Научная статья на тему 'DESIGN AND SIMULATION ANALYSIS OF CRAWLER DOUBLE BOOM ORCHARD'

DESIGN AND SIMULATION ANALYSIS OF CRAWLER DOUBLE BOOM ORCHARD Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
41
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
apple orchard / mechanical flower thinning / fruit quality / simulation analysis / яблоневый сад / механическое прореживание завязи / качество плодов / имитационный анализ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Hu Caiqi, Wang Dongwei, Wang Jiasheng, Shang Shuqi, Liu Huanwei

Flower thinning is one of the most important operations in orchard management. Removing too many flowers in time can avoid excessive nutrient consumption of the apple trees, and improve fruit quality of apples and ensure effective fruit setting rate. Mechanical flower thinning can reduce hand and chemical thinning and to prevent or overcome alternate bearing, which promotes protecting the environment of organic orchards and improving the quality of organic orchards. On the basis of discussing the present research situation at home and abroad, according to the agronomic requirements of flower thinning in orchards (taking apple orchard as an example), the technical requirements of flower thinning operation and the existing problems of mechanical flower thinning equipment, the crawler double boom orchard flower thinner for orchards is put forward. The flower thinning machine carries out flower thinning operations of different tree-shaped fruit trees through two flower thinning arms with adjustable working angles. Through the design and analysis of the whole machine structure and its key components, the length of the electric push rod is calculated as 300 mm and the diameter of the flower thinning shaft is 20 mm. Through the simulation analysis for the flower thinning mechanism by the Adams software, the acting force reasonable range of the flower thinning executive mechanism is obtained, and according to the simulation results, the component structures of flower thinning machine are further improved to meet the agronomic requirements of flower thinning operation.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ПРОЕКТИРОВАНИЕ И ИМИТАЦИОННЫЙ АНАЛИЗ ПРОРЕЖИВАТЕЛЯ ЗАВЯЗИ НА ГУСЕНИЧНОМ ХОДУ ДЛЯ ПЛОДОВЫХ САДОВ

Прореживание завязи – одна из самых важных операций в садоводстве. Своевременным удалением достаточно большого количества цветков можно избежать избыточного потребления яблонями питательных веществ, повысить качество плодов и обеспечить эффективную скорость их завязывания. Механическое прореживание завязи может сократить применение ручного и химического методов, а также предотвратить или решить проблему периодичности плодоношения, что способствует защите окружающей среды в органических садах и улучшению их состояния. По результатам рассмотрения современных исследований в стране и за рубежом, с учетом агрономических и технических требований к прореживанию завязи в садах (на примере яблоневого сада) и существующих проблем с необходимым механическим оборудованием, был предложен гусеничный прореживатель завязи для плодовых садов, состоящий из двух основных частей. Данная машина выполняет прореживание завязи у различных сформированных плодовых деревьев с помощью двух устройств с регулируемыми рабочими углами. По результатам проектирования и анализа всей конструкции машины и ее ключевых узлов рассчитанная длина толкателя с электроприводом составила 300 мм, а диаметр вала для прореживания завязи – 20 мм. Благодаря анализу модели механизма прореживания завязи с помощью компьютерной программы Adams получен разумный диапазон действующей силы исполнительного механизма прореживания. По результатам моделирования узлы машины для прореживания были дополнительно усовершенствованы согласно агрономическим требованиям к данной операции.

Текст научной работы на тему «DESIGN AND SIMULATION ANALYSIS OF CRAWLER DOUBLE BOOM ORCHARD»

10. Chernikov O.N., Bychenin A.P. Vliyanie rezhimov buksovaniya kolesnogo dvizhitelya energeticheskogo sredstva MTA na fizicheskie svoistva pochvy [Influence of slipping modes of the wheeled running gear of MTU power means onto physical properties of the soil]. Izvestiya Samarskoi Gosudarstvennoi Selskokhoziajsvennoj Academii. 2018. No. 4: 44-49 (In Russian)

11. Dzhabborov N.I., Semenova G.A. Klassifikatsiya kriteriev otsenki ekologicheskoi bezopasnosti tekhnicheskikh sredstv v rastenievodstve [Classification of criteria for assessing the environmental friendliness of machines and equipment in crop production]. AgroEkoInzheneriya. 2022. No. 1 (110): 84-102 (In Russian)

12. Afanasiev, V.N., Maksimov D.A., Afanasiev A.V. Osnovnye polozheniya metodiki ekologicheskoi otsenki sel'skokhozyaistvennykh tekhnologii i tekhniki [Main provisions of the methodology for the environmental assessment of agricultural technologies and equipment]. Tekhnologii i tekhnicheskie sredstva mekhanizirovannogo proizvodstva produktsii rastenievodstva i zhivotnovodstva. 2009. No. 81: 20-25 (In Russian)

УДК 634.11.073

DESIGN AND SIMULATION ANALYSIS OF CRAWLER DOUBLE BOOM ORCHARD

FLOWER THINNER6

Hu Caiqi, Wang Dongwei, Wang Jiasheng, Shang Shuqi, Liu Huanwei, Liang Qiaojun, Chi Junkang, Li Yao

College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao, China

Flower thinning is one of the most important operations in orchard management. Removing too many flowers in time can avoid excessive nutrient consumption of the apple trees, and improve fruit quality of apples and ensure effective fruit setting rate. Mechanical flower thinning can reduce hand and chemical thinning and to prevent or overcome alternate bearing, which promotes protecting the environment of organic orchards and improving the quality of organic orchards. On the basis of discussing the present research situation at home and abroad, according to the agronomic requirements of flower thinning in orchards (taking apple orchard as an example), the technical requirements of flower thinning operation and the existing problems of mechanical flower thinning equipment, the crawler double boom orchard flower thinner for orchards is put forward. The flower thinning machine carries out flower thinning operations of different tree-shaped fruit trees through two flower thinning arms with adjustable working angles. Through the design and analysis of the whole machine structure and its key components, the length of the electric push rod is calculated as 300 mm and the diameter of the flower thinning shaft is 20 mm. Through the simulation analysis for the flower thinning mechanism by the Adams software, the acting force reasonable range of the flower thinning executive mechanism is obtained, and according to the simulation results, the

6 Текст статьи публикуется в авторской редакции - The text of the published article is the authors' English version

component structures of flower thinning machine are further improved to meet the agronomie requirements of flower thinning operation.

Key words: apple orchard; mechanical flower thinning; fruit quality; simulation analysis

For citation: Hu Caiqi, Wang Dongwei, Wang Jiasheng, Shang Shuqi, Liu Huanwei, Liang Qiaojun, Chi Junkang, Li Yao. Design and simulation analysis of crawler double boom orchard flower thinner. AgroEkoInzheneriya. 2022. No. 3(112): 50-61

ПРОЕКТИРОВАНИЕ И ИМИТАЦИОННЫЙ АНАЛИЗ ПРОРЕЖИВАТЕЛЯ ЗАВЯЗИ НА ГУСЕНИЧНОМ ХОДУ ДЛЯ ПЛОДОВЫХ САДОВ

Ху Цайци, Ван Дунвэй, Ван Цзяшэн, Шан Лян Цяоцзюнь, Джункан, Ли Яо

Шукси, Лю Хуаньвэй,

Колледж механики и электротехники, Сельскохозяйственный университет Циндао, г. Циндао, Китай

Прореживание завязи - одна из самых важных операций в садоводстве. Своевременным удалением достаточно большого количества цветков можно избежать избыточного потребления яблонями питательных веществ, повысить качество плодов и обеспечить эффективную скорость их завязывания. Механическое прореживание завязи может сократить применение ручного и химического методов, а также предотвратить или решить проблему периодичности плодоношения, что способствует защите окружающей среды в органических садах и улучшению их состояния. По результатам рассмотрения современных исследований в стране и за рубежом, с учетом агрономических и технических требований к прореживанию завязи в садах (на примере яблоневого сада) и существующих проблем с необходимым механическим оборудованием, был предложен гусеничный прореживатель завязи для плодовых садов, состоящий из двух основных частей. Данная машина выполняет прореживание завязи у различных сформированных плодовых деревьев с помощью двух устройств с регулируемыми рабочими углами. По результатам проектирования и анализа всей конструкции машины и ее ключевых узлов рассчитанная длина толкателя с электроприводом составила 300 мм, а диаметр вала для прореживания завязи - 20 мм. Благодаря анализу модели механизма прореживания завязи с помощью компьютерной программы Adams получен разумный диапазон действующей силы исполнительного механизма прореживания. По результатам моделирования узлы машины для прореживания были дополнительно усовершенствованы согласно агрономическим требованиям к данной операции.

Ключевые слова: яблоневый сад; механическое прореживание завязи; качество плодов; имитационный анализ.

Для цитирования: Ху Цайци, Ван Дунвэй, Ван Цзяшэн, Шан Шукси, Лю Хуаньвэй, Лян Цяоцзюнь, Джункан, Ли Яо. Проектирование и имитационный анализ прореживателя завязи на гусеничном ходу для плодовых садов // АгроЭкоИнженерия. 2022. № 3 (112). С.50-61

1. Introduction

Blossom thinning is an important link in the process of fruit tree planting and management. Flower thinning can not only improve fruit quality [1-2], but also effectively avoid the yield reduction due to heavy burden on fruit trees when there are too many fruit sets [3-4]. Manual flower thinning is labor-intensive and of low-efficiency. Chemical blossom thinning has the problems of pesticide residues and is easily affected by factors such as environment and fruit varieties [5-8]. Mechanical flower thinning, as an environmentally friendly flower thinning method, can effectively improve the evenness of fruit setting in the fruiting ear and promote healthy and sustainable development of organic orchards [9-10]. But there are also problems of poor adaptability to fruit trees and high damage rate [11-13].Therefore, the research and development of an orchard thinning machine suitable for the actual planting and growth of fruit trees is of great significance for the organic orchard development.

There are a few researches on a flower thinning machine in China. Most of them focus on the development of an airborne mechanism, but the whole machine development is less. A hanging electric flexible thinning machine was proposed by Li Jun. They designed the profile control system and carried out field experiments to analyze the control effect of the system. A mechanical blossom thinning device, which was applied to the orchards with low rootstock and closely planting in North China, was developed by Hebei Agricultural University. The three arms tractor-mounted flower thinning machine, which is based on the profile structure, was designed by Lei Xiaohui of Jiangsu Academy of Agricultural Sciences [14-16]. There are some researches on flower thinning machine abroad. Michael Glenn and other researchers studied the operation effect of the mechanical device of the pointed barrel vibrating screen, and analyzed its function in the flower thinning device. Alberto Assirelli and other researchers studied a large-

scale flower thinning machine and conducted flower thinning experiments in apricot and peach orchards in northeast Italy, which can obtain better flower thinning effect after artificial secondary flower thinning management. Although domestic and foreign scholars had made some achievements in the research of flower thinning machine, the developed flower thinning device cannot thin flower smoothly on the fruit tree with undulating shape and cannot flexibly adjust the flower thinning posture according to the shape and size of the fruit tree crown. The most of them was airborne flower thinning machine, but the whole machine development was less at present. According to the above problems, in this paper a crawler-type double-boom orchard thinning machine is proposed; the structure and working principle of machine are analyzed; the key parameters are calculated, and the theoretical derivation and simulation analysis are carried out.

2. Structure of the whole machine 2.1 Apple orchard planting pattern

At present, there are mainly the apple orchards with close planting on low rootstocks in China. It can make the apple tree trunk low, and convenient for standardized management, good light transmission between branches, so as to improve the output and save labor. The plant row spacing and line spacing of apple trees also have different requirements due to different varieties of fruit trees [14]. Generally, the plant row spacing is 2 m, and the line spacing is 4 m. The apple orchards of low rootstocks and close planting have various tree shapes, such as high spindle shape, slender spindle shape, super spindle shape, small crown open center shape, etc. It is generally believed that the high spindle tree shape is more suitable for apple trees with low rootstocks and close planting. Usually the total height of this type apple tree is about 3-3.2 m, the trunk height is about 0.8-1 m, and the main branch angle is 110 Taking the high spindle apple tree as an example, the basic growth status of the apple tree shape with the

low rootstocks and close planting is shown in Tablel

Table 1. Growth parameters of high-spindle apple trees Таблица 1. Параметры роста высоких колоновидных яблонь

Parameter / Параметр Value / Значение

Row spacing, m / Расстояние между рядами, м 2

Line spacing, m / Расстояние между деревьями, м 4

Height of tree, m / Высота дерева, м 3~3.2

The angle of branch, degree / Угол ветвления, град 110

Crown diameter, m / Диаметр кроны, м 0.8~1.2

Bough group spacing, m / Расстояние между группами ветвей, м >0.6

2.2 Structure of the whole machine

The flower thinning machine is driven by electricity, and the chassis is controlled by remote control. The crawler chassis can achieve in-situ steering by the forward and reverse rotation of the motor. The structure of the whole machine is composed of profiling flower thinning mechanism, vertical lifting frame and crawler chassis. The profiling flower thinning mechanism is divided into the upper arm flower thinning mechanism and the lower arm flower

thinning mechanism. The upper arm flower thinning mechanism is composed of key components of flower thinning, electric push rod, linear guide rail, motor, the profiling flower thinning frame, movable joint and other components. The lower arm flower thinning mechanism is composed of flower thinning frame, the profiling fixed bracket, key components of flower thinning, motor and other components. The structure of crawler-type double-section boom orchard thinning machine is shown in Figure 1.

Fig. 1. Structure diagram of tracked double boom orchard thinning machine

1 - track; 2 - crawler gear train; 3 - drive motor reducer combination; 4 - remote control module; 5 - lower arm flower thinning mechanism; 6 - upper arm flower thinning mechanism; 7 - upper thinning gear motor; 8 - fixed mechanism; 9 - lifting table connection frame; 10 - lifting table linear guide; 11 - lift; 12 - battery; 13 - chassis frame.

Рис. 1. Схема гусеничной машины для прореживания завязи для плодовых садов

1 - гусеница; 2 - ведущее колесо гусеницы; 3 -редуктор с приводным двигателем; 4 - модуль дистанционного управления; 5 - нижнее устройство прореживания завязи; 6 - верхнее устройство прореживания завязи; 7 - двигатель верхнего устройства прореживания завязи; 8 - стопорное устройство; 9 - соединительная рама подъемной платформы; 10 -линейная направляющая подъемной платформы; 11 - подъемник; 12 - аккумулятор; 13 -

рама шасси.

2.3 Working principle

During flower thinning, according to the fruit tree shape, the electric push rod is adjusted to make the upper arm flower thinning mechanism fit the tree shape, so that the upper arm flower thinning mechanism and the lower arm flower thinning mechanism are suitable for the current fruit tree. Then the flower thinning axis is driven and the flower

thinning elements to rotate. After reaching the specified speed, the horizontal electric push rod is controlled to make the flower thinning elements enter the apple tree crown and thin flowers away.

3 Key component design

3.1 Design of profiling and thinning flower mechanism

The profiling flower thinning mechanism is composed of two section arm parts, an upper section arm and a lower section arm. Each section arm has a sparse flower axis, and the flower thinning strips are fixed and spirally arranged on the flower thinning axis by a single-head screw. The structure of the profiling flower thinning mechanism is shown in Figure 2. At the bottom of the flower

thinning mechanism of the upper arm, a linear guide rail and an electric push rod are mounted, so that the entire flower thinning mechanism can be telescopically moved relative to the controller. At the bottom of the entire flower thinning mechanism, a lifting platform composed of a lift connects the flower thinning mechanism to the chassis frame, so that the entire flower thinning mechanism can be lifted and lowered. The entire flower thinning system is driven by the chassis to meet the adjustment requirement of each flower thinning angle.

Fig. 2. Structure diagram of the profiling and thinning mechanism

1- lower arm flower thinning motor; 2 - fixed lifting lugs; 3 - flower thinning axis; 4 - fixed mechanism; 5 - pillow block bearing; 6 - flower thinning strip; 7 - upper arm flower thinning motor; 8 - upper arm triangle bracket; 9 - ring seat; 10 - electric putter; 11 - upper arm flower thinning mechanism base; 12 - upper arm telescopic linear guide; 13 - lifting table linear guide;

14 - lifting table bracket; 15 - lifting motor.

Рис. 2. Схема профилирующего и прореживающего устройства

1- двигатель нижнего устройства прореживания завязи; 2 - неподвижные подъемные проушины; 3 - ось прореживания завязи; 4 - стопорное устройство; 5 - трансмиссионный

подшипник; 6 - пластинка для прореживания завязи; 7 - двигатель верхнего устройства прореживания завязи; 8 - треугольный кронштейн верхнего устройства прореживания; 9 -

седло с уплотнительным кольцом; 10 - толкатель с электроприводом; 11 - основание верхнего устройства прореживания завязи; 12 - телескопическая линейная направляющая

верхнего устройства прореживания завязи; 13 - линейная направляющая подъемной платформы; 14 - кронштейн подъемной платформы; 15 - двигатель подъемника.

3.2 Size parameter analysis of electric push rod

There is a schematic diagram of the movement of the lower arm mechanism as shown in figure 3. Among them, AC is the limit position of the angle when the flower thinning axis is adjusted to the outside of the vehicle body. At this point, the length of the push rod is the longest. BC is the limit position of the adjustment angle of the flower thinning axis inside the vehicle body, and the length of the push rod is the shortest at this point. According to the adjustment requirements of the flower thinning angle and to ensure the

stability of the flower thinning work, the swing angle 0 of the flower thinning shaft should be greater than 20°, Li is the length of the push rod after it is fully extended, L2 is the length of the push rod when it is not extended, and FE is the vertical distance between the hinge point at the rear end of the push rod and the hinge point at the near-ground end of the sparse shaft, BC is the horizontal distance from the hinge point of the tail end of the push rod to the hinge point of the near-ground end of the flower thinning shaft. According to the design geometric dimensions, FE=890mm, BC=580mm, AC=BC=800mm.

Fig. 3. Schematic diagram of the movement of the lower arm mechanism Рис. 3. Схема перемещения нижнего устройства прореживания

From the geometric relation, the following is the relational expression:

AB = 2 AC • cos

< BD = CE - BC ■ cos (j^) FD = FE - BC ■ s in

From the above formula, Li and L2 can be expressed as:

L =д/( AB + BD )2 + FD2 L = V BD2 + FD2

The size parameters of each electric push rod are shown in Table 2.

Table 2. Parameters of push rods of various sizes Таблица 2. Параметры толкателей различного размера

ffifffrfM/ход толкателя (S/mm) /длина невыдвинутого толкателя (L2/mm) длина полностью выдвинутого толкателя (L1/mm)

100 235 335

200 335 535

300 435 735

400 535 935

4 Simulation analysis

During the analysis of virtual prototype, the flexible components will have a great impact on the dynamic characteristics of the mechanical system. Under the condition that the deformation of components needs to be considered, the model cannot be treated as a rigid system, and some components need to be treated as flexibly parts. The ADAMS software includes flexible body module, and during analysis flexible body is used to replace rigid body, which can more truly represent the

dynamic changes of components and realize the simulation analysis of flexible components.

Then the flexible components simulation analysis is carried out in ADAMS software. Firstly, the model is imported into ADAMS, the name and material properties of the model components are set, and the material of the thinning element is set as PVC rod, the material of the hit test bench component is set as apple tree branch, and the material of the other nondeformation components is set as steel. The material parameters of the components in this simulation are shown in Table 3.

Table 3. Simulation material parameter settings Таблица 3. Установочные параметры имитационного материала

Material Science /материал Elastic modulus / модуль упругости (Nmm-2) Density / плотность (gxm3) Poisson's ratio / коэффициент Пуассона

PVC rod / пластинка 3x103 1.4 0.38

из ПВХ

Branch /ветка 1.1x104 4.4x10"7 0.33

Steel products /стальные изделия 2.1x10s 7.8x10-6 0.29

In mechanical thinning the flowers, since the operation process of the flower thinning element is repeated and the motion state is the same, in order to simplify the flexible operation and simulation operation, one of the flower thinning elements is taken for flexible analysis. According to the actual motion state of the flower thinning mechanism, The constrains and drive of the model are applied: the base and the earth are set with translation pair constraints, the flower thinning element and the flower thinning axis are fixed constraints, the flower thinning axis and the connecting moving block are rotation pair constraints, and the other parts are fixed constraints. The rotation speed of the rotation pair of the flower thinning axis is set at 240r / min. Since the shape of the flower thinning element in this simulation is not complex, the geometric shape method in ADAMS / flex module is used to create the flexible body. In the View Flex interface, select the flexible parts, set the material as PVC rod, and select the geometric shape for the flexible body type, set the grid cell type as solid, set the grid size as 3mm, set the minimum cell size as 1mm, set the growth rate as 1.5, and set other settings as default. After grid division and automatic selection of defined connection points, the generated flexible body will automatically replace the rigid body, and the construction of the flexible body is completed.

Then the contact force parameters between the flower thinning element and the struck branch need to be defined. The selection of the stiffness coefficient is related to the material properties and geometric characteristics. The force index represents the nonlinear characteristics of the material, and reflects the

index of the contribution value of the stiffness term of the material. The damping property is usually 0.1 ~ 1% of the stiffness value, and the penetration depth is greater than zero. This simulation parameter is based on the existing experience and its own material properties. The parameters are set as: stiffness coefficient k=71 N/mm, damping coefficient C=0.71 Ns/mm, force index e=2.2, penetration depth d=0.1mm. According to the existing simulation reference experience, the static friction speed is 0.1 mm/s and the static friction coefficient is 0.7. The dynamic friction speed is 10 mm/S, and the dynamic friction coefficient is 0.55, the recovery coefficient is 0.8.

After the parts are set as flexible body and the contact settings are completed, the rigid flexible coupling model components are completed, and the simulation time and step size are set in the simulation setting interface. The stress and deformation state of the branch struck hit by the thinning element during simulation is shown in Figure 4.

The simulation process is that the flower thinning element is driven by the flower thinning axis to rotate until the flexible flower thinning element contacts and collides with the branch. The flower thinning element is deformed and scrapes the branch. Due to the inertia and elasticity of the thinning element, the flower thinning element will swing after it scrapes the branch and continue to rotate under the driving of the flower thinning axis. The time variation of the force at the moment of contact and collision between the flower thinning element and the tree branch is shown as Figure 5 and Figure 6.

Fig. 4. Deformation of the thinning element Рис. 4. Деформация прореживающего элемента

Fig. 5. Contact force curve of the thinning element at a rotational speed of 240 r/min Рис. 5. Кривая контактного усилия прореживающего элемента при частоте вращения 240

об/мин

Fig. 6. Contact force curve of the thinning element at a rotational speed of 300 r/min Рис. 6. Кривая контактного усилия прореживающего элемента при частоте вращения 300

об/мин

The simulation results show that when the rotation speed is 240 r / min, the force on the branch is always zero when the flower thinning element is not in contact with the branch. At 0.49 s, the flower thinning element contacts with the branch, and the impact force quickly reaches the peak of 4.02 N. After the flower thinning element rubs the branch, the interaction force decreases to 0. When the

rotation speed is 300 r / min, the flower thinning element contacts the tree branch and the force is 9.57 N at 0.34 s. During flower thinning, the value of impact force is greater than 3.5 N, and the value of optimal impact force is greater than or equal to 4.49 N. The simulation results show that when the rotation speed of the flower thinning axis is 300 r / min, the force between the flower thinning

element and the branch is 9.57 N, which can meet the impact force requirements of flower thinning and finish flower thinning.

5 Conclusions

In order to achieve mechanical flower thinning in apple orchard, a double-section boom profiling flower thinning machine is proposed. During flower thinning the machine can adjust the working angle of the arms according to different property requirements, so that the flower thinning operation can be carried out under the working conditions of the optimal. In this paper, the structure of the whole machine is introduced; the key structure

is analyzed by the mechanism theory and simulated by the ADAMS software. Through the ADAMS/Flex module, the impact force of the flower thinning mechanism is simulated. The simulation results show that the flower thinning mechanism designed in this paper can meet the impact force requirements of the flower thinning work.

Acknowledgments

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The project is funded by National Natural Science Foundation of China (Grant No. 31971801), Natural Science Foundation of Shandong Province (No. ZR2020ME250, No. ZR2020ME252).

REFERENCES

1. Hehnen D., Hanrahan I., Lewis K., McFerson J., Blanke M. Mechanical flower thinning improves fruit quality of apples and promotes consistent bearing. Scientia Horticulturae 2012. Vol. 134, pp. 241-244.

2.Liu Limin, Nie Lin, Zhao Hongliang, Cao Yijing, Sun Ang. Study on the technology of apple flower and fruit thinning. Shanxi Journal of Agricultural Sciences 2018. Vol. 64(11), pp. 88-91.

3.Pan Yunfei, Zhou Yan, He Lei, Wang Qiang, Song Long. Research progress of flower and fruit thinning in orchard management. Journal of Chinese Agricultural Mechanization 2021. Vol. 42(11), pp. 198-204.

4.Robinson, T.L., Lakso, A.N. Predicting chemical thinner response with a carbohydrate model. Acta Horticulturae 2011. Vol.903, pp. 743-750

5.Hua Min, Guo Lijun, Deng Huidong, Feng Xuejie, Chen Liming. 'Guifeimang' Study on mechanical flower thinning and chemical fruit thinning. China Tropical Agriculture 2020. Vol. 04, pp. 74-78.

6.Lu Mengmeng, Jiang Shan, Zhang Guohao, Zou Yangjun. Research progress on chemical flower and fruit thinning technology of apple. China Fruits 2021. Vol.04, pp. 4-7+22.

7.Lei Xiaohui, LV Xiaolan, Zhang Meina, Ma Zhengbai, Chang Youhong, Andreas Herbst. Test and research on electric rotating rope blossom thinner in "Cuiguan" pear orchard. Journal of Chinese Agricultural Mechanization 2020. Vol. 41(09), pp. 47-52.

8.Li Jun, Xu Yan, Xu Jitong, Yang Zhou, Lu Huazhong. Design and experiment of control system for suspended electric flexible thinner. Transactions of the Chinese Society of AgriculturalEngineerin, 2016. Vol. 32(18), pp. 61-66.

9.Wang Qiang. Design and research of mechanical blossom thinning device for the dwarf dense fruit trees. Hebei Agricultural University, 2018.

10.Lei Xiaohun,Lv Xiaolan,Zhang Meina,Lixue,Chang Youhong,Andreas.Herbst.Development and test of three arms tractor-mounted flower thinner. Transactions of the Chinese Society of Agricultural Engineering 2019. Vol. 35(24), pp. 31-38.

n.Assirelli A., Giovannini D., Cacchi M., Sirri S., Baruzzi G., Caracciolo G. Evaluation of a new machine for flower and fruit thinning in stone fruits. Sustainability 2018. Vol. 10(11), 4088 DOI: 10.3390/su10114088

12.Zhang Qingbo, Zhouyan, Qin Tingting, Zhaowei, Li Shengduo, Hu Caiqi. Design of multifunctional machine for red jujube harvest, fruit tree spraying and whiting. Journal of Agricultural Mechanization Research, 2020. Vol 42(07), pp. 150-154.

13.Zhou Qian, Liu Jing, Zhou Yanmin, Qiu Changpeng, Zhang Xinzhong. High-spindle shaping technology of dwarfed intermediate stock apples. Deciduous Fruits 2020 Vol. 52(04), pp. 52-54.

14.Yuan Changwei. Design and performance test of peach blossom thinning machine. Agricultural University of Hebei,2021.

15.Hu Caiqi, Sun Chuanhai, Xu Yan. Experiment and Analysis of Mechanical Properties for Branches_pedicel Node and Receptacles_corolla Node of Apple Tree. Journal of Qingdao Agricultural University (Natural Science) 2015. Vol. 32(03), pp. 211-214.

16.Sun Chuanhai, Hu Caiqi, Hou Qingsong, Pan Zhiguo. Simulation of mechanical thinning flower actuator based on ADAMS .Journal of Agricultural Mechanization Research 2015. Vol. 37(12), pp. 70-73.

УДК 631.171:55

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ НАКОПИТЕЛЬНОЙ ПЛОЩАДКИ ПЕРЕД ХРАНИЛИЩЕМ

ПРИ ЗАГОТОВКЕ СИЛОСА

А.М. Валге, д-р. техн. наук А.И. Сухопаров, канд. техн. наук

Институт агроинженерных и экологических проблем сельскохозяйственного производства (ИАЭП) - филиал ФГБНУ ФНАЦ ВИМ, Санкт-Петербург, Россия.

В статье представлен способ определения размеров накопительной площадки, которая необходима для организации поточного технологического процесса закладки на хранение сочных кормов из трав (силос, сенаж). Нарушение агротехнических сроков заполнения силосной траншеи более чем на 4 дня приводит к снижению качества корма. Основные качественные потери силоса происходят в траншее - 33% от общих потерь, т.е. неравномерное распределение зелёной массы по траншее и недостаточное её уплотнение вызывают порчу корма. Поэтому определяющей технологической операцией для получения высококачественного силоса является равномерное распределение его по траншее. Одно из условий эффективной работы уплотняющего агрегата в траншее - непрерывное поступление

61

i Надоели баннеры? Вы всегда можете отключить рекламу.