Научная статья на тему 'DESIGNING A PLANAR FLUXGATE USING THE PCB TECHNOLOGY'

DESIGNING A PLANAR FLUXGATE USING THE PCB TECHNOLOGY Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
149
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MAGNETOMETER / PLANAR FLUXGATE / MAGNETIC INDUCTION / JILES-ATHERTON MODEL / PRINTED CIRCUIT BOARD

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Kolomeitsev A. A., Zatonov I. A., Pischanskaya M. I., Baranov P. F., Ilyaschenko D. P.

The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla. The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors.The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles-Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization.The dimensions of the developed sensor are 40×20×5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 µT for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 µV/nT.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DESIGNING A PLANAR FLUXGATE USING THE PCB TECHNOLOGY»

Designing a rlanar Fluxgate Using the PCB Technology

A.A. Kolomeitsev1, I.A. Zatonov1, M.I. Pischanskaya1, P.F. Baranov1, D.P. Ilyaschenko2'3, E.V. Verkhoturova4

lTomsk Polytechnic University, Lenin Ave., 30а, Tomsk 634050, Russia

2Yurga Institute of Technology National Research Tomsk Polytechnic University, Leningradskaya str., 26, Yurga 652055, Russia

3Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, Academic Ave., 2/4, Tomsk 634055, Russia 4Irkutsk National Research Technical University, Lermontov str., 83, Irkutsk 664074, Russia

Received 12.04.2021

Accepted for publication 26.05.2021

Abstract

The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla.

The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors.

The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles-Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization.

The dimensions of the developed sensor are 40^20^5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 ^T for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 ^V/nT.

Keywords: magnetometer, planar fluxgate, magnetic induction, Jiles-Atherton model, printed circuit board. DOI: 10.21122/2220-9506-2021-12-2-117-123

Адрес для переписки:

Ильященко Д.П.

Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, ул. Ленинградская, 26, г. Юрга 652055, Россия e-mail: mita8@rambler.ru Для цитирования:

A.A. Kolomeitsev, I.A. Zatonov, M.I. Pischanskaya, P.F. Baranov,

D.P. Ilyaschenko, E.V. Verkhoturova.

Designing a Planar Fluxgate Using the PCB Technology.

Приборы и методы измерений.

2021. - Т. 12, № 2. - С. 117-123.

DOI: 10.21122/2220-9506-2021-12-2-117-123

Address for correspondence:

Ilyaschenko D.P.

Yurga Institute of Technology National Research Tomsk

Polytechnic University,

Leningradskaya st., 26, Yurga 652055, Russia

e-mail: mita8@rambler.ru

For citation:

A.A. Kolomeitsev, I.A. Zatonov, M.I. Pischanskaya, P.F. Baranov,

D.P. Ilyaschenko, E.V. Verkhoturova.

Designing a Planar Fluxgate Using the PCB Technology.

Devices and Methods of Measurements.

2021, vol. 12, no. 2, pp. 117-123.

DOI: 10.21122/2220-9506-2021-12-2-117-123

Проектирование планарного феррозондового датчика по технологии печатных плат

А.А. Коломейцев1, И.А. Затонов1, М.И. Пищанская1, П.Ф. Баранов1, Д.П. Ильященко2'3, Е.В. Верхотурова4

1 Томский политехнический университет, пр-т Ленина, 30а, г. Томск 634050, Россия

2Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, ул. Ленинградская, 26, г. Юрга 652055, Россия

3Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, пр-т Академический, 2/4, г. Томск 634055, Россия

4Иркутский национальный исследовательский технический университет, ул. Лермонтова, 83, г. Иркутск 664074, Россия

Поступила 12.04.2021 Принята к печати 26.05.2021

Разработка новых методов, научных приборов и средств для измерения магнитных полей, создаваемых сверхслабыми токами, является одним из перспективных направлений в развитии медицинской техники, геодезических и космических исследований. Целью данной работы являлась разработка малогабаритного датчика, способного детектировать слабые магнитные поля, источниками которых могут быть биотоки, излучения далёких космических объектов и слабые флуктуации магнитного поля земли. Учёные оценивают величины таких магнитных полей в десятые доли нанотесла.

Среди ключевых требований к датчикам сверхслабого магнитного поля можно отнести разрешающую способность, уровень шумов в измерительном канале, температурную стабильность, линейность и повторяемость характеристик от изделия к изделию. Предлагается добиться этих характеристик путём применения планарных технологий и микроэлектромеханических систем при изготовлении современных датчиков.

В работе описан полный цикл исследования, от создания компьютерной модели исследуемого датчика до изготовления рабочего прототипа. Для оценки влияния геометрических параметров и влияния свойств материала использована модель Джилса-Атертона, которая, в отличие от большинства используемых моделей, позволяет учесть нелинейность сердечника, его гистерезисные свойства и влияние остаточной намагниченности.

Габариты разработанного датчика составляют 40*20*5 мм и технически возможно его уменьшение. Разработанный датчик продемонстрировал линейность характеристик в диапазоне от 0,1 нТл до 50 мкТл при среднеквадратическом токе возбуждения 1,25 мА на частоте 30 кГц. Усреднённый коэффициент преобразования по второй гармонике составляет 54 мкВ/нТл.

Ключевые слова: магнитометр, планарный феррозондовый датчик, магнитная индукция, модель Джилса-Атертона, печатная плата.

DOI: 10.21122/2220-9506-2021-12-2-117-123

Адрес для переписки:

Ильященко Д.П.

Юргинский технологический институт (филиал) Национального исследовательского Томского политехнического университета, ул. Ленинградская, 26, г. Юрга 652055, Россия e-mail: mita8@rambler.ru

Address for correspondence:

Ilyaschenko D.P.

Yurga Institute of Technology National Research Tomsk Polytechnic University, Leningradskaya st., 26, Yurga 652055, Russia e-mail: mita8@rambler.ru

Для цитирования:

A.A. Kolomeitsev, I.A. Zatonov, M.I. Pischanskaya, P.F. Baranov,

D.P. Ilyaschenko, E.V. Verkhoturova.

Designing a Planar Fluxgate Using the PCB Technology.

Приборы и методы измерений.

2021. - Т. 12, № 2. - С. 117-123.

DOI: 10.21122/2220-9506-2021-12-2-117-123

For citation:

A.A. Kolomeitsev, I.A. Zatonov, M.I. Pischanskaya, P.F. Baranov,

D.P. Ilyaschenko, E.V. Verkhoturova.

Designing a Planar Fluxgate Using the PCB Technology.

Devices and Methods of Measurements.

2021, vol. 12, no. 2, pp. 117-123.

DOI: 10.21122/2220-9506-2021-12-2-117-123

Introduction

The measurement of magnetic fields is among crucial problems in the fields of space and geophysical studies [1-2], systems for navigation, orientation and stabilization [3], in quantum computer shields [4-6], magnetic resonance imaging, visualization of brain functions, fault detection and non-destructive testing [7] and many other areas. One more example of magnetometer implementation is a magnetic vacuum system that allows minimizing the influence of external magnetic fields on electronics. Such systems use passive and active methods for shielding magnetic fields. Passive methods are based on the shields from materials with high magnetic permeability. In active methods, the magnetic field is compensated using a system of coils. The coils are a part of a system with feedback; the magnetic field strength is measured by the sensors located in the vicinity of the shielded object. To measure absolute magnetic field strength, magnetic vacuum systems primarily use fluxgate magnetometers; however, the increased quality of magnetic vacuum requires improved characteristics, in particular, the fluxgate sensitivity.

Another important field where fluxgates are used is magnetocardiography [8-10], which differs from widely used electrocardiography by its non-invasive character and high sensitivity.

Existing SQUID-based magnetocardiogra-phers [11] provide high-quality diagnostics of cardiovascular diseases; however, such complexes are affordable only for a small range of diagnostic and treatment centers. This substantiates the issue of the development of a sensitive magnetic measuring sensor with a lower price as compared to SQUID-magnetometers. In a number of articles, the researchers have confirmed the possibility of applying fluxgates for measuring the parameters of cardiac activity [12-14]. One of the advantages of fluxgates is the possibility of its miniaturization and manufacturing by PCB or MEMS technology.

The present article describes a prototype of a generic fluxgate manufactured by the PCB technology.

Fluxgate design

When creating a generic fluxgate sensor, to achieve maximum sensitivity and minimal noise level, three directions can be distinguished:

- optimization of the planar geometry of the sensor;

- enhancement of the methods for its excitation and processing of the measurement information;

- implementation of novel nanostructured materials for the magnetic core of the fluxgate.

In current work we chose the direction connected with the optimization of the planar model of the sensor geometry. Figure 1 depicts the planar design of the fluxgate. The dimensions of the sensor are 40x28x2 mm.

mm 1 2

10

20

15 10 5 0 mm

Figure 1 - Fluxgate 3D model: 1 - excitation coils; 2 -measurement coil; 3 - ferromagnetic core

The key element of the fluxgate is the ferromagnetic core. The material of the core was a strip from FINEMET® FT-3H amorphous alloy (Hitachi Metals, Ltd., Japan). The chosen material possesses high permeability, which will allow decreasing the excitation current. In addition, high permeability promotes high induction, while high resistivity decreases eddy-current losses.

To assess the operability of the suggested design, a finite-element modeling was performed in COMSOL software (COMSOL, Inc., Sweden).

The hysteresis properties of the core material were presented using the Jiles-Atherton hysteresis model. Table 1 contains the model parameters presented as diagonal matrices.

Figure 2 presents the magnetization curve plotted for the implemented core material.

At the first stage of modeling, a sinusoidal current of 1.5 mA with a frequency of 25 kHz was fed to the excitation coil of the fluxgate with constant magnetic induction of 9 ^T along the sensitivity axis of the fluxgate. Figure 3 plots the dependence of the induced EMF in the fluxgate excitation

coil on time and input voltage in the pickup coil. of the induced EMF amplitude is shown at a scale For illustrative purposes, the temporal dependence of 1:1000.

Table 1

Jiles-Atherton model parameters of Finemet FT-3H core

Parameter

Value

Unit

Interdomain coupling: a Saturation magnetization: Ms Domain wall density: a Magnetization reversibility: c Pinning loss: k

{4.33, 3.952, 4.33} {1.31, 1.33, 1.31 {3.8, 3.11, 3.8} {736, 652, 736} {4.11, 3.38, 4.11}

x10 6

A/mm A/m

x10-3 A/m

//(A/m)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Figure 2 - Hysteresis loop for the core from FINEMET® FT-3H material

Figure 3 - Input and output signal timing behavior at exciting current of 1.5 mA

Evidently, the output signal of the fluxgate is dominated by the second harmonic of the excitation signal frequency. Over an equal time period, the number of peaks of the output signal is twice larger than that of the input signal. Therefore, the operability of the model is confirmed in line with the conventional differential fluxgate operation theory.

Figure 4 shows the fluxgate output signal spectrum recorded at various values of acting magnetic induction. The excitation conditions are the same.

Figure 4 - Dependence of spectral characteristic of the output signal on the ambient field strength at an excitation current of 1.5 mA

Obviously, the amplitude of the second harmonic linearly depends on the ambient magnetic field strength. Interestingly, the signal spectrum also contains the fourth harmonic which also depends on the ambient magnetic field strength.

Therefore, the modeling results have confirmed the operability of the design.

Experimental specimen manufacturing

The experimental specimen of the planar fluxgate was manufactured as follows.

Using the PCB technology, four separate printed circuit boards were made on a textile laminate substrate: two identical boards with excitation coils and two identical boards with pickup coils. The topology of the printed circuit boards is presented in Figure 5.

The conductors on the printed circuit boards were made from copper and then coated by a terne layer.

Figures 6a and 6b demonstrate the photographs of the manufactured circuit boards with the elements of the planar fluxgate.

a b

Figure 5 - Planar fluxgate printed circuit board topology of exciting (a) and measurement (b) coils. Red lines indicate conductors on the top layer of the printed circuit board, green lines indicate conductors on the bottom layer of the printed circuit board, cyan lines indicate vias, white lines indicate a ferromagnetic core

ab

Figure 6 - Photographs of the manufactured printed circuit boards with the elements of the planar fluxgate: a - printed circuit board with excitation coil; b - printed circuit board with pickup coil

The ferromagnetic core produced from FINEMET® FT-3H material by mechanical cutting was adhered to the opposite side of the first board with the excitation coil. The adhesive used was LOCTITE® STYCAST 2850FT (Henkel AG & Co. KGaA, Germany). To cure the adhesive, LOCTITE® Catalyst 24 LV (Henkel AG & Co. KGaA, Germany) hardener was used with a ratio of the adhesive to the hardener of 100:6. The duration of complete curing was about 36 hours. The adhesive was cured in a vacuum chamber at a pressure no more than 10-6 atm.

To manufacture proper excitation coil, the first board with the excitation coil and adhered core was sandwiched with the second board with the excitation coil. The excitation coils on the two boards were

connected through the vias. Then, the boards were soaked with the LOCTITE® STYCAST 2850FT adhesive with further curing in the vacuum chamber at a pressure less than 10-6 atm.

After curing, the bonded boards with the excitation coil were sandwiched from the both sides with the boards with the elements of the pickup coil. The boards were connected with the elements of the pickup coil through the vias by a copper wire with a diameter of 0.05 mm.

Experimental

The performance test of the sensor included the experimental determination of the dependence of the second harmonic amplitude in the fluxgate output signal on the amplitude and frequency of the excitation current under a magnetic field strength of 45 ^T induced by a system of axial coils [15]. The experimental scheme is presented in Figure 7.

The scheme in Figure 7 includes a Fluke 5520A Multi-Product Calibrator (Fluke Corporation, USA) that was used to excite the fluxgate with a sine signal with a preset amplitude and frequency. A multimeter Agilent 3458A (Agilent Technologies, USA) was used to measure the excitation current of the fluxgate. A PXI-1042Q platform (NI, USA) with a PXI-5124 module (NI, USA) was used to digitize and analyze the spectrum of the fluxgate excitation signal and its output voltage (amplified beforehand through the amplification section of the synchronous amplifier [16]) proportional to the measured magnetic induction. The experimental data are given in Table 2.

Following the data from Table 2, the maximum sensitivity was achieved at a frequency of fluxgate excitation of 30 kHz with an rms current of excitation of 1.25 mA.

To determine the sensitivity and the measurement range, the fluxgate was placed in the center of the system of axial coils [15]. A high-precision current source was used to set a direct current amplitude flowing through the system of coils, so the magnetic field induction in the center of the system would vary from 0.1 nT to 50 ^T. All the measurements of the amplitude of the second harmonic in the fluxgate output signal were averaged. To do so, 1000 measurements were automatically registered at a set current value and then averaged.

The measured amplitudes of the second harmonic in the fluxgate output voltage varying with the magnetic induction are presented in Table 3.

Figure 7 - Block diagram of the fluxgate testing

Table 2

Dependence of the amplitude of the second harmonic on the amplitude and frequency of the excitation current

Current [mA]

Frequency [kHz] 0.25 0.5 0.75 1.0 1.25 1.5

Voltage [V]

20 0.13 0.42 1.23 2.05 2.42 2.38

30 0.19 0.57 1.32 2.14 2.56 2.52

40 0.15 0.39 1.22 2.03 2.36 2.29

50 0.09 0.12 0.17 0.27 0.34 0.29

60 0.05 0.11 0.13 0.19 0.22 0.15

70 0.01 0.05 0.07 0.18 0.21 0.19

80 0.008 0.021 0.056 0.17 0.19 0.16

90 0.007 0.019 0.051 0.14 0.17 0.15

100 0.006 0.012 0.037 0.13 0.15 0.12

Table 3

Amplitudes of the second harmonic in the fluxgate output voltage varying with the magnetic induction

Magnetic induction [^T] 0.0001 0.001 0.005 0.01 0.05 0.1 0.5

Voltage [mV] 0.0052 0.0548 0.261 0.542 2.71 5.68 28.3

Magnetic induction [^T] 1 5 10 20 30 40 50

Voltage [V] 0.0564 0.268 0.545 1.082 1.623 2.165 2.641

Following the analysis of the data from Table 3, the fluxgate is suitable for measuring the magnetic induction up to 50 ^T. Its characteristics remain linear in the range of measured induction from 0.1 nT up to 50 ^T. The average sensitivity for the second harmonic is 54 ^V/nT.

Conclusion

A computer model was elaborated that allows assessing the sensitivity of the developed magnetic field sensor with due consideration of the hysteresis properties of the material. Based on the technological

capabilities, the models were developed that allow manufacturing the elements of excitation and pickup coils using the PCB technology. At present stage, the dimensions of the sensor are 40x20x5 mm.

A working sensor prototype was manufactured. The technological process of device assembly was developed. The measurement scheme was developed and the sensor's sensitivity was tested.

The optimal frequency and excitation current were determined that allow achieving the maximum sensitivity of the sensor. The measurement range of the developed sensor was estimated.

The conclusion on the viability of fluxgate implementation for measuring weak magnetic fields was made, including in magnetocardiography, geodesy and space exploration.

Further decrease of the width of the printed conductors that compose the excitation coils and the pickup coil of the converter with the increase of their density on the circuit board will increase the induction and excitation frequency keeping the excitation current amplitude unchanged. Further improvement of the cutting and leaching technology for the ferromagnetic core is necessary to decrease the converter noise and manufacture identical fluxgates using the technology of microelectromechanical systems.

Acknowledgments

The investigation was performed at Tomsk Polytechnic University within the Programme for Promoting the Competitiveness and with the support of the Russian Foundation for Basic Research (RFBR) (project no. 19-37 90061) and Grant № MK-873.2020.8 of the President of the Russian Federation.

References

1. Ripka P. Magnetic Sensors and Magnetometers. Boston, Artech house, 2000, 494 p.

2. Carr C. The Double Star magnetic field investigation. Ann. Geophys, 2005, no. 23, pp. 27132732. DOI: 10.5194/angeo-23-2713-2005

3. Can H., Topal U. Design of Ring Core Fluxgate Magnetometer as Attitude Control Sensor for Low and High Orbit Satellites. Journal of Superconductivity and Novel Magnetism March, 2015, vol. 28, no. 3, pp. 1093-1096. DOI: 10.1007/s10948-014-2788-5

4. Johnson M.W., Amin M.H., Gildert S., Lan-ting T., Hamze F., Dickson N., Harris R., Berkley A.J., Johansson J., Bunyk P., Chapple E.M., Enderud C., Hilton J.P., Karimi K., Ladizinsky E., Ladizinsky N., Oh T., Perminov I., Rich C., Thom M.C., Tolkacheva E., Truncik C.J., Uchaikin S., Wang J., Wilson B., Rose G. Quantum annealing with manufactured spins. Nature, 2011, vol. 473, no. 7346. pp. 194-198.

DOI: 10.1038/nature10012

5. Uchaikin S., Likhachev A., Cioata F., Permi-nov I., Sanghera H., Singh I., Spear P., Chavez P., Han X., Petroff C., Rich C. Sample 3D magnetometer for a dilution refrigerator. Journal of Physics Conference Series, 2012, vol. 400, pp. 052037.

DOI: 10.1088/1742-6596/400/5/052037

6. Uchaikin S.V. Fluxgate Magnetometer for Cryogenics. In Proc. of the 21st International Conference on Low Temperature Physics (LT21), Czechoslovak Journal of Physics, 1996, pp. 2809.

7. Sukhanov D.Y. [Magnetic introscopy with a magnetic sensor array]. Izvestiya vishih uchebnih zavedeniy. Phizika [Izvestiya vyshin educational institutions. Physics], 2013, vol. 56, no. 8/2, pp. 23-26 (in Russian).

8. Fagaly R.L. Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum., 2006, vol. 77, no. 10, pp. 101101-101101-45. DOI: 10.1063/1.2354545

9. Shirai Y. Hirao K., Shibuya T., Okawa S., Hasegawa Y., Adachi Y., Sekihara K., Kawabata S. Magnetocardiography using a magnetoresistive sensor array. Int Heart J., 2019, vol. 60, no. 1, pp. 50-54. DOI: 10.1536/ihj.18-002.

10. Karo H., Sasada I., Magnetocardiogram measured by fundamental mode orthogonal fluxgate array. J. Appl. Phys., 2015, vol. 117, no. 17, pp. 17B322. DOI: 10.1063/1.4918958

11. Adachi Y., Higuchi M., Oyama D., Haruta Y., Kawabata S., Uehara G. Calibration for a multichannel magnetic sensor array of a magnetospinography system. IEEE Trans. Magn., 2014, vol. 50, no. 11, pp. 1-4. DOI: 10.1109/TMAG.2014.2326869

12. Harada S., Sasada I., Hang F. Development of a One Dimensional Fluxgate Array and Its Application to Magnetocardiogram Measurements. Electronics and Communications in Japan, Translated from Denki Gakkai Ronbunshi, 2015, vol. 98, no. 4.

DOI: 10.1002/ecj.11645

13. Vetoshko P.M., Gusev N.A., Chepurnova D.A., Samoilova E., Zvezdin A., Korotaeva A., Belotelov V. Rat Magnetocardiography Using a Flux-Gate Sensor Based on Iron Garnet Films. Biomed Eng., 2016, vol. 50, pp. 237-240.

DOI: 10.1007/s10527-016-9628-9

14. Gusev N.A., Vetoshko P.M., Kuzmichev A.N., Chepurnova D., Samoilova E., Zvezdin A., Korotaeva A., Belotelov V. Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping. Biomed Eng., 2017, vol. 51, pp. 157-161. DOI: 10.1007/s10527-017-9705-8

15. Baranova V.E., Baranov P.F., Muravyov S.V., Uchaikin S. The Production of a Uniform Magnetic Field Using a System of Axial Coils for Calibrating Magnetometers. Meas Tech., 2015, vol. 58, pp. 550-555. DOI: 10.1007/s11018-015-0752-9

16. Baranov P., Borikov V., Ivanova V., Duc B.B., Uchaikin S., Liu C.-Y. Lock-in amplifier with a high common-mode rejection ratio in the range of 0.02 to 100 kHz. ACTA IMEKO, 2019, vol. 8, no. 1.

DOI: 10.21014/acta imeko.v8i1.672

i Надоели баннеры? Вы всегда можете отключить рекламу.