doslidzhennja generatoriv kljuchovogo potoku na osnovi kombinacii' klitynnyh avtomativ, Naukovyj visnyk Chernivec 'kogo universytetu. Komp'juterni systemy i komponenty, 2012, Vol. 3(2), pp. 6-11.

16. Ostapov S. E., Chaika L. A. Generatory psevdosluchajnyh posledovatel'nostej na osnove kletochnyh avtomatov, In: Informacionnye tehnologii i sistemy v menedzhmente, obrazovanii, nauke: V. S. Ponomarenko (eds). Harkiv, Cyfrova drukarnja No. 1, 2013, pp. 178-190.

17. Potij O. V., Lenshyn A. V., Izbenko Yu. A. Metod statystychnogo testuvannja NIST STS ta matematychne obg'runtuvannja testiv, Tehnichnyi zvitIIT-001-2004. Instytut informatsiynyh tehnologiy, 2004, 62 p.

18.Krengel E. I. Issledovanie i razrabotka novyh klassov psevdosluchajnyh posledovatel'nostej i ustrojstv ih generirovanija dlja sistem kodovym razdeleniem kanalov. [Electronic resource]. Access mode: http://1-ebook.com/asu-peredacha-dannih/ lineynaya-slojnost.html.

19. Chaika L. O., Zhikharevich V. V., Ovchar R. I., Ostapov S. E. Systema zahyshhenogo obminu danymy na osnovi klitynnyh avtomativ, Naukovyj visnyk Chernivets'kogo universytetu. Kompyuterni systemy i komponenty, 2011, Vol. 2(1), pp. 15-20.

i Надоели баннеры? Вы всегда можете отключить рекламу.