Ovil Aviation High TECHNOLOGIES
Vol. 19, No. 05, 2016
УДК 621.317.44
ДАТЧИКИ МАГНИТНОГО КУРСА ВОЗДУШНОГО СУДНА И ЛОКАЛЬНЫХ МАГНИТНЫХ ПОЛЕЙ НА ОСНОВЕ ФЕРРОЗОНДОВ С ИМПУЛЬСНОЙ СХЕМОЙ ВОЗБУЖДЕНИЯ В ПНК
И.В. АНТОНЕЦ1, В.А. БОРСОЕВ2, А.В. КАЦУРА3, С.М. СТЕПАНОВ1
1 Ульяновский институт гражданской авиации имени Главного маршала авиации Б.П. Бугаева, г. Ульяновск, Россия 2Институт аэронавигации, г. Москва, Россия 3Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева, г. Красноярск, Россия
Рассмотрены феррозондовые датчики для измерения величины и направления магнитного поля Земли, а также для измерения локальных магнитных полей, использующие однонаправленную импульсную схему в цепи возбуждения. Отражены преимущества использования феррозондов с импульсным возбуждением по сравнению с аналогичными датчиками, имеющими синусоидальное возбуждение. По предложенной авторами статьи оригинальной схеме сконструирован феррозондовый датчик для измерения локального магнитного поля, имеющий два феррозонда с целью компенсации магнитного поля Земли. Проведен эксперимент с использованием двух ферро-зондовых датчиков с импульсным возбуждением, имеющих различное количество витков в выходной обмотке, и постоянного магнита. В ходе эксперимента выявлены факторы, влияющие на выходное напряжение магнитомоду-ляционного датчика. На основе данных эксперимента получено уравнение регрессии для феррозонда, представляющее особый интерес для разработки подобных измерительных систем. В первую очередь, результаты работы важны при анализе технических характеристик магнитомодуляционных датчиков, а также для расчетов при проектировании феррозондов для использования в пилотажно-навигационных комплексах воздушных судов.
Ключевые слова: датчики магнитного курса, феррозонды, односторонняя импульсная схема возбуждения.
ВВЕДЕНИЕ
Феррозондовые датчики магнитного курса лишены многих недостатков, присущих магнитному компасу [1]. В частности, отсутствие в них подвижной магнитной системы приводит к значительному снижению погрешностей, обусловленных наличием сил трения, низким быстродействием и дисбалансом.
Метрологические параметры феррозондов, их надежность, экономичность в значительной степени определяются режимом возбуждения, т. е. законом изменения во времени напряжения на зажимах возбуждающей обмотки и протекающего по ней тока [2]. Режим синусоидального напряжения позволяет получать достаточные напряженность и длительность возбуждающего поля, однако для датчиков, чувствительных к направлению магнитного поля, применяются довольно сложные схемы [3]. Кроме того, режим синусоидального напряжения связан с ограничениями величины тока возбуждения вследствие перегрева обмоток.
Схема магнитомодуляционного преобразователя (феррозонда), лишенная указанных недостатков, принципиально отличается тем, что ее магнитные сердечники эксплуатируются в пульсирующих магнитных полях, имеющих постоянную Во и переменную В~ составляющие индукции. Реализация такого режима показана на схеме (рис. 1), из которой видно, что обмотки возбуждения включены в нелинейный колебательный контур, состоящий из накопительной емкости и линейной индуктивности, в качестве которой служит индуктивность рассеяния обмоток возбуждения. Идея состоит в том, чтобы использовать накопленный за время перемагничивания сердечника разрядный ток большой величины без затрат на это активной энергии.
Vol. 19, No. 05, 2016
Ovil Aviation High TECHNOLOGIES
МЕТОДЫ И МЕТОДОЛОГИЯ ИССЛЕДОВАНИЯ
Перемагничивание сердечников в пульсирующих полях осуществляется по смещенным частным циклам, характеризующимся пульсационной магнитной проницаемостью [4]:
ßA =
AB B2 - B1
AH H2 - H1
(1)
Управляющее поле Но обусловливает появление четных гармоник ЭДС вторичной обмотки каждого сердечника, причем с изменением полярности меняется полярность четных гармоник.
1 -ш—
f с =
>
Рис. 1. Схема с нелинейным контуром возбуждения феррозонда
Для количественной оценки четных гармоник разложим выражение В(Н~ ± АИ0) в ряд Тейлора, причем для достаточно малых значений Но ограничимся тремя членами ряда:
B(H~ ± AH0) = B(H+) ± —0— +
HndB Hn d B
dH~ 2 сН~ "
Соответственно для ЭДС во вторичной обмотке в каждом сердечнике получим:
(2)
^A(t, Ho) = -
es(t,Ho) = -
A ■ dB( H~) AH0 d AHo2 d d2 B
dt
■ +
j , dB .
dt(-)
dH
2 dt (dH
A ■ dB( H~) AH 0 d AH02 d d2 B
dt
■ +
j, dB ,
dt (-)
ydH J
2 dt dH2
(3)
(4)
где A = Scp ■ n2 ■ 10 - произведение среднего значения сечения сердечника Sep на число витков
вторичной обмотки П2.
Так как в каждый момент времени на один из сердечников действует сумма Н~ + Но, а на другой - разность Н~ - Но, ЭДС вторичной обмотки равна:
-тт d dB dß
e = es- e = 2 H 0 ■ —■ (——) = 2 AH 0—^
dt dH~
dt
(5)
Ovil Aviation High TECHNOLOGIES
Vol. 19, No. 05, 2016
Эксплуатация обмоток возбуждения феррозонда в пульсирующих магнитных полях значительно улучшает режим теплового баланса и приводит к повышению чувствительности датчика за счет увеличения амплитуды тока возбуждения [5]. Вместе с тем схема определения направления магнитного поля в этом случае не меняется.
С целью упрощения схемных решений по определению направления магнитного поля разработаны (рис. 2) принципиально новые [6] магнитомодуляционные датчики (феррозонды) с односторонней импульсной схемой возбуждения. Принципиально новым здесь является наличие в схеме питания датчика нелинейного элемента, существенно изменяющего режим его работы.
[ ^tl_gLeT С
е) г)
Рис. 2. Схемы несимметричного возбуждения феррозонда с разрядом емкости
При работе тиристоров в цепях переменного тока необходима синхронизация сигнала управления с частотой сети. В базовой схеме рис. 2, а, как и в схемах питания на постоянном токе, для создания необходимого тока управления используется анодный источник. Тиристор отпирается в начале каждого положительного полупериода напряжения на аноде в момент, когда мгновенное значение анодного напряжения иа станет равным
Ua - !у. минR + Uy + Ud,
(6)
где иу - отпирающее напряжение на управляющем электроде, соответствующее току 1у.мин; ид - падение напряжения на диоде Д2.
График изменения тока в обмотке феррозонда / = представлен на рис. 3.
¡.со
VD
0 10 20 30 40 .
Рис. 3. Схема разряда емкости и график изменения тока
Нами разработана также оригинальная [7] конструкция феррозондового датчика локальных магнитных полей с импульсной схемой возбуждения и с компенсацией магнитного поля Земли. Принципиальная схема устройства представлена на рис. 4. Устройство выполнено бесконтактным, а датчики считывателя - из системы двух феррозондов, выходные обмотки которых через диоды соединены с выходным тиристором.
Vol. 19, No. 05, 2016
Oivil Aviation High TECHNOLOGIES
Считыватель содержит датчики, представляющие собой систему из двух феррозондов 8 и 9, выходные обмотки 10 и 11 которых через диоды 12-15 соединены с выходным тиристором 16, а обмотки 17-20 возбуждения - с тиристором 21 возбуждения и конденсатором 22. Конденсатор 22 соединен с системой диодов 23-25. Обмотки возбуждения 17, 18 и 19, 20 феррозондов 8, 9 соединены параллельно, а выходные обмотки 10 и 11 - последовательно и встречно.
Такое соединение устраняет влияние магнитного поля Земли. При подаче на считыватель напряжения питания ип положительная полуволна заряжает конденсатор 22 через диоды 23 и 25. Управляющий ток через тиристор 21 проходит по цепи: резистор R1 - управляющий электрод тиристора 21 - диод. Тиристор 21 открывается, и происходит разряд конденсатора 22 через обмотки возбуждения 17, 18 и 19, 20 феррозондов 8 и 9. Создаваемые магнитные потоки в пластинах феррозондов 8 и 9 взаимно уравновешиваются, и наводимая в выходных обмотках ЭДС равна нулю. При наличии локального магнитного поля в зоне действия датчика равновесие магнитных потоков нарушается и появляется выходной сигнал, полярность которого зависит от направления локального магнитного поля. Сигнал с выходных обмоток 10 и 11 феррозондов 8 и 9 подается через диодный мостик 12-15 на управляющий электрод тиристора 16. Для выявления реальных закономерностей, возникающих в процессе считывания информации, разработаны два магнитомодуляционных считывателя с параметрами, указанными в таблице.
Варианты параметров исследуемых феррозондов
Параметр феррозонда (Parameter of flux gate) Конструкция феррозонда (Design of flux gate)
№ 1 № 2
Форма сердечника (Shape of core) Пластина (Plate) Пластина(РЫе)
Размеры сердечника, мм (Sizeofcore, mm) 0,025x3x45 0,025x3x45
Число витков обмотки возбуждения (Turn number of exciting winding) 100 100
Число витков выходной обмотки (Turn number of output winding) 100 200
На рис. 5 показаны графики изменения тока в обмотках цепи возбуждения и в выходной обмотке для трех вариантов значения емкости. Наилучшим оказался расчетный вариант, при котором обратный выброс оказался ниже порогового значения, а габаритные размеры - минимальные.
Исследование влияния конструктивных параметров проводилось по следующей методике. Система двух феррозондов 1 закреплялась на измерительном столе 2 (рис. 6).
Ovil Aviation High TECHNOLOGIES
Vol. 19, No. 05, 2016
Постоянные магниты 3 воздействуют на датчики 1. Варьировались длина и диаметр магнитов, зазор 3 между магнитом и датчиком, угловое положение магнита. Материал магнита -ЮНДК 25БА, измерение выходного сигнала осуществлялось с помощью осциллографа С1-5. Линейные размеры измерялись штангенциркулем, угловые - угломером.
Jaosfl, (А)
Рис. 5. Графики изменения тока в обмотках возбуждения и выходной обмотке феррозонда: 1 - величина разрядной емкости 2 мкФ,
2 - 0,5 мкФ, 3 - 10 мкФ
Рис. 6. Схема проведения эксперимента по исследованию характеристик магнитомодуляционного датчика
При проведении активного эксперимента варьировались следующие факторы, влияющие на величину выходного сигнала магнитомодуляционного датчика:
Х1 - остаточная индукция магнита; Х2 - расстояние от магнита до чувствительного элемента по его оси; Х 3 - смещение магнита в плоскости, перпендикулярной оси чувствительного элемента; Х4 - угловые отклонения магнита; Х5 - диаметр магнита; Х 6 - длина магнита; Х 7 - ЭДС на выходе чувствительного элемента.
Значения этих варьируемых факторов и значения отклика (выходной сигнал датчика) явились исходными данными и для отраслевой программы многофакторного регрессионного корреляционного анализа «Регрессия» [8].
Окончательное уравнение регрессии, полученное в результате решения, имеет вид (с округлением до четырех знаков после запятой) У = 0,15 - 0,0022Х2 - 0,0045Х3, где У - величина выходного напряжения; Х2 - расстояние от торца до считывателя; Хз - смещение магнита в плоскости, перпендикулярной оси чувствительного элемента.
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
Полученная модель адекватна объекту при изменении выходного параметра почти в два раза и обеспечивает точность аппроксимации не хуже 5 %. Дисперсия величины выходного напряжения равна 0,005812.
Данное устройство интересно тем, что, несмотря на широкий диапазон изменения параметров магнита (остаточной индукции, диаметра), влияние на выходной сигнал оказывает лишь расстояние между постоянным магнитом и датчиком. Сравнительно небольшой сигнал на выходе датчика требует многокаскадного усиления, что снижает надежность феррозондового датчика [9]. С целью исключения этого недостатка был сконструирован феррозондовый датчик, параметры которого даны в таблице (столбец 1). Напряжение питания ~ 24 В.
Окончательное уравнение регрессии, полученное в результате решения, имеет вид (с округлением до четырех знаков после запятой) У = 0,1376 + 0,0015Х1 -0,003Х4, где У - амплитуда выходного напряжения; Х1 - величина остаточной индукции магнита в плоскости его торца; Х4 - угол наклона магнита по отношению к оси феррозондового датчика.
140
Vol. 19, No. G5, 2G16
СМ! Aviation High TECHNOLOGIES
ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И ЗАКЛЮЧЕНИЕ
Полученная модель адекватна объекту при изменении выходного параметра почти в два раза и обеспечивает точность аппроксимации не хуже 10 % [10]. Анализируя значения коэффициентов эластичности (Э i = 0,4; Э4 = -0,15), можно заметить, что на величину выходного сигнала преимущественное влияние оказывает величина остаточной индукции магнита. Величина сигнала на выходе меняется в среднем на 0,47 % при изменении указанного фактора на 1 %. Дисперсия величины сигнала на выходе феррозондового датчика на 9 % (D = 0,092088) может быть признана хорошей. Таким образом, были рассмотрены оригинальные схемы феррозондовых датчиков для измерения величины и направления магнитного поля Земли, а также для измерения локальных магнитных полей, использующие импульсную однонаправленную схему в цепи возбуждения. Полученные уравнения регрессии позволяют проанализировать технические характеристики датчиков и служат основой для разработки методики их расчета.
СПИСОК ЛИТЕРАТУРЫ
1. Антонец И.В. Устройства автоматического адресования штучных грузов для непрерывных видов транспорта // Датчики и системы. 2008. № 11. С. 33-36.
2. Семенов Н.М., Яковлев Н.И. Цифровые феррозондовые магнитометры. Л.: Энергия, 1978. 168 с.
3. Афанасьев Ю.В. Феррозонды. Л.: Энергия, 1969. 168 с.
4. Афанасьев Ю.В., Студенцов Н.В., Щелкин А.П. Магнитометрические преобразователи, приборы, установки. Л.: Энергия, 1972. 272 с.
5. Miles D.M., Bennest J.R., Mann I.R., Milling D.K. A radiation hardened digital fluxgate magnetometer for space applications. Geoscientific Instrumentation Methodsand Data Systems, 2013, Vol. 2, pp. 213-224. DOI: l0.5l94/gi-2-2l3-20l3
6. Бараночников М.Л. Микромагнитоэлектроника. Т. 1. М.: ДМК Пресс, 2001. 544 с.
7. Феррозондовый магнитометр для измерения магнитной индукции до 1 нТл / П.Ф. Баранов, С.В. Муравьев, В.Е. Огай, С.В. Учайкин // Известия Томского политехнического университета. 2012. № 4. C. 89-92.
8. Петров Р.В., Леонтьев В.С. Магнитоэлектрический магнитометр // Вестник Новгородского государственного университета им. Ярослава Мудрого. 2013, № 75. C. 29-32.
9. Wang Y., Gray D., Berry D., Gao J., Li M., Li J., Viehland D. An Extremely Low Equivalent Magnetic Noise Magnetoelectric Sensor. Advanced Materials, 2011, Vol. 23, No 35, pp. 41114114. DOI: l0.l002/adma.20ll00773
1G. Korepanov V., Marusenkov A. Flux-Gate Magnetometers Design Peculiarities. Surveysin Geophysics, 2012, Vol. 33, No 5, pp. 1059-1079. DOI: l0.l007/sl07l2-0l2-9l97-8
СВЕДЕНИЯ ОБ АВТОРАХ
Антонец Иван Васильевич, доктор технических наук, профессор кафедры АТ Ульяновского института гражданской авиации имени Главного маршала авиации Б.П. Бугаева, электронный адрес: iv.antonec@yandex.ru.
Борсоев Владимир Александрович, доктор технических наук, профессор, заведующий кафедрой навигационного обеспечения полетов и аэронавигационной информации Института аэронавигации (г. Москва), электронный адрес: borsoev@aeronav.aero.
Кацура Александр Владимирович, доцент, кандидат технических наук, профессор кафедры ПНК Сибирского государственного аэрокосмического университета, электронный адрес: pnk-sibsau@mail.ru.
Civil Aviation High TECHNOLOGIES
Vol. 19, No. 05, 2016
Степанов Сергей Михайлович, кандидат технических наук, доцент кафедры АТ Ульяновского института гражданской авиации имени Главного маршала авиации Б.П. Бугаева, электронный адрес: uvauga-kvs@yandex.ru.
SENSORS OFMAGNETIC HEADINGOF THE AIRCRAFT AND THE LOCAL MAGNETIC FIELDS ON THE BASIS OF FERROPROBES WITH PULSE EXCITATION SCHEME
Ivan V. Antonets
Ulyanovsk Higher Civil Aviation School, Ul'yanovsk, Russia, iv.antonec@yandex.ru
Vladimir A. Borsoev
Institute of Air Navigation, Moscow, Russia borsoev@aeronav.aero
Aleksandr V. Katsura
Siberian State Aerospace University, Krasnoyarsk , Russia, 3pnk-sibsau@mail.ru
Sergey M. Stepanov
Ulyanovsk Higher Civil Aviation School, Ul'yanovsk, Russia, uvauga-kvs@yandex.ru
ABSTRACT
The flux gate for measurement of size and direction of magnetic field of the Earth and for measurement of local magnetic fields, applying the unidirectional pulse scheme in an excitement chain are examined. The article treats the benefits of ferroprobes with pulse excitement in comparison with the similar sensors with sinusoidal excitement. According to the original circuit proposed by the authors of the article flux gate sensor for measurement of a local magnetic field with two ferroprobes for the purpose of compensation of the Earth's magnetic field is designed. The experiment with flux gate sensors which contain various quantities of rounds in an output winding and a permanent magnet is carried out. The factors that influence the output voltage of the sensor are examined during the experiment. The regression equation for the ferro-probe by the experimental data is obtained. The regression is important for development of similar measuring systems. First of all, the results of the research are important for the analysis of technical characteristics of magneto-modulation sensors, and for ferroprobes design in aircraft industry.
Key words: magnetic course sensors, flux gate, indirect pulse circuit of excitation.
REFERENCES
1. Antonec I.V. Automatic addressing equipment of breakbulk cargoes for continuous transport modes. Datchikiisistemy [Sensors and systems], 2008, no. 11, pp. 33-36. (in Russian)
2. Semenov N.M., Jakovlev N.I. Cifrovye ferrozondovye magnitometry [Digital flux gate magnetometers]. Leningrad, Jenergija publ., 1978, 168 p. (in Russian)
3. Afanas'ev Ju. V. Ferrozondy [Flux gates]. Leningrad, Jenergija publ., 1969, 168 p. (in Russian)
4. Afanas'ev Ju.V., Studencov N.V., Shhelkin A.P. Magnitometricheskie preobrazovateli, pribory, ustanovki [Magnetic transforms, instruments, installations]. Leningrad, Jenergija publ., 1972, 272 p. (in Russian)
5. Miles D.M., Bennest J.R., Mann I.R., Milling D.K. A radiation hardened digital fluxgate magnetometer for space applications. Geoscientific Instrumentation Methods and Data Systems, 2013, Vol. 2, pp. 213-224. DOI: 10.5194/gi-2-213-2013
6. Baranochnikov M.L. Mikromagnitojelektronika [Micro-magnetics]. Vol. 1, Moscow, DMK Press publ., 2001, 544 p. (in Russian)
7. Baranov P.F., Murav'ev S.V., Ogaj V.E., Uchajkin S.V. Flux gate magnetometer for measurement of magnetic induction to 1 nT. Izvestija Tomskogo politehnicheskogo universiteta [Bulletin of the Tomsk Polytechnic University], 2012, no. 4, pp. 89-92. (in Russian)
142
Vol. 19, No. 05, 2016
Ovil Aviation High TECHNOLOGIES
8. Petrov R.V., Leont'ev V.S. Torque-coil magnetometer. Vestnik Novgorodskogo gosudar-stvennogo universiteta im. Jaroslava Mudrogo [Vestnik of Yaroslav the Wise Novgorod State University], 2013, no. 75, pp. 29-32. (in Russian)
9. Wang Y., Gray D., Berry D., Gao J., Li M., Li J., Viehland D. An Extremely Low Equivalent Magnetic Noise Magnetoelectric Sensor. Advanced Materials, 2011, vol. 23, no. 35, pp. 41114114. DOI: 10.1002/adma.201100773
10. Korepanov V., Marusenkov A. Flux-Gate Magnetometers Design Peculiarities. Surveys in Geophysics, 2012, vol. 33, no. 5, pp. 1059-1079. DOI: 10.1007/s10712-012-9197-8