DETERMINATION OF POWERFUL COEFFICIENCY MASS MEDIUM MANUFACTURING MANUFACTURERS
B. A. Alimatov X. M. Sadullaev N. X. Voxidova
Belgorod State Ferghana Polytechnic Ferghana Polytechnic
Technological Institute Institute Institute
ABSTRACT
The article describes the methodology for determining the mass transfer surface coefficient of the process through the average volume-surface diameter of the dispersed phase droplets formed during the extraction process.
Keywords and phrases: "liquid - liquid" system, concentration, mass, phase, drop, extractor, factor, column, mixing - melting zone, volume coefficient, volume -surface diameter.
Introduction:
We have developed a design of a multistage bubbling extractor for liquid-liquid systems, which is a column divided by horizontal partitions into sections, each of which contains tubular mixing elements.
These elements are fed with heavy liquid (from the settling zone of the upstream section) and light liquid from the settling zone of the downstream section.
Gas is introduced into the element through the gas distribution device from the gas layer formed under the lower partition of the section in question.
To describe mass transfer in liquid-liquid systems, the following equation is most often used:
dq/dr=Kmt (cst-c) , (1) where q is the mass flow of a substance in a unit volume of the apparatus, kg /
3
m • s;
"5
cst - saturation concentration, kg / m ;
"5
c - solution concentration, kg / m ;
Kmt - volumetric mass transfer coefficient. s-1.
The volumetric mass transfer coefficient is defined as [1]:
Kmt=KF • Fsp ,
where Kmt - surface coefficient of mass transfer, m / s;
Fsp is the specific surface area of the phase contact (per unit volume of the mixed
9 -5
medium), m / m .
The Fsp value is a function of the droplet diameter and the retention capacity of the apparatus for the dispersed phase (or, which is the same, its volume concentration):
Fsp=6 cp / de.H , W =Vd / ( Vc + Vd ) , (3) where 9 is the volume fraction of the dispersed phase;
"5
Vc and Vd - flow rates of continuous and dispersed phases, m / s; d32 - average volumetric - surface diameter of droplets, m.
Thus, when designing extractors, the calculation task is usually to determine the droplet size, the retention capacity of the apparatus for the dispersed phase, and the mass transfer coefficients.
The practical application of the calculation formulas available in the literature is complicated by the fact that the size of the contact surface of the phases and the mass transfer coefficients can change significantly due to the presence of negligible amounts of random impurities or surfactants. The latter circumstance creates particular difficulties in the transition from pure laboratory systems to industrial products, the composition of which sometimes depends on many factors that are difficult to control.
The multistage bubble extractors developed by us are vertical columns of mixing and settling type. One of the distinctive features of their work is that with a general counterflow of the reacting liquids within the entire column, within the mixing zone of each stage, the movement of liquids is direct-flow.
For example:
For a quantitative assessment of the effectiveness of such devices, one can mainly use such a concept as the efficiency of a stage, for the calculation of which we can offer the equation obtained by us and verified in practice. [2,4,5]:
R = 1- e
- A
where
A =
(m vc+vd )vw . Kv
Vc .Vd
(4)
here m is the distribution coefficient of the target component;
"5
Vp - working volume of the mixing zone, m .
In turn, to calculate the volumetric mass transfer coefficient for systems, the physicochemical properties of which are presented in table 1, we obtained [2] the following equation:
jr n—6 0,25 — 1 — 0 8 -0,8 -0,8
Kv = 2,11 • 10 6 • • p • T—1 • a 0,8 •, •/U— , ,
where a is interfacial tension, n / m; ®g - reduced gas velocity in the mixer, m / s; Tav - average residence time of liquids in the mixer, s; ^ s and ^ d are the viscosities of the continuous and dispersed phases; pc and pd - density of continuous and dispersed
phases, kg / m
Extractor Continuous phase Dispersed phase G
stage Pc ß с Pc ß с
кг/м3 •103Pa•s kg/m •103Pa•s N/m -
1 880 0,88 1036 2,8 2,77 0,193
2 868 0,62 1028 1,4 5,6 0,138
3 859 0,53 1023 1,00 10,8 0,096
Our theoretical and experimental studies have established [3,5,6] that, knowing the basic physicochemical properties of the processed liquid systems and the conditions of pneumatic mixing in the mixing zone of the bubbling extractor, it is possible with sufficient accuracy to determine the value of the average volumetric surface diameter of the dispersed phase droplets by equality :
^32 = 6,7 • 10-6(a0,35 • • г0,45
-av
)
Taking into account expressions (6), (5) and (3), to calculate the surface mass transfer coefficient, it is easy to obtain the following equality:
KF = Ä^/F^ = 2,35 • 10
-12
.n0,8_.0,05
Conclusion:Experimental verification of equation (7) was carried out by us on industrial systems for double extraction of caprolactam [4]. Physicochemical properties of liquids are presented in table. 1, the gas velocity in the experiments varied within 0.025 ^ 0.1 m / s, the average residence time of the liquids in the mixing zone was 5.3 ^ 10.6 s. In this case, the discrepancy between the calculated and experimental data did not exceed ± 8%. Thus, equalization (7) can be recommended for calculating the surface mass transfer coefficient in multistage bubbling extractors [6].
REFERENCES
[1] Тожиев, Р. Ж., Садуллаев, Х. М., & Исомиддинов, А. С. (2016). Детонацияга асосланган зарбли тулк;ин берадиган генератор курилмасини халк; хужалигининг айрим сохдларига куллаш ва синаб куриш. Фар ИТЖ,, (4), 21-26.
[2] Rasuljon, T., Akmaljon, A., & Ilkhomjon, M. (2021). SELECTION OF FILTER MATERIAL AND ANALYSIS OF CALCULATION EQUATIONS OF MASS EXCHANGE PROCESS IN ROTARY FILTER APPARATUS. Universum: технические науки, (5-6 (86)), 22-25.
[3] Алиматов, Б. А., & Садуллаев, Х. М. (2021). СРАВНЕНИЕ ЗАТРАТ ЭНЕРГИИ ПРИ ПНЕВМАТИЧЕСКОМ И МЕХАНИЧЕСКОМ ПЕРЕМЕШИВАНИИ НЕСМЕШИВАЮЩИХСЯ ЖИДКОСТЕЙ. ЭНЕРГЕТИКА, 86(5).
[4] Тожиев, Р. Ж., Садуллаев, Х. М., Сулаймонов, А., & Герасимов, М. Д. (2019). НАПРЯЖЕННОЕ СОСТОЯНИЕ ВАЛА С ПОПЕРЕЧНЫМ ОТВЕРСТИЕМ ПРИ СОВМЕССТНОМ ДЕЙСТВИИ ИЗГИБА И КРУЧЕНИЯ. In Энергоресурсосберегающие технологии и оборудование в дорожной и строительной отраслях (pp. 273-281).
[5] Zhumabaevich, T. R., Mansurovich, S. H., Khursanovich, S. O., & Nuriddinovich, M. H. (2019). New structure of calciner's fire chamber. International scientific review, (LV).
[6] Tojiev, R. Z., Sadullaev, H. M., Soliev, O. K., & Muminov, H. N. (2019). NEW STRUCTURE OF CALCINER'S FIRE CHAMBER. In INTERNATIONAL SCIENTIFIC REVIEW OF THE PROBLEMS AND PROSPECTS OF MODERN SCIENCE AND EDUCATION (pp. 20-24).
[7] Tojiev, R. J., & Sadullaev, X. M. (2018). DETERMINATION OF THE ANGLE OF CAPTURE OF THE CRUSHING CHAMBER OF A CONE CRUSHER, TAKING INTO ACCOUNT THE KINEMATICS OF THE ROLLING CONE. Scientific-technical journal, 22(3), 55-60.
[8] Алиматов, Б. А., Садуллаев, Х. М., Файзиматов, У. Б., & Хаметов, З. (2011). Экономия энергии в экстракционной установке с пневмоперемешиванием жидкостей. Вестник Белгородского государственного технологического университета им. ВГ Шухова, (4).
[9] Алиматов, Б. А., Садуллаев, Х. М., Каримов, И. Т., & Хурсанов, Б. Ж. (2008). Методы расчета и конструирования жидкостных экстракторов с пневмоперемешиванием.
[10] Хакимов, А. А., Салиханова, Д. С., & Каримов, И. Т. (2019). Кумир кукунидан брикетлар тайёрлашнинг долзарблиги. Фаргона политехника институти илмий техника журнали.-2019.-№, 23(2), 226-229.
[11] Хакимов, А. А. (2020). Связующее для угольного брикета и влияние его на дисперсный состав. Universum: химия и биология, (6 (72)), 81-84.
[12] Karimov, I., & Halilov, I. (2021). Hydrodynamics of Absorption Bubbling Apparatus. Bulletin of Science and Practice, 7(11), 210-219
[13] Karimov, I., & Halilov, I. (2021). Modernization of the main working shovels of the construction mixing device. АКТУАЛЬНЫЕ ПРОБЛЕМЫ ВНЕДРЕНИЯ ИННОВАЦИОННОЙ ТЕХНИКИ И ТЕХНОЛОГИЙ НА ПРЕДПРИЯТИЯХ ПО ПРОИЗВОДСТВУ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ, ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ И В СМЕЖНЫХ ОТРАСЛЯХ, 1(1), 293-295
[14] Ализафаров, Б. М. (2020). ECOLOGICAL DRYING OF FINE DISPERSED MATERIALS IN A CONTACT DRYER. Экономика и социум, (11), 433-437.
[15] Rasuljon, T., Azizbek, I., & Abdurakhmon, S. (2021). Research of the hydraulic resistance of the inertial scrubber. Universum: технические науки, (7-3 (88)), 44-51.
[16] Sadullaev, X., Alimatov, B., & Mamarizaev, I. (2021). DEVELOPMENT AND RESEARCH OF A HIGH-EFFICIENT EXTRACTION PLANT AND PROSPECTS FOR INDUSTRIAL APPLICATION OF EXTRACTORS WITH PNEUMATIC MIXING OF LIQUIDS. Барцарорлик ва Етакчи Тадцицотлар онлайн илмий журнали, 1(5), 107-115.
[17] Sadullaev, X., Tojiyev, R., & Mamarizaev, I. (2021). EXPERIENCE OF TRAINING BACHELOR-SPECIALIST MECHANICS. Барцарорлик ва Етакчи Тадцицотлар онлайн илмий журнали, 1(5), 116-121.
[18] Sadullaev, X., Muydinov, A., Xoshimov, A., & Mamarizaev, I. (2021). ECOLOGICAL ENVIRONMENT AND ITS IMPROVEMENTS IN THE FERGANA VALLEY. Барцарорлик ва Етакчи Тадцицотлар онлайн илмий журнали, 1(5), 100106.
[19] Tojiev, R., Ortikaliyev, B., & Tojiboyev, B. (2019). Improving selecting technology of raw materials of fireproof bricks. Тенденции и переспективы развития науки и оброзования в условиях глобализации. Украина, 27(46), 606-609.
[20] Тожиев, Р. Ж., & Ортикалиев, Б. С. (2019). ОЛОВБАРДОШ ЕИШТ ИШЛАБ ЧЩАРИШДА ХОМ АШЁЛАРНИ САРАЛАШ ЖАРАЁНИНИ ТАДЖИК КИЛИШ. Журнал Технических исследований, (2).
[21] Tojiyev, R. J., Ortiqaliyev, B. S. O. G. L., Abdupattoyev, X. V. O., & Isomiddinova, D. I. J. Q. (2021). DONADOR-SOCHILUVCHAN MAHSULOTLARNI SARALASHDA SM-237A MARKALI MASHINALARINI O 'RNI. Scientific progress, 2(2), 1378-1381.
[22] Ортикалиев, Б. С., & Тожиев, Р. Ж. Оловбардош гишт ишлаб чикаришда хом ашёларни саралаш жараёнини тадкик килиш. Техник тадкикотлар журнали-2019 й.
[23] Tojiyev, R., Ortiqaliyev, B., & Sotvoldiyev, K. (2021). IMPROVING THE DESIGN OF THE SCREED FOR FIREBRICKS USING SOLIDWORKS. Барцарорлик ва Етакчи Тадцицотлар онлайн илмий журнали, 1(5), 91-99.
[24] Ортикалиев, Б. С., and Р. Ж. Тожиев. "Sifatli olovbardosh g 'isht ishlab chiqarishda xom ashyolarni saralash jarayonini tadqiq qilish." ЗАМОНАВИЙ БИНО-ИНШООТЛАРНИ ВА УЛАРНИНГКОНСТРУКЦИЯЛАРИНИ (2021).
[25] Mukhamadsadikov, K. J., & ugli Ortikaliev, B. S. (2021). WORKING WIDTH AND SPEED OF THE HARROW DEPENDING ON SOIL RESISTIVITY. Web of Scientist: International Scientific Research Journal, 2(04), 152-158.
[26] Abdukakhorovich, A. H., & Muhammadsodikov, K. D. (2021). IMPROVING THE DESIGN OF INTERNAL PLATES IN COLUMNAR APPARATUS. ResearchJet Journal of Analysis and Inventions, 2(05), 109-117.
[27] Ortikaliev, B. S., & Mukhamadsadikov, K. J. (2021). Working widht and speed of the harrow depending on soil resistivity. Web of Scientist: International Scientific Research.
[28] Мухамадсадиков, К. Д., & Давронбеков, А. А. (2021). ИССЛЕДОВАНИЕ ВЛИЯНИЯ ГИДРОДИНАМИЧЕСКИХ РЕЖИМОВ СФЕРИЧЕСКОЙ НИЖНЕЙ ТРУБЫ НА ПРОЦЕСС ТЕПЛООБМЕНА. Universum: технические науки, (7-1 (88)), 38-41.
[29] Хакимов, А. А. (2020). Связующее для угольного брикета и влияние его на дисперсный состав. Universum: химия и биология, (6 (72)), 81-84.
[30] Isomiddinov, A., Аxrorov, А., Karimov, I., & Tojiyev, R. (2019). Application of rotor-filter dusty gas cleaner in industry and identifying its efficiency. Austrian Journal of Technical and Natural Sciences, (9-10).