Научная статья на тему 'DETERMINING CONSUMER APPEAL OF SELECTED GARDEN STRAWBERRY VARIETIES (FRAGARIA × ANANASSA DUCH.)'

DETERMINING CONSUMER APPEAL OF SELECTED GARDEN STRAWBERRY VARIETIES (FRAGARIA × ANANASSA DUCH.) Текст научной статьи по специальности «Биологические науки»

CC BY
39
10
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Siberian Journal of Life Sciences and Agriculture
Scopus
ВАК
Область наук
Ключевые слова
STRAWBERRY / GENOTYPE / CONSUMER APPEAL / FLAVOR / BIOCHEMICAL COMPOSITION / AROMA

Аннотация научной статьи по биологическим наукам, автор научной работы — Luk'Yanchuk Irina V., Zhbanova Ekaterina V., Lyzhin Alexander S.

Improving the biochemical strawberry fruit composition and aroma is an important goal to develop the assortment of strawberry plants because only a few present-day varieties combine the high quality and aroma in strawberry fruits with increased accumulation of the biochemical composition components. The paper aims to assess hybrid strawberry seedlings based on a range of properties in strawberry fruits to select the most promising genotypes. Strawberry aroma and its consumer appeal were evaluated organoleptically. The biochemical component was tested in the laboratory according to standard methods, and the strawberry aroma was evaluated using DNA markers. The research identified promising genotypes showing a high level of different characteristics: 75-30 (Tokado × Elianny) - consumer appeal (5.0 points), flavor (4.5 points), polychlorinated biphenyl levels [PCB] (9.2% Brix), and vitamin C (72.1 mg/100 g); 34-2 (922-67 × Privlekatelnaya) - consumer appeal (5.0 points), strawberry aroma (FaOMT gene), flavor (4.5 points), РСВ levels (14.7% Brix), and sugars (10.8%); 153-41 (Senga Sengana × Redcoat) -consumer appeal (5.0 points), strawberry aroma (FaOMT gene), PCB levels (12.8% Brix), sugars (10.2%), and vitamin C (76.1 mg/100 g); 153-60 (Senga Sengana × Redcoat) - consumer appeal (5.0 points), strawberry aroma (FaOMT gene), flavor (4.6 points), PCB levels (11.7% Brix), and sugars (10.5%); 35-16 (922-67 × Maryshka) - flavor (4.6 points) and anthocyanins levels (90.7 mg/100 g); 72-25 (Privlekatelnaya × Bylinnaya) - combination of FaOMT and FaFAD1 strawberry aroma genes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DETERMINING CONSUMER APPEAL OF SELECTED GARDEN STRAWBERRY VARIETIES (FRAGARIA × ANANASSA DUCH.)»

DOI: 10.12731/2658-6649-2022-14-4-228-241 UDC 634.75

DETERMINING CONSUMER APPEAL OF SELECTED GARDEN STRAWBERRY VARIETIES (FRAGARIA x ANANASSA DUCH.)

I.V. Luk'yanchuk, E.V. Zhbanova, A.S. Lyzhin

Improving the biochemical strawberry fruit composition and aroma is an important goal to develop the assortment of strawberry plants because only a few present-day varieties combine the high quality and aroma in strawberry fruits with increased accumulation of the biochemical composition components. The paper aims to assess hybrid strawberry seedlings based on a range of properties in strawberry fruits to select the most promising genotypes. Strawberry aroma and its consumer appeal were evaluated organoleptically. The biochemical component was tested in the laboratory according to standard methods, and the strawberry aroma was evaluated using DNA markers.

The research identified promising genotypes showing a high level of different characteristics: 75-30 (Tokado x Elianny) - consumer appeal (5.0 points), flavor (4.5 points), polychlorinated biphenyl levels [PCB] (9.2% Brix), and vitamin C (72.1 mg/100g); 34-2 (922-67 x Privlekatelnaya) - consumer appeal (5.0points), strawberry aroma (FaOMT gene), flavor (4.5points), PCB levels (14.7% Brix), and sugars (10.8%); 153-41 (SengaSengana x Redcoat) -consumer appeal (5.0points), strawberry aroma (FaOMT gene), PCB levels (12.8% Brix), sugars (10.2%), and vitamin C (76.1 mg/100 g); 153-60 (Senga Sengana x Redcoat) - consumer appeal (5.0 points), strawberry aroma (FaOMT gene), flavor (4.6 points), PCB levels (11.7% Brix), and sugars (10.5%); 35-16 (922-67 x Maryshka)-flavor (4.6points) and anthocyanins levels (90.7 mg/100 g); 72-25 (Privlekatelnaya x Bylinnaya) -combination of FaOMT and FaFAD1 strawberry aroma genes.

Keywords: strawberry; genotype; consumer appeal; flavor; biochemical composition; aroma

For citation. Luk'yanchuk I.V., Zhbanova E.V., Lyzhin A.S. Determining Consumer Appeal of Selected Garden Strawberry Varieties (Fragaria x Ananassa Duch.). Siberian Journal of Life Sciences and Agriculture, 2022, vol. 14, no. 4, pp. 228-241. DOI: 10.12731/2658-6649-2022-14-4-228-241

ОЦЕНКА ПОТРЕБИТЕЛЬСКИХ КАЧЕСТВ ПЛОДОВ ОТБОРНЫХ ФОРМ ЗЕМЛЯНИКИ САДОВОЙ (FRAGARIA х ANANASSA DUCH.)

И.В. Лукъянчук, Е.В. Жбанова, А.С. Лыжин

Улучшение биохимического состава и аромата плодов является актуальной задачей совершенствования сортимента земляники, так как немногие из современных сортов сочетают высокий уровень качества и аромата плодов с повышенным накоплением компонентов биохимического состава. Цель исследования - анализ гибридных сеянцев земляники по комплексу потребительских качеств плодов для выделения перспективных генотипов. Оценку привлекательности и вкусовых качеств плодов проводили органо-лептически, содержание биохимических компонентов - в лабораторных условиях по стандартным методикам, аромата плодов - с использованием ДНК-маркеров.

В результате проведённых исследований идентифицированы перспективные генотипы, характеризующиеся высоким уровнем проявления комплекса признаков: 75-30 (Tokado х Elianny) - привлекательность (5,0 балла), вкус плодов (4,5 балла), содержание растворимых сухих веществ (РСВ) (9,2% Brix) и витамина C (72,1 мг/100 г); 34-2 (922-67 х Привлекательная) - привлекательность (5,0 балла), аромат плодов (ген FaOMT), вкус (4,5 балла), содержание РСВ (14,7% Brix) и сахаров (10,8%); 153-41 (Senga Sengana х Redcoat) - привлекательность (5,0 балла), аромат плодов (ген FaOMT), содержание РСВ (12,8% Brix), сахаров (10,2%) и витамина C (76,1 мг/100 г); 153-60 (Senga Sengana х Redcoat) - привлекательность (5,0 балла), аромат плодов (ген FaOMT), вкус (4,6 балла), содержание РСВ (11,7% Brix) и сахаров (10,5%); 35-16 (922-67 х Maryshka) - вкус плодов (4,6 балла) и содержание антоцианов (90,7мг/100 г); 72-25 (Привлекательная х Былинная) - комбинация генов аромата плодов FaOMT и FaFAD1.

Ключевые слова: земляника; генотип; потребительские качества; вкус; биохимический состав; аромат

Для цитирования. Лукъянчук И.В., Жбанова Е.В., Лыжин А.С. Оценка потребительских качеств плодов отборных форм земляники садовой (Fragaria х ananassa Duch.) // Siberian Journal of Life Sciences and Agriculture. 2022. Т. 14, №4. С. 228-241. DOI: 10.12731/2658-6649-2022-14-4-228-241

Introduction

Garden strawberries are among the most widely cultivated berry crops in the world. Its fruits contain a large number of phytochemical compounds: cat-echins, flavonols, anthocyanins, vitamin C, folic acid, etc. [6; 14]. Strawberry consumption helps to prevent inflammatory processes, hypertension, and atherosclerosis [9; 15]. However, only a few of the cultivated genotypes are associated with a high quality of fruits and increased accumulation of biochemical composition components [11].

Furthermore, what attracts consumers to high-quality strawberries is their distinctive pleasant aroma attributed to a number of volatile aroma-forming organic compounds [17; 19]. The most significant contribution to the strawberry aroma is made by about 20 organic compounds, which include y-decalactone (peach-like, fruity, sweet aroma) and mesifuran (fruity and caramel aroma) [10; 21]. According to [20] and [10], many present-day high-yielding garden strawberry varieties possess weak aroma characteristics due to the domestication effect, and plant breeders who neglected the "strawberry aroma" component as important for breeding purposes over a long time. In this regard, improving the biochemical composition and preservation of aroma is an urgent and important task concerning strawberry varieties' genetic and breeding improvement.

The scientific novelty is as follows:

• Polymorphic selected hybrid forms of strawberries of interspecific and in-tervarietal origin (created at the I. V Michurin Federal Research Center) were characterized for the first time based on a complex of new methods of DNA technology, genetic selection, and biochemical analysis;

• Qualitatively new genotypes with fragrant dessert-flavored fruits with a high accumulation of biologically active substances (anthocyanins, vitamin C) were identified).

Materials and methods

The paper aims to assess hybrid strawberry seedlings based on a range of properties in strawberry fruits to select the most promising genotypes and the origins of their high quality.

Research objectives:

• To evaluate the strawberry fruit appeal and palatability in selected varieties;

• To examine the selected strawberry fruits' biochemical composition;

• To analyze the selected varieties for genetic determinants of the strawberry's aromatic properties;

• To select promising strawberry genotypes with a high number of qualities enjoyed by consumers.

The research was conducted in 2019-2020. It targeted promising selected seedlings of garden strawberries obtained at the I.V Michurin Federal Research Center.

Garden strawberry appeal and palatability were evaluated organoleptically following the Program and Methods of Variety Research on Fruit, Berry, and Nut Crops [8].

Strawberry fruit biochemical analyses were performed according to standard methods [1; 7]. The obtained data were statistically processed using the Microsoft Excel 2016 software.

Strawberry aroma evaluation was based on identifying genes of volatile aroma-forming substances through molecular genetic analysis. The FaOMT-SI/NO marker [22] was used to detect the FaOMT gene (mesifuran levels in strawberry fruits). The FaFADl marker [12] was chosen to identify the FaFADl gene (y-decalactone levels in strawberry fruits). The 15 ^l polymerase chain reaction [PCR] mixture contained 1.5 mM of a buffer solution for PCR, 2.0 mM of a deoxyribonucleotide triphosphate solution, 2.5 mM of magnesium chloride, 0.2 U of Taq polymerase, 0.2 ^M of forward and reverse primers, and 20 ng of genomic DNA. Amplification was performed with the help of a BIO-RAD T100 thermocycler and in the modes described earlier [5]. The amplification products were separated by agarose gel electrophoresis. The Gene Ruler 100 bp DNA Ladder was used to determine the size of amplicons.

Results

In the studied hybrid varieties of garden strawberry, we estimated how attractive their fruits can be to consumers (4.0 to 5.0 points); identified strawberry fruits flavor (4.0 to 4.6 points); polychlorinated biphenyl [PCB] levels (8.3 to 10.6% Brix), total sugars (5.1 to 8.4%); vitamin C (37.0 to 88.5 mg/100 g); and anthocyanins (30.3 to 114.0 mg/100 g) (Table 1).

Among the studied biochemical components of strawberry fruits, the greatest variability was noted in the anthocyanins levels (3.8-fold difference between the maximum and minimum values) and vitamin C levels (2.4-fold difference between the maximum and minimum values).

Hybrid varieties possess a number of qualities desirable to consumers:

• 75-30 (Tokado x Elianny) - consumer appeal (5.0 points), flavor (4.5 points), PCB levels (9.2% Brix), and vitamin C (72.1 mg/100 g);

• 34-2 (922-67 x Privlekatelnaya) - consumer appeal (5.0 points), flavor (4.5 points), PCB levels (14.7% Brix), and sugars (10.8%);

• 153-41 (Senga Sengana x Redcoat) - consumer appeal (5.0 points), PCB levels (12.8% Brix), sugars (10.2%), and vitamin C (76.1 mg/100 g);

• 153-60 (Senga Sengana x Redcoat) - consumer appeal (5.0 points), flavor (4.6 points), PCB levels (11.7% Brix), and sugars (10.5%);

• 35-16 (922-67 x Maryshka) - flavor (4.6 points) and anthocyanins levels (90.7 mg/100 g).

Table 1.

Consumer appeal to the selected hybrid varieties of strawberries

Indicator Average (x) Standard error S() (x) Variation intervals Selected varieties with the best indicators

min max difference, (A)

Consumer appeal, score 4.9 0.10 4.0 5.0 1.0 920-76, 75-30, 914-13, 914-27, 20-8, 35-1, 34-2, 153-41, 153-60, 35-10, 26-10, 56-19

Flavor, score 4.2 0.16 4.0 4.6 0.6 920-62, 914-67, 75-30, 928-25, 927-14, 914-13, 26-5, 26-10, 25-2, 2114, 35-10, 35-16, 56-19, 34-2, 153-60

PCB, % Brix 9.4 0.17 8.3 10.6 2.3 153-41, 153-60, 34-2, 4/1-126, 4/1-110, 75-30

Sugar (levels), % 6.6 0.14 5.1 8.4 3.3 153-41, 153-60, 34-2, 4/1-126, 4/1-110

Vitamin C, mg/100 g 57.5 2.39 37.0 88.5 51.5 72-12, 153-41,75-30

Anthocyanins, mg/100 g 55.1 4.23 30.3 114.0 83.7 25-1, 30-1, 35-1, 35-16

Using the FaOMT-SI/NO marker, a functional allele of the FaOMT gene (248 bp amplicon) was detected in 64.3% of the strawberry varieties studied, among which 55.6% of hybrids show a combination of functional and nonfunctional alleles, and 44.4% of genotypes show a functional allele in the homozygous state. The FaFAD1 gene (500 bp amplicon) was identified in 35.7% of the strawberry varieties under study (Table 2).

The combination of functional alleles in FaOMT and FaFAD1 genes was revealed in one genotype: seedling 72-25 taken from the Privlekatelnaya x By-linnaya plant breeding combination. The selected seedling 65-26 (Olimpiyskaya

Nadezhda x Bylinnaya) inherited no functional alleles of the target genes (am-plicons of 248 bp (FaOMTgene) and 500 bp (FaFADl gene) were not present).

Table 2.

Allelic diversity of aroma genes in selected strawberry seedlings

Genotype Plant breeding combination FaOMT FaFADl

217 bp 248 bp 500 bp

928-12 298-19-9-43 x Privlekatelnaya + +

72-25 Privlekatelnaya x Bylinnaya + + +

72-71 + +

26-5 Rubinovy Kulon x 298-19-9-43 + +

65-26 Olimpiyskaya Nadezhda x Bylinnaya +

65-34 + +

69-29 Feyerverk x Bylinnaya + +

56-5 Gigantella Maxim x Privlekatelnaya +

56-8 + +

61-3 Bylinnaya x Olimpiyskaya Nadezhda + +

61-12 + +

34-2 922-67 x Privlekatelnaya +

153-41 Senga Sengana x Redcoat +

153-60 +

Discussion

Significant variability was observed for the studied selected strawberry varieties with regard to the qualities consumers find desirable in strawberry fruits. This is due to the polymorphism of the original parental forms and polygenic control and independent pattern in the inheritance of strawberry fruit quality properties and biochemical composition [2; 3; 18].

In addition, various present-day strawberry varieties (generally used as the original parental forms) show a low concentration of biochemical components in their fruits, which makes it challenging to obtain genotypes with high-quality properties.

However, if we consider particular plant breeding combinations, then it is possible to isolate hybrid seedlings with high-quality properties of individual components within the strawberry fruit biochemical composition originated from genetic determinants recombination and transgressive variability [3; 4].

High-quality properties desirable to consumers were found in the following strawberry varieties: 920-76 (Rubinovy Kulon x Dedanka), 75-30 (Tokado x Elianny), 914-13, 914-27 (Festivalnaya x Privlekatelnaya), 20-8 (Festivalnaya

x Dedanka), 35-10 (922-67 x Maryshka), 26-10 (Rubinovy Kulon x 298-19-943), 153-41 (Senga Sengana x Redcoat), 34-2 (922-67 x Privlekatelnaya), 5619 (Gigantella Maxim x Privlekatelnaya), etc. (consumer appeal - 5.0 points); 21-14 (Urozhaynaya TSGL x Rubinovy Kulon), 920-62 (Rubinovy Kulon x Dedanka), 914-13, 914-67 (Festivalnaya x Privlekatelnaya), 26-5, 26-10 (Rubinovy Kulon x 298-19-9-43), 75-30 (Tokado x Elianny), 928-25 (298-19-943 x Privlekatelnaya), 927-14 (298-19-9-43 x Rubinovy Kulon), 35-10, 35-16 (922-67 x Maryshka), 153-60 (Senga Sengana x Redcoat), 25-2 (Rubinovy Kulon x Maryshka), 34-2 (922-67 x Privlekatelnaya), 56-19 (Gigantella Maxim x Privlekatelnaya) (flavor - 4.5 points or more); 153-41, 153-60 (Senga Sengana x Redcoat), 34-2 (922-67 x Privlekatelnaya), 4/1-110, 4/1-126 (Polka x Vima Zanta), 75-30 (Tokado x Elianny) (PCB levels - 9% or more); 153-41, 153-60 (Senga Sengana x Redcoat), 34-2 (922-67 x Privlekatelnaya),4/1-110, 4/1-126 (Polka x Vima Zanta) (sugar levels - 7% or more); 72-12 (Privlekatelnaya x Bylinnaya), 75-30 (Tokado x Elianny), 153-41 (Senga Sengana x Redcoat) (vitamin C - 70 mg/100 g or more); 25-1 (Rubinovy Kulon x Maryshka), 30-1 (Feyerverk x Privlekatelnaya), 35-1, 35-16 (922-67 x Maryshka) (anthocyanin levels - 80 mg/ 100 g or more).

According to the studies of Zorrilla-Fontanesi et al. [22], Cruz-Rus et al. [13], the high levels of mesifuran in strawberry fruits occur in their selected varieties that carry a functional allele of the FaOMT gene in the genome in a homozygous or heterozygous state. These include the following seedlings: 56-5 (Gigantella Maxim x Privlekatelnaya), 34-2 (922-67 x Privlekatelnaya), 15341, 153-60 (Senga Sengana x Redcoat) (homozygous genotype by functional allele); 72-25, 72-71 (Privlekatelnaya x Bylinnaya), 928-12 (298-19-9-43 x Privlekatelnaya), 26-5 (Rubinovy Kulon x 298-19-9-43), 69-29 (Feyerverk x Bylinnaya) (heterozygous genotype). Molecular genetic testing data are also confirmed by analyzing the origin of the varieties studied. The seedlings possessing the homozygous state of the FaOMT gene functional allele were isolated in plant breeding combinations where, according to the data obtained earlier [5; 16], both parental forms contain the FaOMT functional allele in their genome and, therefore, it is possible to have homozygous forms in the hybrid progeny. Heterozygous genotypes affected by the FaOMT gene have been isolated in hybrid combinations, where one or both parental forms show the FaOMT gene functional allele, while homozygous seedlings with the inactive allele have the original parental forms without the functional FaOMT allele in their genome.

The y-decalactone levels in strawberry fruits are controlled by the expression of the FaFAD1 dominant gene [12]. According to molecular genetic anal-

ysis, high y-decalactone levels are found in fruits of 72-25 (Privlekatelnaya x Bylinnaya), 61-3, 61-12 (Bylinnaya x Olimpiyskaya Nadezhda), 65-34 (Olimpiyskaya Nadezhda x Bylinnaya), and 56-8 (Gigantella Maxim x Privlekatelnaya) obtained using previously identified [5] donors with the target allele of the FaFADl gene, the Bylinnaya and Gigantella Maxim cultivars. A combination of the FaOMT and FaFADl functional alleles was identified in seedlings 72-25 (Privlekatelnaya x Bylinnaya). It should be noted that the seedling 72-71 from the same breeding combination did not inherit the functional allele of the Fa-FAD1 gene. In addition, seedlings 56-5, 56-8 (Gigantella Maxim x Privlekatelnaya), and 69-29 (Feyerverk x Bylinnaya) also inherited only one locus of the two possible.

Conclusion

Based on the evaluation of selected strawberry varieties in terms of a number properties desirable by consumers, we identified promising genotypes that possess one prominent strawberry property or a number of properties. The most valuable varieties for breeding purposes are:

• 75-30 (Tokado x Elianny) - consumer appeal (5.0 points), flavorful (4.5 points) strawberry fruits with high PCB levels (9.2% Brix), and vitamin C (72.1 mg/100 g);

• 34-2 (922-67 x Privlekatelnaya) - consumer appeal (5.0 points), flavorful (4.5 points) and aromatic (FaOMT gene) strawberry fruits with high РСВ levels (14.7% Brix), and sugars (10.8%);

• 153-41 (Senga Sengana x Redcoat) - consumer appeal (5.0 points), aromatic (FaOMT gene) strawberry fruits with high РСВ levels (12.8% Brix), sugars (10.2%), and vitamin C (76.1 mg/100 g);

• 153-60 (Senga Sengana x Redcoat) - consumer appeal (5.0 points), flavorful (4.6 points) and aromatic (FaOMT gene) strawberry fruits with high РСВ levels (11.7% Brix), and sugars (10.5%);

• 35-16 (922-67 x Maryshka) - flavorful (4.6 points) strawberry fruits with high anthocyanins levels (90.7 mg/100 g);

• 72-25 (Privlekatelnaya x Bylinnaya) is a combination of functional alleles in the FaOMT and FaFADl strawberry aroma genes.

References

1. Ermakov A. I.,Arasimovich V. V., Yarosh N. P. MetodyBiokhimicheskogoIssle-

dovaniyaRasteniy [Biochemical Research Methods of Plants]. Leningrad: Ko-

los, 1987, 429 p.

2. Zhbanova E. V., Luk'yanchuk I. V., Bogdanova O. A. Biokhimicheskiy sostav gibridnykh seyantsev i otbornykh zemlyanikov [Biochemical composition of berries of hybrid seedlings and selected forms of strawberries]. Izvestiya Timiry-azevskoy SelskokhozyaystvennoyAkademii [Bulletin of Timiryazev Agricultural Academy], 2009, vol. 4, pp. 124-128.

3. Zubov A. A. Teoreticheskiye Osnovy Selektsii Zemlyaniki [Theoretical Foundations of Strawberry Breeding]. Michurinsk: All-Russian Research Institute of Horticulture Named After IV Michurin, 2004, 196 p.

4. Luk'yanchuk I. V., Zhbanova E. V. Otsenka geneticheskoy kollektsii zemlyaniki po soderzhaniyu v plodakh antotsianov [Assessment of the genetic collection of strawberries by the content of anthocyanins in berries]. Vestnik Tomskogo Go-sudarstvennogo Universiteta. Biologiya [Bulletin of Tomsk State University. Biology], 2017, vol. 38, pp. 134-148. https://doi.org/10.17223/19988591/38/8

5. Lyzhin A. S., Luk'yanchuk I. V., Zhbanova E. V. Polimorfizm sortov i diko-rastushchikh vidov zemlyaniki geneticheskoy kollektsii Federal'nogo nauch-nogo tsentra im. I.V. Michurina po genam aromata plodov FaOMT i FaFADl [Polymorphism of the FaOMT and FaFAD1 genes for fruit flavor volatiles in strawberry varieties and wild species from the genetic collection of the Mich-urin Federal Research Center]. Vavilovskiy ZhurnalGenetiki i Selektsii [Vavilov Journal of Genetics and Breeding], 2020, vol. 24, no. 1, pp. 5-11. https://doi. org/10.18699/VJ20.588

6. Akimov M. Yu., Luk'yanchuk I. V., Zhbanova E. V., Lyzhin A. S. Plody zemlyaniki sadovoy (Fragaria x ananassa Duch.) kak tsennyy istochnik pishchevykh i biologicheski aktivnykh veshchestv (obzor) [Strawberry fruit (Fragaria x ananassa Duch.) as a valuable source of nutritional and biologically active substances (review)]. KhimiyaRastitel'nogo Syr 'ya, 2020, vol. 1, pp. 5-18. https://doi. org/10.14258/jcprm.2020015511

7. Rukovodstvo po metodam kontrolya kachestva i bezopasnosti biologicheski aktivnykh dobavok kpishche R 4.1.1672-03, 2003 g [Guidelines for quality control and safety of dietary supplements R 4.1.1672-03, 2003]. URL: https://docs.cntd. ru/document/1200034795

8. Sedov E. N., Ogoltsova T. P. Programma i Metodika Sortoizucheniya Plodovykh, Yagodnykh i Orekhoplodnykh Kul 'tur [Program and Methods of Variety Research on Fruit, Berry, and Nut Crops]. Orel: VNIISPK, 1999, 606 p.

9. Basu A., Nguyen A., Betts N. M., Lyons T. J. Strawberry as a functional food: An evidence-based review. Critical Reviews in Food Science and Nutrition, 2014, vol. 54, no. 6, pp. 790-806. http://dx.doi.org/10.1080/10408398.2011. 608174

10. Bianchi G., Lucchi P., Maltoni M. L., Fagherazzi A., Baruzzi G. Analysis of aroma compounds in new strawberry advanced genotypes. Acta Horticulture, 2017, vol. 1156, pp. 673-678. http://dx.doi.org/10.17660/ActaHor-tic.2017.1156.98

11. Capocasa F., Scalzo J., Mezzetti B., Battino M. Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chemistry, 2008, vol. 111, no. 4, pp. 872-878. http://dx.doi.org/10.1016/j.foodchem.2008.04.068

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Chambers A. H., Pillet J., Plotto A., Bai J., Whitaker V. M., Folta K. Identification of a strawberry flavor gene candidate using an integrated genetic-genom-ic-analytical chemistry approach. BMC Genomics, 2014, vol. 15, no. 1, 217. http://dx.doi.org/10.1186/1471-2164-15-217

13. Cruz-Rus E., Sesmero R., Ángel-Pérez J. A., Sánchez-Sevilla J. F., Ulrich D., Amaya I. Validation of a PCR test to predict the presence of flavor volatiles me-sifurane and y-decalactone in fruits of cultivated strawberry (Fragaria x anan-assa). Molecular Breeding, 2017, vol. 37, no. 10, pp. 131. https://link.springer. com/article/10.1007/s11032-017-0732-7

14. Fernández-Lara R., Gordillo B., Rodríguez-Pulido F. J. M, González-Miret L., Del Villar-Martínez A. A., Dávila Ortiz G., Heredia F. J. Assessment of the differences in the phenolic composition and color characteristics of new strawberry (Fragaria x ananassa Duch.) cultivars by HPLC-MS and imaging tri-stimulus colorimetry. Food Res Int, 2015, vol. 76, pp. 645-653. http://dx.doi. org/10.1016/j.foodres.2015.07.038

15. Giampieri F., Forbes T., Gasparrini M., Afrin S., Cianciosi D., Reboredo-Ro-dríguez P., Varela-López A., Quiles J. L., Mezzetti B., Battino M. The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annals of the New York Academy of Sciences, 2017, vol. 1398, no. 1, pp. 62-71. http://dx.doi.org/10.1111/nyas.13373

16. Luk'yanchuk I. Molecular genetic analysis of strawberry genotypes for the FaOMT fruit aroma gene. BIO Web of Conferences, 2020, vol. 25, e03003. http:// dx.doi.org/10.1051/bioconf/20202503003

17. Schwieterman M. L., Colquhoun T. A., Jaworski E., Bartoshuk L. M., Gilbert J. L., Tieman D. M., Odabasi A. Z., Moskowitz H., Folta K., Klee H. J., Sims C. A., Whitaker V. M., Clark D. G. Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PloS One, 2014, vol. 9, no. 2, e88446. http://dx.doi.org/10.1371/journal.pone.0088446

18. Singh A., Singh B. K., Deka B. C., Deka B. C., Sanwal S., Patel R., Verma M. R. The genetic variability, inheritance and inter-relationships of ascorbic acid, carotene, phenol and anthocyanin content in strawberry (Fragaria x anan-

assa Duch.). Scientia Horticulturae, 2011, vol. 129, pp. 86-90. http://dx.doi. org/10.1016/j.scienta.2011.03.011

19. Song C., Hong X., Zhao S., Liu J., Schulenburg K., Huang F.-C., Franz-Oberdorf K., Schwab W. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiol, 2016, vol. 171, no. 1, pp. 139-151. https://doi.org/10.1104/pp.16.00226

20. Ulrich D., Olbricht K. A search for the ideal flavor of strawberry - Comparison of consumer acceptance and metabolite patterns in Fragaria x ananassa duch. Journal of Applied Botany and Food Quality, 2016, vol. 89, pp. 223-234. http:// dx.doi.org/10.5073/JABFQ.2016.089.029

21. Urrutia M., Rambla J. L., Alexiou K. G., Granell A., Monfort A. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition. Plant Physiol Bioch, 2017, vol. 121, pp. 99-117. https://doi.org/10.1016/j.plaphy.2017.10.015

22. Zorrilla-Fontanesi Y., Rambla J. L., Cabeza A., Medina-M'inguez J. J. J., Sánchez J. F., Valpuesta V., Botella M. A., Granell A., Amaya I. Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiology, 2012, vol. 159, no. 2, 851-870. http://dx.doi.org/10.1104/pp.111.188318

Список литературы

1. Ермаков А. И., Арасимович В. В., Ярош Н. П. Методы биохимического исследования растений. Л.: Колос, 1987. 429 с.

2. Жбанова Е. В., Лукъянчук И. В., Богданова О. А. Биохимический состав ягод гибридных сеянцев и отборных форм земляники // Известия Тимирязевской сельскохозяйственной академии. 2009. № 4. С. 124-128.

3. Зубов А. А. Теоретические основы селекции земляники. М.: Изд-во ВНИ-ИГиСПР им. И. В. Мичурина, 2004. 196 с.

4. Лукъянчук И. В., Жбанова Е. В. Оценка генетической коллекции земляники по содержанию в плодах антоцианов // Вестник Томского государственного университета. Биология. 2017. № 38. С. 134-148. https://doi. org/10.17223/19988591/38/8

5. Лыжин А. С., Лукъянчук И. В., Жбанова Е. В. Полиморфизм сортов и дикорастущих видов земляники генетической коллекции Федерального научного центра им. И.В. Мичурина по генам аромата плодов FaOMT и FaFADl // Вавиловский журнал генетики и селекции. 2020. Т. 24. № 1. С. 5-11. https:// doi.org/10.18699/VJ20.588

6. Плоды земляники садовой (Fragaria x ananassa Duch.) как ценный источник пищевых и биологически активных веществ (обзор) / Акимов М. Ю.,

Лукъянчук И. В., Жбанова Е. В., Лыжин А. С. // Химия растительного сырья. 2020. №1. С. 5-18. https://doi.org/10.14258/jcprm.2020015511

7. Руководство по методам контроля качества и безопасности биологически активных добавок к пище Р 4.1.1672-03, 2003 г URL: https://docs.cntd.ru/ document/1200034795

8. Седов Е. Н., Огольцова Т. П. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур. О.: ВНИИСПК, 1999. 606 с.

9. Basu A., Nguyen A., Betts N. M., Lyons T. J. Strawberry as a functional food: An evidence-based review // Critical reviews in food science and nutrition, 2014, vol. 54, no. 6, pp. 790-806. http://dx.doi.org/10.1080/10408398.2011.608174

10. Bianchi G., Lucchi P., Maltoni M. L., Fagherazzi A., Baruzzi G. Analysis of aroma compounds in new strawberry advanced genotypes // Acta Horticulturae, 2017, vol. 1156, pp. 673-678. http://dx.doi.org/10.17660/ActaHortic.2017.1156.98

11. Capocasa F., Scalzo J., Mezzetti B., Battino M. Combining quality and antioxidant attributes in the strawberry: The role of genotype // Food chemistry, 2008, vol. 111, no. 4, pp. 872-878. http://dx.doi.org/10.1016/j.foodchem.2008.04.068

12. Chambers A. H., Pillet J., Plotto A., Bai J., Whitaker V. M., Folta K. Identification of a strawberry flavor gene candidate using an integrated genetic-genom-ic-analytical chemistry approach // BMC genomics, 2014, vol. 15, no. 1, 217. http://dx.doi.org/10.1186/1471-2164-15-217

13. Cruz-Rus E., Sesmero R., Ángel-Pérez J. A., Sánchez-Sevilla J. F., Ulrich D., Amaya I. Validation of a PCR test to predict the presence of flavor volatiles me-sifurane and y-decalactone in fruits of cultivated strawberry (Fragaria x anan-assa) // Molecular breeding, 2017, vol. 37, no. 10, pp. 131. https://link.springer. com/article/10.1007/s11032-017-0732-7

14. Fernández-Lara R., Gordillo B., Rodríguez-Pulido F. J. M, González-Miret L., Del Villar-Martínez A. A., Dávila Ortiz G., Heredia F. J. Assessment of the differences in the phenolic composition and color characteristics of new strawberry (Fragaria x ananassa Duch.) cultivars by HPLC-MS and imaging tri-stimulus colorimetry // Food res int, 2015, vol. 76, pp. 645-653. http://dx.doi. org/10.1016/j.foodres.2015.07.038

15. Giampieri F., Forbes T., Gasparrini M., Afrin S., Cianciosi D., Reboredo-Ro-dríguez P., Varela-López A., Quiles J. L., Mezzetti B., Battino M. The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases // Annals of the New York academy of sciences, 2017, vol. 1398, no. 1, pp. 62-71. http://dx.doi.org/10.1111/nyas.13373

16. Luk'yanchuk I. Molecular genetic analysis of strawberry genotypes for the FaOMT fruit aroma gene // BIO web of conferences, 2020, vol. 25, e03003. http:// dx.doi.org/10.1051/bioconf/20202503003

17. Schwieterman M. L., Colquhoun T. A., Jaworski E., Bartoshuk L. M., Gilbert J. L., Tieman D. M., Odabasi A. Z., Moskowitz H., Folta K., Klee H. J., Sims C. A., Whitaker V. M., Clark D. G. Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception // PloS one, 2014, vol. 9, no. 2, e88446. http://dx.doi.org/10.1371/journal.pone.0088446

18. Singh A., Singh B. K., Deka B. C., Deka B. C., Sanwal S., Patel R., Verma M. R. The genetic variability, inheritance and inter-relationships of ascorbic acid, carotene, phenol and anthocyanin content in strawberry (Fragaria x ananassa Duch.) // Scientia Horticulturae, 2011, vol. 129, pp. 86-90. http://dx.doi. org/10.1016/j.scienta.2011.03.011

19. Song C., Hong X., Zhao S., Liu J., Schulenburg K., Huang F.-C., Franz-Oberdorf K., Schwab W. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the key strawberry flavor compound in strawberry fruit // Plant physiol, 2016, vol. 171, no. 1, pp. 139-151. https://doi.org/10.1104/pp.16.00226

20. Ulrich D., Olbricht K. A search for the ideal flavor of strawberry - Comparison of consumer acceptance and metabolite patterns in Fragaria x ananassa duch // Journal of applied botany and food quality, 2016, vol. 89, pp. 223-234. http:// dx.doi.org/10.5073/JABFQ.2016.089.029

21. Urrutia M., Rambla J. L., Alexiou K. G., Granell A., Monfort A. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition // Plant physiol bioch, 2017, vol. 121, pp. 99-117. https://doi.org/10.1016/j. plaphy.2017.10.015

22. Zorrilla-Fontanesi Y., Rambla J. L., Cabeza A., Medina-M'inguez J. J. J., Sánchez J. F., Valpuesta V., Botella M. A., Granell A., Amaya I. Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content // Plant physiology, 2012, vol. 159, no. 2, 851-870. http://dx.doi.org/10.1104/pp.111.188318

DATA ABOUT THE AUTHORS

Irina V. Luk'yanchuk

I.V. Michurin Federal Scientific Center

30, Michurina Str., Michurinsk, 393774, Russian Federation

irina.lk2011@yandex.ru

ORCID: https://orcid.org/0000-0003-1626-840X

Ekaterina V. Zhbanova

I.V. Michurin Federal Scientific Center

30, Michurina Str., Michurinsk, 393774, Russian Federation

shbanovak@yandex.ru

ORCID: https://orcid.org/0000-0001-5045-384X

Alexander S. Lyzhin

I.V. Michurin Federal Scientific Center

30, Michurina Str., Michurinsk, 393774, Russian Federation

Ranenburzhetc@yandex.ru

ORCID: https://orcid.org/0000-0001-9770-8731

ДАННЫЕ ОБ АВТОРАХ Лукъянчук Ирина В.

Федеральный научный центр имени И. В. Мичурина

ул. Мичурина, 30, г. Мичуринск, 393744, Российская Федерация

irina.lk2011@yandex.ru

Жбанова Екатерина В.

Федеральный научный центр имени И. В. Мичурина

ул. Мичурина, 30, г. Мичуринск, 393744, Российская Федерация

shbanovak@yandex.ru

Лыжин Александр С.

Федеральный научный центр имени И. В. Мичурина

ул. Мичурина, 30, г. Мичуринск, 393744, Российская Федерация

Ranenburzhetc@yandex.ru

Поступила 28.03.2022

После рецензирования 04.04.2022

Принята 12.04.2022

Received 28.03.2022 Revised 04.04.2022 Accepted 12.04.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.