Научная статья на тему 'Determine forces acting on bearing and vehicle suspension systems'

Determine forces acting on bearing and vehicle suspension systems Текст научной статьи по специальности «Строительство и архитектура»

CC BY
64
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПОДВЕСКА / SUSPENSION / НЕСУЩАЯ СИСТЕМА / CARRYING SYSTEM / CARRIAGE SYSTEM / ОПРЕДЕЛЕНИЕ СИЛ / DETERMINATION OF FORCES / МОТОЦИКЛ / MOTORCYCLE / PYTHON 2.7

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Buynachev Sergei Konstantinovich, Suslova Ksenia Vyacheslavovna, Trusov Alexander Konstantinovich

The article analyzes the forces that arise in the carriage and suspension by the example of a motorcycle. There is the determination of forces that arise in the carriage and suspension in the early stages of design. The algorithm is proposed to be used to determine the forces. This algorithm is based on the program writing in the programming language Python. Input data for the determination of forces are geometric dimensions of a vehicle, weight of a vehicle, characteristics of a ground and a driving mode of a vehicle.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ОПРЕДЕЛЕНИЕ СИЛ В УЗЛАХ НЕСУЩИХ СИСТЕМ И НАПРАВЛЯЮЩЕГО УСТРОЙСТВА ПОДВЕСКИ ТРАНСПОРТНЫХ СРЕДСТВ

В статье анализируются реакции в узлах конструкций несущих систем и направляющего устройства подвески на примере мотоцикла. Рассматривается метод определения реакций в узлах конструкций несущих систем и направляющего устройства подвески на ранних этапах проектирования. Для определения реакции предлагается воспользоваться алгоритмом, на основе которого в качестве примера написана программа на языке программирования Python. Исходными данными для определения являются геометрические размеры транспортного средства, масса транспортного средства, характеристики опорной поверхности и режима движения транспортного средства.

Текст научной работы на тему «Determine forces acting on bearing and vehicle suspension systems»

DETERMINE FORCES ACTING ON BEARING AND VEHICLE SUSPENSION SYSTEMS

12 3

Buynachev S.K. , Suslova K.V. , Trusov A.K. (Russian Federation) Email: Buynachev427@scientifictext.ru

1Buynachev Sergei Konstantinovich - PhD in Technology, Assistant Professor, DEPARTMENT OF MACHINE PARTS; 2Suslova Ksenia Vyacheslavovna - Student bachelor, DEPARTMENT OF FOREIGN LANGUAGES; 3Trusov Alexander Konstantinovich - Master, DEPARTMENT OF ORGANIZATION OF ENGINEERING PRODUCTION, URAL FEDERAL UNIVERSITY NAMED AFTER THE FIRST PRESIDENT OF RUSSIA B.N. YELTSIN, EKATERINBURG

Abstract: the article analyzes the forces that arise in the carriage and suspension by the example of a motorcycle. There is the determination of forces that arise in the carriage and suspension in the early stages of design. The algorithm is proposed to be used to determine the forces. This algorithm is based on the program writing in the programming language Python. Input data for the determination of forces are geometric dimensions of a vehicle, weight of a vehicle, characteristics of a ground and a driving mode of a vehicle. Keywords: suspension, carrying system, carriage system, determination of forces, motorcycle, Python 2.7.

ОПРЕДЕЛЕНИЕ СИЛ В УЗЛАХ НЕСУЩИХ СИСТЕМ И НАПРАВЛЯЮЩЕГО УСТРОЙСТВА ПОДВЕСКИ ТРАНСПОРТНЫХ СРЕДСТВ Буйначев С.К.1, Суслова К.В.2, Трусов А.К.3 (Российская Федерация)

1Буйначев Сергей Константинович - кандидат технических наук, доцент, кафедра деталей машин; 2Суслова Ксения Вячеславовна - студент-бакалавр, кафедра иностранных языков; 3Трусов Александр Константинович - магистр, кафедра организации машиностроительного производства, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина,

г. Екатеринбург

Аннотация: в статье анализируются реакции в узлах конструкций несущих систем и направляющего устройства подвески на примере мотоцикла. Рассматривается метод определения реакций в узлах конструкций несущих систем и направляющего устройства подвески на ранних этапах проектирования. Для определения реакции предлагается воспользоваться алгоритмом, на основе которого в качестве примера написана программа на языке программирования Python. Исходными данными для определения являются геометрические размеры транспортного средства, масса транспортного средства, характеристики опорной поверхности и режима движения транспортного средства.

Ключевые слова: подвеска, несущая система, несущая система, определение сил, мотоцикл, Python 2.7.

Arising in the carriage and suspension forces, geometric dimensions and weights of elements or the entire vehicle must be determined for making the strength test of vehicle and

selecting the section that will be arisen by these forces. The strength calculation can be made only after these actions.

In the initial stages of the design of vehicles, we face the problem with lacking of information to select the section for making design calculations.

Approximate geometric dimensions, places of fastening parts of the vehicle and the characteristic points with the suspension are known in their initial design but it does not allow making full calculations.

The existing methods of calculation were based on the CAD / CAE-systems that require a high power of the computing machinery, a large amount of input data (for example, 3D model), the ability of creating the correct constructions of 3D models and making the CAE calculations. However, it takes a lot of time.

The way of solving the problem is using the program writing in the programming language Python [1].This program helps to determine the force that arise in the carriage and suspension.

This program includes the algorithm for determine the forces from the elements of the carriage by solving a system of linear equations.

This is the following information that needs to be known for making the program:

• Geometric dimensions of a vehicle, carriage and suspension;

• Mass of a vehicle or of all elements of a vehicle;

• Characteristics of support surface and a running mode of vehicle [2].

Figure 1 (the block diagram of the program): 1. Beginning of the program; 2. Task matrix coefficient; 3. Solution of the system of linear equations; 4. Set results into database; 5. Output results to the screen; 6. The end of the program.

First, the initial data is entered into the program. There is the wheelbase, the wheel track, the position of the center of gravity, the traction coefficient, the place of application of a force from elements of the mechanism and vehicle components, the running mode.

Further, the system under consideration is divided into groups. At this time the forces and mass moments of elements of vehicle are applied to the groups and forces between groups of elements are exchanged by reactions. All of these groups have special points. These are checkpoints that help to state static equations.

4

5

Fig. 1. The block diagram of the program

After determining static equations, all known forces are taken in the opposite side of equations.

The matrix system of reactions must have the same number of equations as variables, that is, the coefficient matrix of the system must be square. Otherwise the system will generate an error [1, c. 36]. The coefficients of the system of linear equations are standing before the reactions. If there are no reactions the matrix coefficients of these are zero.

The matrix coefficients of the unknowns will take this form:

x

i

(«11 «12 ■■■ «in

M(a) = ( ai2 ai2 ■■■ fl(i+i)n

il _

=0 = 0

Matrix with known values will take the form:

M(b) = (bi ... bn)

Each value in the matrix M(b) contains all of the known values of the equation.

The decision matrix is produced at the end of its creation.

Mx = M(a) ■ M(b)

Guide to Linear Algebra is used for the decision matrix.

The resulting values will take the form:

The result is displayed by using the exit instruction.

The result of equation solving is the values of forces that are acting on the structure under consideration.

For the determination of forces that arise in carriage and suspension systems of motorcycle this example of program was created that is written in the programming language Python.

The carriage and suspension systems are divided into groups. There is a general group (Fig. 2), a steering shaft (Fig. 3), the carriage (Fig. 4), powertrains (Fig. 5) and a suspension arm (Fig. 6). The relationships between these groups replace reactions. The equilibrium equations are written for each group. The forces between groups of elements are exchanged by reactions. The balance equations for each group are written below.

Fig. 2. The general group

There are balance equations for the general group:

~rxl ' Irx 1 ryl ■ lryl-TX2 ' SlTlll0 ■ lrX2~Ty2 ' COSir ■ lry2 =

■ Gpy ■ hGpyl + Gvn ■ sinl5° ■ hGvxl + Gvn ■ cosl5° ■ hGvnl + Gb ■ 0.5 ■ hGbnl + Gb ■ 0.5 Gvp ■ 0.5 ■ hGvnl — Gvp ■ 0.5 ■ hGv31 + Gm ■ hGml + Gp ■ hGpl

Gam ' ^oml ^pick ' hGpichl

sinl5°

Fig. 3. The steering shaft

ryl ■ sinl5° + ypl = Gvn ■ cosl5°ryl + ry2

= Gpy + Gvn ■ cosl5° + Gb + Gp + Gvp + Gm + Gam + Gpich There are balance equations for the steering shaft:

xpi' lxpi-ypi' lypi = Gvn ■ sinl5° ■ hGvx+Gvn ■ cosl5° ■ hGvy—Gpy ■ hGpy rxl ■ coslS°—xpl = Gvn ■ sinl5°

Fig. 4. The carriage

There are balance equations for the carriage:

1p i

Ixl xtrl ' Ixtl xtr2 ' lxt2 + Vpl ' lyl + Vtrl ' lytl Jtr2 ' lyt2

= Gh ■ 0.5 ■ hGbn + Gh ■ 0.5 ■ hGh^+G„„ ■ 0.5

X-pl

+G,

+ Xtrl +X;

b3 1 "vp

hGm + if

tr2 + x.

h Gvn GVp ■ hG„

0.5 ■ hG„, +

P --"pi

sin30° = 0

yv 1 + ytri+ytr2+y3 ■ cos30° = G,

Fig. 5. Powertrains There are balance equations for powertrains:

Xtrl~^~Xtr2 "I" xop = 0

ytrl+ytr2 — Vop =

Fig. 6. T^e suspension arm

There are balance equations for the suspension arm:

—x3 ■ sin30° ■ lx3+y3 ■ cos30° ■ ly3 — y0p ■ ly0p — xop ■ lXOp = ' hGam Gpich ' hGpich —xop—x3 ■ sin30° + rx2 ■ sinll° = 0 y3 ■ cos30° + Ty2 ■ cosll0 - yop = Gam + G?ica All the known forces are taken in the opposite side of the equations. Summary

The result is displayed in the form of a matrix with the values of reaction forces, which are then used for the selection of a bearing and suspension systems. According to the obtained values the most loaded seat are determined and tested.

Список литературы /References

1. Россум Г., Дрейк Ф.Л.Дж., Откидач Д.С., Задка М., Левис М., Монтаро С., Реймонд Э.С., Кучлинг А.М., Лембург М.-А., Йи К.-П., Ксиллаг Д., Петрилли Х.Г., Варсав Б.А., Ахлстром Дж.К., Роскинд Дж., Шеменор Н., Мулендер С. Язык программирования Python, 2001. 454 c.

Список литературы на английском языке /References in English

1. Rossum G., Drake F.J., Otkidach D.S., Zadka M., Lewis M., Montaro S., Raymond E.S., Kuchling A.M., Lemburg M.-A., Yee K.-P., Xillagh D., Petrilli H.G., Varsav B.A., Ahlstrom J.K., Roskind J., Shemenor N., Mulender S. Programming language Python / 2001. 454 c.

STUDY ON THE CEMENT IN THE PROCESS OF CEMENTING

FOR OIL WELL 1 2 Al-Yooda O.J.H.1, Kolosova N.B.2 (Russian Federation)

Email: Al-Yooda427@scientifictext.ru

1Al-Yooda Osama Jabbar Hadee - Undergraduate;

2Kolosova Natalya Borisovna - Associate Professor, Honorary Worker of Higher Professional Education of Russia, Senior Lecturer, DEPARTMENT OF CONSTRUCTION OF UNIQUE BUILDINGS, SAINT-PETERSBURG STATE POLYTECHNIC UNIVERSITY NAMED AFTER PETER THE GREAT,

ST. PETERSBURG

Abstract: cement is the main material used cementing oil wells, which directly affects of cementation or cementing, in the last years has occurred many problems in a number of oil wells. As studies of the Montara well blowout 2009 and gulf of México 2010 showed that one of the main contributing factors to the failure was the substandard cementing cement. Design was reported to be the third most concerning technology gap for the cementing operations. Also a similar survey of the HPHT professionals that had been conducted two years earlier in the 2010 HPHT. Wells Summit reported that the cement Design as the biggest technology gaps for cementing oil wells operation, so this paper covers the functions of oil well cement, the API classification and properties of dry cement also provides a review of some of the best practices and case studies in the area of HPHT cementing. It also examines some crucial problems in HPHT cementing and provides some Recommendations. Keywords: cement, cementation, Well High Pressure high, Temperature (HPHT) API.

ИССЛЕДОВАНИЕ ЦЕМЕНТА В ПРОЦЕССЕ ЦЕМЕНТИРОВАНИЯ НЕФТЯНЫХ СКВАЖИН

о i 2

Аль-Иода У.Дж.Х. , Колосова Н.Б. (Российская Федерация)

1Аль-Йода Усама Джаббар Хади - магистрант;

2Колосова Наталья Борисовна - доцент, почётный работник высшего профессионального образования РФ, старший преподаватель, кафедра строительства уникальных зданий и сооружений, Санкт-Петербургский государственный политехнический университет им. Петра Великого,

г. Санкт-Петербург

i Надоели баннеры? Вы всегда можете отключить рекламу.