Научная статья на тему 'CURCUMIN AS AN ANTI-PROLIFERATIVE AGENT IN BREAST CANCER THROUGH RASSF1A, BAX, AND CASPASE-3 PROTEIN'

CURCUMIN AS AN ANTI-PROLIFERATIVE AGENT IN BREAST CANCER THROUGH RASSF1A, BAX, AND CASPASE-3 PROTEIN Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
30
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CURCUMIN

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Rahmah N.A., Harliansyah H., Suyatna F.D., Kanoko M., Rustamadji P.

Background. Curcumin is a polyphenol that has pharmacological activity that can inhibit tumor cell growth and induce apoptosis through various mechanisms. However, the specific mechanism of curcumin cytotoxicity remains controversial because of many anti- and pro-apoptotic signaling pathways in various cell types. This study aims to examine the relationship among curcumin on RASSF1A, Bax protein levels, and caspase-3 activity in supporting the apoptotic mechanism in CSA03 breast cancer cells. Material and Methods. Curcumin administration to cancer cells is based on differences in dosage with 24-hour incubation. Cytotoxicity after curcumin administration was determined using MTS. RASSF1A and Bax protein levels were tested through ELiSA. Caspase-3 activity was used to determine apoptosis and was tested using flow cytometry. Results. The results indicated that curcumin had a cytotoxicity effect of 40.85 |jg/mL. At concentrations of 40 |jg/mL and 50 jg/mL, curcumin increases levels of protein RASSF1A (A = 26.53% and 47.35%, respectively), Bax (A = 48.79% and 386.15%), and caspase-3 (A = 1,678.51% and 1,871.889%) significantly. Conclusions. Curcumin exhibits anti-proliferative activity and apoptotic (Caspase-3) effects through activation of RASSF1A and Bax.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CURCUMIN AS AN ANTI-PROLIFERATIVE AGENT IN BREAST CANCER THROUGH RASSF1A, BAX, AND CASPASE-3 PROTEIN»

DOI: 10.21294/1814-4861-2022-21-6-91-98 УДК: 618.19-006.6:577.112

Для цитирования: Rahmah N.A., Harliansyah H., Suyatna F.D., Kanoko M., Rustamadji P., Prihartono J., Bustami A., Haryono S.J., Hernowo B.S. Куркумин снижает пролиферацию клеток рака молочной железы через белки RASSF1A, Bax и caspase-3. Сибирский онкологический журнал. 2022; 21(6): 91-98. - doi: 10.21294/1814-4861-2022-21-6-9198

For citation: Rahmah N.A., Harliansyah H., Suyatna F.D., Kanoko M., Rustamadji P., Prihartono J., Bustami A., Haryono S.J., Hernowo B.S. Curcumin as an anti-proliferative agent in breast cancer through RASSF1A, Bax, and caspase-3 protein. Siberian Journal of Oncology. 2022; 21(6): 91-98. - doi: 10.21294/1814-4861-2022-21-6-91-98

curcumin as an anti-proliferative agent in breast cancer through rassf1a, bax, and caspase-3 protein

N.A. Rahmah1, H. Harliansyah1, F.D. suyatna2, M. Kanoko2, p. Rustamadji2, J. prihartono2, A. Bustami2, s.J. Haryono3, B.s. Hernowo4

Universitas YARSI, Jakarta, Indonesia1

Jakarta, 10520, Indonesia. E-mail: nunung.rahmah@klinikjurnal.com1 Universitas Indonesia, Jakarta, Indonesia2 Jakarta, 10440, Indonesia2

National Cancer Center Dharmais Hospital, Jakarta, Indonesia3 Jakarta, 11420, Indonesia3 Universitas Padjajaran, Bandung, Indonesia4 Bandung, 45363, Indonesia4

Abstract

Background. Curcumin is a polyphenol that has pharmacological activity that can inhibit tumor cell growth and induce apoptosis through various mechanisms. However, the specific mechanism of curcumin cytotoxicity remains controversial because of many anti- and pro-apoptotic signaling pathways in various cell types. This study aims to examine the relationship among curcumin on RASSF1A, Bax protein levels, and caspase-3 activity in supporting the apoptotic mechanism in CSA03 breast cancer cells. Material and Methods. Curcumin administration to cancer cells is based on differences in dosage with 24-hour incubation. Cytotoxicity after curcumin administration was determined using MTS. RASSF1A and Bax protein levels were tested through ELISA. Caspase-3 activity was used to determine apoptosis and was tested using flow cytometry. Results. The results indicated that curcumin had a cytotoxicity effect of 40.85 |jg/mL. At concentrations of 40 |jg/mL and 50 jg/mL, curcumin increases levels of protein RASSF1A (A = 26.53% and 47.35%, respectively), Bax (A = 48.79% and 386.15%), and caspase-3 (A = 1,678.51% and 1,871.889%) significantly. Conclusions. Curcumin exhibits anti-proliferative activity and apoptotic (Caspase-3) effects through activation of RASSF1A and Bax.

Key words: Bax, caspase-3, curcumin, CsA03, RAssF1A

куркумин снижает пролиферацию клеток рака молочной железы через белки rassf1a,

bax и caspase-3

N.A. Rahmah1, H. Harliansyah1, F.D. suyatna2, M. Kanoko2, p. Rustamadji2, J. prihartono2, A. Bustami2, s.J. Haryono3, B.s. Hernowo4

Университет Ярси, Джакарта, Индонезия1

Джакарта, 10520, Индонезия. E-mail: nunung.rahmah@klinikjurnal.com 1 Университет Индонезии, Джакарта, Индонезия2 Джакарта, 10440, Индонезия2

Больница Национального онкологического центра Dharmais, Джакарта, Индонезия3

Джакарта, 11420, Индонезия3

Университет Паджаджаран, Бандунг, Индонезия4

Бандунг, 45363, Индонезия4

Nunung Ainur Rahmah, nunung.rahmah@klinikjurnal.com СИБИРСКИЙ ОНКОЛОГИЧЕСКИЙ ЖУРНАЛ. 2022; 21(6): 91-98 91

Актуальность. Куркумин представляет собой полифенол, обладающий фармакологической активностью, которая может ингибировать рост опухолевых клеток и вызывать апоптоз с помощью различных механизмов. Однако конкретный механизм цитотоксичности куркумина остается спорным из-за множества анти- и проапоптотических сигнальных путей в различных типах клеток. Целью исследования явилось изучение взаимосвязи куркумина с уровнями белка RASSFIA, Bax и активностью каспазы-3 в поддержке механизма апоптоза в клетках рака молочной железы CSA03. Материал и методы. Введение куркумина в раковые клетки основано на различиях в дозировке при 24-часовой инкубации. Цитотоксичность после введения куркумина определяли с помощью MTS. Уровни белков RASSF1A и Bax тестировали с помощью ELISA. Активность каспазы-3 использовали для определения апоптоза и тестировали с помощью проточной цитометрии. Статистическая обработка данных проводилась с использованием программы Statistical Program for Social Science (SPSS) версии 20.0 для Windows. Проверка гипотез выполнялась с использованием непараметрического численного сравнительного теста проверки гипотез. Для оценки разницы между >2 группами непарных концентраций использовали непараметрический критерий Крускала-Уоллиса, а для оценки значимой разницы в двух группах проводили апостериорный анализ Манна-Уитни. Результаты. Показано, что цитотоксический эффект куркумина составил 40,85 мкг/мл. В концентрациях 40 мкг/мл и 50 мкг/мл куркумин увеличивает уровни белка RASSF1A (А = 26,53 % и 47,35 %, соответственно), Bax (А = 48,79 % и 386,15 %) и каспазы-3 (А = 1678,51 % и 1871,889 %). Заключение. Введение куркумина в клетки CSA03 эффективно уменьшало рост клеток рака молочной железы in vitro за счет реактивации RASSF1A в качестве гена-супрессора опухоли и повышало уровень белка Bax в качестве индукции апоптоза (caspase-3).

Аннотация

Ключевые слова: Bax, caspase-3, куркумин, CsA03, RAssF1A.

Introduction

The frequency of breast cancer tends to increase. In 2020, there were 2.3 million women diagnosed with breast cancer and 685 000 deaths globally. As of the end of 2020, there were 7.8 million women alive diagnosed with breast cancer in the past 5 years, making it the world's most prevalent cancer [1]. In Indonesia, breast cancer in 2010 ranked first in malignancy, accounting for 18.58 % of cancer cases, most often at the age of 35-54 years [2]. Recently, resistance to hormone therapy or chemotherapy has been reported since the beginning or during the treatment. Many strategies for selecting the therapy based on molecular mechanisms are currently being implemented to overcome the resistance in the breast cancer treatment [3].

One of the molecular mechanisms of breast cancer is epigenetic changes in the form of hypermethylation [4]. The tumor suppressor gene in breast cancer that often undergoes hypermethylation is the RASSF1A gene that plays a role in cell cycle processes, mitosis, and apoptosis [5]. RASSF1A can regulate the activity of the Bax protein to release cytochrome-c so that it activates caspase-3, which is the executor and is responsible for apoptosis [6]. Hypermethylation is reversible, and it is possible to re-express hypermethylated genes in cancer with demethylation drugs, so that the tumor suppressor genes that were previously inactive can be regulated and their function be improved. The administration of demethylation drugs in the tumor cell lines causes the reactivation of the tumor suppressor function, but demethylation drugs have side effects that limit the dose and duration of the treatment and have the potential to form mutagenic lesions [4, 7, 8]. Therefore, the use of new compounds from natural

substances that can affect epigenetic changes and have low toxicity to inhibit the development of cancer cells is an important field of cancer treatment research.

One of the natural compounds that have an epigenome target is curcumin. Curcumin is the polyphenol that can efficiently induce apoptosis [9, 10]. However, the specific mechanism of curcumin cytotoxicity via the RASSF1A pathway is still controversial in various cell types [11]. One study demonstrated that curcumin increased Bax expression via the P53 pathway.

Selecting the right cell line is vital to getting reliable research results, particularly for breast cancer cell lines. Breast cancer cells are heterogeneous, therefore, they are classified based on the expressed genes on the cancer cells luminal A breast cancer, luminal B-like breast cancer, luminal B breast cancer, HER2-enriched breast cancer, and triple-negative or basal-like breast cancer. Furthermore, the mutated gene controls the cell behaviour, including cell response to cancer drugs and treatment [12]. The previous study demonstrated that the administration of curcumin treatment to MCF-7 and MDA-MB-468 cells efficiently enhances the suppression of the growth of the breast cancer cells in vitro through reactivation of RASSF1A, upregulation of Bax, and induction of apoptosis [13]. Experimental research was carried out on the luminal A breast cancer cells from Indonesian patients, in particular, using CSA03 cells. The CSA03 cells were isolated from breast cancer tissue of a 56-year-old Indonesian woman with a clinical diagnosis of left invasive ductal mammary carcinoma T2N0M0. On immuno-histochemical examination based on secondary data from the Department of Anatomic Pathology, Dr. Cipto Mangunkusumo Jakarta obtained ER-positive results (5 %, weak, Allred score 3), 83 PR-positive (20 %,

moderate, Allred score 5), 83 HER2-negative, and Ki67 positive (20 %, weak). Based on the results of the IHC examination, CSA03 cells were included in the luminal A subtype of breast cancer.

The present study was aimed at investigating the cytotoxic effect and apoptosis-induced effects of curcumin via the RASSF1A pathway CSA03 cell line in vitro. The results of this study can be used as the basis of literature for further research.

Material and Methods

Material

The CSA03 breast cancer cells were obtained from the integrated laboratory of the Faculty of Medicine, University of Indonesia which was operated on at Dr. Cipto Mangunkusumo Jakarta. Dubelco's minimum essential medium (DMEM) (Gibco, New York, USA) was supplemented with 10 % fetal bovine serum (Biowest, Riverside, USA), 5 % amphotericin, and 5 % penicillin-streptomycin (Biosciences, San Jose, USA). Curcumin was purchased from Sigma Chemical Co. (St. Louis, MO, USA). The MTS kit was obtained from Promega (Madison, USA). The RASSF1A kit was obtained from MyBioSource, and the Bax kit was obtained from Abcam. The caspase-3 level was determined using PE-conjugated the monoclonal active the caspase-3 antibody apoptosis kit (BD PharMingen, Heidelberg, Germany).

Morphology of Cells

The cell morphology examination was carried out on a paraffin block of the cancer patient using hematoxylin-eosin staining.

The Cell Culture

The CSA03 cells were cultured in a Tissue Flask containing complete culture media. After the cells were harvested, the cells were counted using a hemocytom-eter. There were 1 x 106 cells/well, and curcumin that had been dissolved in DMSO was added. After the harvesting of CSA03 cells, cell blocks were made, and hematoxylin-eosin staining was carried out to see morphological features of the cells.

The Cytotoxicity Examination

The cytotoxicity examination used the colorimet-ric principle with the MTS assay. As many as 5 x 103 cells of CSA03 per well were plated in 96-well plates and treated with curcumin at concentrations of 20, 30, 40, 60, 80 ^g/mL. 0.1 % DMSO was used as a control. It was then incubated for 24 hours. After adding 20 mg/mL 3-(4, 5 dimethylthiazol-2-yl)-5-(3-carboximetoniphenol)-2-(4-sulphodenil)-2-H-tetrazo-lium) (MTS) to each well, it was incubated again for 2 hours at temperature 37 °C. Furthermore, the optical density was determined using a microplate reader that was set at 490 nm. IC50 was calculated based on

A Control uptake - A Sample uptake

% inhibition =............................................x 100 %. Eq (1)

A Control uptake

Furthermore, the data from the cytotoxicity examination were used as the basis for determining the concentration of curcumin to be exposed to breast cell cultures. The determination of the curcumin concentration was carried out around the IC50 value.

Caspase-3 Examination

Caspase-3 examination was carried out using the immunofluorescence technique (apoptosis Kit Catalog No. 550914 from BD PharMingen). The cells that had been treated were then given the steps on the datasheet and put into the flow chamber. The electronic system converted the detected light signals into electronic signals that could be processed by a computer. Cells that did not indicate an autofluorescent pattern were grouped, compared against the whole cell, and their proportion was then determined as a percentage.

RASSF1A and the Bax Protein Assay

RASSF1A and Bax protein examination was conducted using the ELISA technique (RASSF1 ELISA Kit Catalog No. MBS2706790 from MyBioSource and Bax Catalog No. ab133048 from Abcam). The results of RASSF1A and Bax protein levels obtained from the ELISA reader were optical density (OD) values converted into RASSF1A protein levels (ng/mL) and Bax protein levels (pg/mL) using standards.

Data Analysis

Data were processed statistically using the Statistical Program for Social Science (SPSS) version 20.0 software for Windows. Hypothesis testing was performed using a non-parametric numerical comparative hypothesis test flow. To assess the difference between >2 groups of unpaired concentrations, the Kruskal-Wallis non-parametric test was used, and to assess the significant difference in the two groups, a MannWhitney posthoc analysis was made. The correlation test between the two variables was conducted using the Spearman non-parametric test. All experiments were performed in triplicate (n = 3, where n: replicate). The average growth rate (delta) was calculated using the following formula:

Data after exposure - Data without exposure

Growth =-------------------------------------------------------x 100 % Eq (2)

rate (Mta) Data without exposure

Results

Cell Morphology

The morphological picture of CSA03 cells consists of cells with pleomorphic nuclei, fine or coarse granular chromatin, partially irregularly shaped nucleolus, a small vacuole, and eosinophilic cytoplasm (Fig. 1). Fig. 2 illustrates the CSA03 cells in Tissue Flask that are ready to be harvested. The results of hematoxylin-eosin staining on CSA03 cells that had been made block cells indicate the same nuclei image as the nu-

Fig. 1. The morphological feature of CSA03. Hematoxylin-eosin staining, * 400

Рис. 1. Морфологический признак CSA03. Окраска гематоксилином и эозином, *400

Fig. 2. Microscopic feature of CSA03 Cells in the Tissue Flask, *400

Рис. 2. Микроскопия клеток CSA03 в колбе для тканей, *400

Fig. 3. Microscopic feature of CSA03 made of cell blocks. Hematoxylin-eosin staining, *1,000 Рис. 3. Микроскопические характеристики CSA03, сделанного из клеточных блоков. Окраска гематоксилином и эозином, *1000

Fig. 4. Cell inhibition of curcumin on CSA03 cells (n=3) Рис. 4. Ингибирование куркумина клетками CSA03 (n=3)

clei image on the paraffin block; the cell morphology examination was carried out on the paraffin block of the cancer patient using hematoxylin-eosin staining (Fig. 3).

Cytotoxicity Examination

In this study, the curcumin concentrations used were 0 ^g/mL (without exposure), 40 ^g/mL, and 50 ^g/mL. The IC50 of curcumin on CSA03 cells was 40.85 ^g/mL (Fig. 4). These results indicated that curcumin has a potent anti-proliferative effect on breast cancer cells.

Curcumin Upregulated the Protein

Expression of RASSF1A on CSA03 cells

To investigate whether suppression of proliferation of breast cancer cells by curcumin is due to the down-regulation of molecules involved in cell proliferation, we tested the protein levels of RASSFlA in cells. As illustrated in Figure 5, at the previously demonstrated

pharmacological effective (anti-proliferation and apoptosis) concentrations, curcumin could significantly increase protein levels of RASSF1A on CSA03 cells. We found that curcumin treatment increased the protein expression of RASSF1A in a dose-dependent manner. At concentrations of 40 ^g/mL and 50 ^g/ mL, curcumin increased levels of protein RASSF1A (A = 26.53 % and 47.35 %, respectively).

Curcumin Upregulated the Protein of Bax on CSA03 cells

We further investigated mechanisms underlying curcumin-induced apoptosis of breast cancer cells. As illustrated in Fig. 6, Bax levels were significantly upregulated by curcumin in both cells in a dose-dependent manner. Curcumin treatment increases the protein expression of Bax in a dose-dependent manner. At concentrations of 40 ^g/mL and 50 ^g/mL, curcumin increases levels of protein Bax (A = 48.79 % and 386.15 %, respectively).

Fig. 5. Curcumin upregulated RASSF1A of protein on CSA03 cells (statistical significance: p<0.05). ELISA assay of curcumin-induced apoptosis of cells for 24 h (RASSF1A protein level ±

standard deviation, ng/mL Y-axis); untreated, 40 Mg/mL, and 50 Mg/mL (dose of curcumin, X-axis). Curcumin upregulated RASSF1A of protein on CSA03 cells in a dose-

dependent manner (n=3) Рис. 5. Куркумин активировал белок RASSF1A на клетках CSA03 (статистическая значимость: p<0,05). ELISA-анализ индуцированного куркумином апоптоза клеток в течение 24 ч (уровень белка RASSF1A ± стандартное отклонение, нг/мл, ось Y); необработанный, 40 мкг/мл и 50 мкг/мл (доза куркуми-на, ось X). Куркумин активировал белок RASSF1A на клетках CsA03 дозозависимым образом (n=3)

Curcumin Induces Apoptosis (Caspase-3)

on CSA03 cells

In this study, the curcumin concentrations used were 0 ^g/mL (without exposure), a low concentration below the IC50 (40 ^g/mL), and a high concentration above the IC50 (50 ^g/mL). The cells were treated of curcumin for 24 h. Our results indicated that curcumin in a dose-dependent manner induced apoptosis. As illustrated in Figure 7, the percentage of caspase-3 with a curcumin concentration of 40 |ig/mL increased to 1678.51 % in CSA03 cells. Under the treatment with a curcumin concentration of 50 |ig/mL, the level of caspase-3 increased to 1871.889 % in CSA03 cells.

Discussion

The effectiveness of curcumin as a chemopreven-tive agent has been investigated using cell culture. The types of breast cancer cells commonly used for research on anti-proliferative drugs are cancer cells that have similar molecular features to those of human breast cancer cells so that they are relevant for the development of anti-proliferative therapies for these types of subtypes. Therefore, experimental research on CSA03 cells is relevant to the situation in Indonesia, to determine the relationship between curcumin and levels of the RASSF1A protein, Bax protein, and caspase-3 level in supporting the apoptotic mechanism.

In this study, CSA03 cells originating from Indonesia were used. An MTS assay was performed

Fig. 6. Curcumin upregulated Bax of protein on CSA03 cells (statistical significance: p<0.05). ELISA assay of curcumin-induced apoptosis of cells for 24 h (Bax protein level, pg/mL, Y-axis); untreated, 40 Mg/mL, and 50 Mg/mL (dose of curcumin, X-axis) (n=3) Рис. 6. Куркумин активировал белок Bax на клетках CSA03 (статистическая значимость: p<0,05). ELISA-анализ индуцированного куркумином апоптоза клеток в течение 24 ч (уровень белка Bax, пг/мл, ось Y); необработанные, 40 мкг/мл и 50 мкг/мл (доза куркумина, ось X) (n=3)

to investigate the cytotoxicity effect of curcumin on CSA03 cells. The MTS assay in this study indicated that the IC50 of curcumin on CSA03 cells was 40.85 |ig/mL. This result was lower than that on MCF-7 breast cancer cells (75.73 |ig/mL), which had the same molecular picture as CSA03 cells [12]. This indicates that CSA03 cells are quite sensitive. At low concentrations, curcumin was able to inhibit growth by 50 % in CSA03 cells.

In some Southeast Asian countries, including Indonesia, turmeric is often used as a cooking spice, so that lower concentrations have shown a cytotoxicity level of 50 %. Frequent use of turmeric may interfere with the antitumor activity of curcumin. In the study of Hafner et al. on growth rates, it was reported that modification of genes or the microenvironment often results in changes in cell division [14, 15]. One of the cytotoxicity mechanisms of curcumin is the oxidative stress pathway. Curcumin, in high doses, can activate mitochondrial enzymes that lead to the production of ROS. The induction of ROS by curcumin can occur through its interaction with thioredoxin reductase, thereby altering the activity of NADPH oxidase, which in turn can lead to the production of ROS. Several studies have demonstrated that curcumin can induce ROS [16, 17].

In the study of Lv et al. [18], it was reported that curcumin administration would increase Bax on MCF-7 cells in a concentration-dependent manner. In that study, curcumin was only given at one time, 48

Fig. 7. Curcumin upregulated Caspase-3 on CSA03 cells (statistical significance: p<0.05) (n=3) Рис. 7. Куркумин активировал Caspase-3 на клетках CSA03 (статистическая значимость: p<0,05) (n=3)

hours, so it is not known whether the effect of curcumin is time-course. However, the results of this study prove that the effect of curcumin as pro-apoptotic breast cancer cells is concentration-dependent. Furthermore, based on the results of the immunohistochemical examination, CSA03 cells have a molecular picture of luminal subtype A. Based on the secondary data results of the immunohistochemical examination, CSA03 cells have a molecular picture of luminal subtype A. CSA03 cells have low ER-positive, HER2-negative, low Ki67-positive so that the receptors on the cell surface for cancer growth and cell proliferation are also low, but cancer growth occurs with sufficiently large mass (>5 cm). In these circumstances, it should be suspected that a series of mechanisms occur and involve many genes in cells for cancer growth.

In cancer, there is a susceptibility to genetic variant loci that influence the regulation of gene expression, including variants in genes involved in DNA repair, cell cycle control, apoptosis, tumor suppressor ubiq-uitination, and mitotic kinases. The DNA methylation factor is also suspected to be one of causes of tumor growth. DNA methylation is one of the most common epigenetic modifications. These modifications do not alter the main sequence of DNA but are critical factors for normal development, gene expression patterns, and genomic stability. The RASSF1A gene is epigenetically inactivated in various solid tumors. In several studies reported, RASSF1A hypermethyla-tion was detected in 48-70 % of breast cancer patients [19, 20].

.HHTEPATYPA/REFERENCES

1. l.World Health Organization. Breast cancer-WHO [Internet]. URL: https://www.who.int/news-room/fact-sheets/detail/breast-cancer [cited 2022 Jul 22].

2. Kanker di Indonesia tahun 2010: Data Histopatologik. Badan Registrasi Kanker Perhimpunan Dokter Spesialis Patologi Indonesia dan Yayasan Kanker Indonesia.

3. Abdulkareem I.H., Zurmi I.B. Review of hormonal treatment of breast cancer. Niger J Clin Pract. 2012; 15(1): 9-14. doi: 10.4103/11193077.94088.

The results of this study indicated that giving curcumin to CSA03 breast cancer cells increased levels of RASSF1A protein (Fig. 5). This agrees with the study by Ung et al., that DNA hypermethylation correlates with ER-positive, although it is also ER negative [21]. On this basis, it should be suspected that there has been an increase in DNA hypermethylation in CSA03 cells. In DNA hypermethylation, a DNMT catalytic mechanism occurs that involves the formation of co-valent bonds between cysteine residues on the active site of the enzyme and carbon 6 (C6) cytosine DNA. This bond increases the flow of electrons to carbon 5 (C5) so that it readily accepts the methyl base cyto-sine group facilitated by the DNA methyltransferase (DNMT) enzyme, known as 5Methylcytosine (5 mC) [22]. Curcumin can also act as a competitive inhibitor with the C6 atom of the cytosine ring in the catalytic space through the C3 keto-enol curcumin portion. This covalent bond will inhibit DNMT1 activity without joining the DNA [23].

The increase in the RASSF1A protein was also followed by an increase in the levels of Bax and caspase-3 proteins in CSA03 breast cancer cells after 24 hours of curcumin administration, both at concentrations of 40 ^g/mL and 50 ^g/mL (Fig. 6, 7). This is according to the research of Law et al. [6], who demonstrated that RASSF1A can regulate the activity of the Bax protein. The results of this study indicated an increase in the percentage of Bax protein levels delta, the highest occurred in the administration of curcumin 50 |ig/mL. In the study of Lv et al. [18], it was reported that curcumin administration would increase Bax on MCF-7 cells in a concentration-dependent manner. Curcumin also increases caspase-3 protein levels, especially in the administration of curcumin of 50 |ig/mL. This increase was higher than the increase in RASSF1A protein levels. This can occur because curcumin can restore the function of protein genes of other tumor suppressors that are also hypermethylated. Together with the RASSF1A gene, these tumor suppressor proteins can activate Bax levels and apoptotic functions that end in caspase-3 being an executor and responsible for apoptosis.

Conclusion

The administration of the curcumin to CSA03 cells efficiently decreased the growth of breast cancer cells in vitro through the reactivation of RASSF1A as cancer the tumor suppressor gene and upregulated the Bax protein as the induction of apoptosis (caspase-3).

4. Thuy L.H.A., Thuan L.D., Phuong T.K. DNA hypermethylation in breast cancer. In: Pham PV, ed. (2017) Breast Cancer - From Biology to Medicine. London: InTech. 147-61. doi: 10.5772/66900.

5. Cao X., Tang Q., Holland-Letz T., GündertM., CukK., Schott S., Heil J., Golatta M., Sohn C., Schneeweiss A., Burwinkel B. Evaluation of Promoter Methylation of RASSF1A and ATM in Peripheral Blood of Breast Cancer Patients and Healthy Control Individuals. Int J Mol Sci. 2018; 19(3): 900. doi: 10.3390/ijms19030900.

6. Law J., SallaM., ZareA., Wong Y., LuongL., VolodkoN., Svystun O., Flood K., Lim J., Sung M., Dyck J.R., Tan C.T., Su Y.C., Yu VC., Mackey J.,

Baksh S. Modulator ofapoptosis 1 (MOAP-1) is a tumor suppressor protein linked to the RASSF1A protein. J Biol Chem. 2015; 290(40): 24100-18. doi: 10.1074/jbc.M115.648345.

7. Howell P.M., Liu Z., Khong H.T. Demethylating Agents in the Treatment of Cancer. Pharmaceuticals (Basel). 2010; 3(7): 2022-44. doi: 10.3390/ph3072022.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8. Foulks J.M., Parnell K.M., NixR.N., Chau S., SwierczekK., Saunders M, WrightK, Hendrickson T.F., HoK.K., McCullar M.V., Kanner S.B. Epigenetic drug discovery: targeting DNA methyltransferases. J Biomol Screen. 2012; 17(1): 2-17. doi: 10.1177/1087057111421212.

9. Goel A., Aggarwal B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemo-protector and radioprotector for normal organs. Nutr Cancer. 2010; 62(7): 919-30. doi: 10.1080/01635581.2010.509835.

10. Basnet P., Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011; 16(6): 4567-98. doi: 10.3390/molecules16064567.

11. Khazaei Koohpar Z., Entezari M., MovafaghA., HashemiM. Anticancer Activity of Curcumin on Human Breast Adenocarcinoma: Role of Mcl-1 Gene. Iran J Cancer Prev. 2015; 8(3). doi: 10.17795/ijcp2331.

12. Dai X., Cheng H., Bai Z., Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer. 2017; 8(16): 3131-41. doi: 10.7150/jca.18457.

13. RahmahN.A., HarliansyahH., SuyatnaF.D., KanokoM., Rusta-madjiP., Prihartono J., Haryono S.J., HernowoB.S. The role of curcumin on apoptosis through the RASSF1A and Bax pathways in breast cancer. Indonesian Journal of Cancer Chemoprevention. 2020; 11(2): 67-74. doi: 10.14499/indonesianjcanchemoprev11iss2pp67-74.

14. HafnerM., Niepel M., Chung M., Sorger P.K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods. 2016; 13(6): 521-7. doi: 10.1038/nmeth.3853.

15. He Y., Zhu Q., Chen M., Huang Q., Wang W., Li Q., Huang Y., Di W. The changing 50 % inhibitory concentration (IC50) of cisplatin: a

pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016; 7(43): 70803-21. doi: 10.18632/oncotarget.12223.

16. Nicco C., BatteuxF. ROS Modulator Molecules with Therapeutic Potential in Cancers Treatments. Molecules. 2017; 23(1): 84. doi: 10.3390/ molecules23010084.

17. SkoniecznaM., Hejmo T., Poterala-HejmoA., Cieslar-PobudaA., Buldak R.J. NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. Oxid Med Cell Longev. 2017. doi: 10.1155/2017/9420539.

18. Lv Z.D., LiuX.P., Zhao W.J., Dong Q, Li F.N., Wang H.B., KongB. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 2014; 7(6): 2818-24.

19. Zhang Y., CaoH., Yu Z., PengH.Y., Zhang C.J. Curcumin inhibits endometriosis endometrial cells by reducing estradiol production. Iran J Reprod Med. 2013; 11(5): 415-22.

20. Hagrass H.A., Pasha H.F., Shaheen M.A., Abdel Bary E.H., Kassem R. Methylation status and protein expression of RASSF1A in breast cancer patients. Mol Biol Rep. 2014; 41(1): 57-65. doi: 10.1007/ s11033-013-2837-3.

21. UngM., MaX., Johnson K.C., Christensen B.C., Cheng C. Effect of estrogen receptor a binding on functional DNA methylation in breast cancer. Epigenetics. 2014; 9(4): 523-32. doi: 10.4161/epi.27688.

22. Cheng Y., Xie N., Jin P., Wang T. DNA methylation and hy-droxymethylation in stem cells. Cell Biochem Funct. 2015; 33(4): 161-73. doi: 10.1002/cbf.3101.

23. Liu Z., Xie Z., Jones W., Pavlovicz R.E., Liu S., Yu J., Li P.K., Lin J., Fuchs J.R., Marcucci G., Li C., Chan K.K. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett. 2009; 19(3): 706-9. doi: 10.1016/j.bmcl.2008.12.041.

Поступила/Received 04.02.2022 Одобрена после рецензирования/Revised 26.09.2022 Принята к публикации/Accepted 14.10.2022

about the authors

Nunung Ainur Rahmah, dr., Sp.PA, Department of anatomical pathology, Faculty of Medicine, Universitas YARSI (Jakarta, Indonesia). ORCID: 0000-0002-7213-3270.

Harliansyah, M.Si., PhD, Department of biochemistry, Faculty of Medicine, Universitas YARSI (Jakarta, Indonesia). ORCID: 00000003-1614-4108.

Franciscus D. Suyatna, Prof., dr., PhD., Sp.FK, Department of pharmacology, Faculty of Medicine, Universitas Indonesia (Jakarta, Indonesia). ORCID: 0000-0002-7168-5743.

Mpu Kanoko, Prof., dr., SpPA(K), PhD, Department of anatomical pathology, Faculty of Medicine, Universitas Indonesia (Jakarta, Indonesia). ORCID: 0000-0002-2891-3077.

Primariadewi Rustamadji, Dr. dr., MM. SpPA(K), Department of anatomical pathology, Faculty of Medicine, Universitas Indonesia (Jakarta, Indonesia). ORCID: 0000-0003-2325-1091.

Joedo Prihartono, Dr. dr., MPH, Department of Public health, Faculty of Medicine, Universitas Indonesia (Jakarta, Indonesia). ORCID: 0000-0001-5684-9693.

Arleni Bustami, MS. Ka, Department of Integrated laboratory, Faculty of Medicine, Universitas Indonesia (Jakarta, Indonesia). ORCID: 0000-0001-9222-6610.

Samuel Johny Haryono, Dr. dr., Sp.B (K)Onk, Department of oncology, National Cancer Center Dharmais Hospital (Jakarta, Indonesia). ORCID: 0000-0002-6655-0633.

Hj. Bethy S. Hernowo, Prof., dr., Sp.PA(K), PhD, Department of anatomical pathology, Faculty of Medicine, Universitas Padjajaran (Bandung, Indonesia). ORCID: 0000-0003-2426-2534.

Funding

This study required no funding. Conflict of interests

The authors declare that they have no conflict of interest. Acknowledgement

The authors are grateful for grants from Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI) and Universitas YARSI, Jakarta, Indonesia.

СВЕДЕНИЯ ОБ АВТОРАХ

Nunung Ainur Rahmah, dr., Sp.PA, кафедра анатомической патологии, медицинский факультет, Университет Ярси (Джакарта, Индонезия). ORCID: 0000-0002-7213-3270.

Harliansyah, M.Si., PhD, кафедра биохимии, медицинский факультет, Университет Ярси (Джакарта, Индонезия). ORCID: 0000-0003-1614-4108.

Franciscus D. Suyatna, Prof., dr., PhD., Sp.FK, кафедра фармакологии, медицинский факультет, Университет Индонезии (Джакарта, Индонезия). ORCID: 0000-0002-7168-5743.

Mpu Kanoko, Prof., dr., SpPA(K), PhD, кафедра анатомической патологии, медицинский факультет, Университет Индонезии (Джакарта, Индонезия). ORCID: 0000-0002-2891-3077.

Primariadewi Rustamadji, Dr. dr., MM. SpPA(K), кафедра анатомической патологии, медицинский факультет, Университет Индонезии (Джакарта, Индонезия). ORCID: 0000-0003-2325-1091.

Joedo Prihartono, Dr. dr., MPH, кафедра здравоохранения, медицинский факультет, Университет Индонезии (Джакарта, Индонезия). ORCID: 0000-0001-5684-9693.

Arleni Bustami, MS. Ka, кафедра объединенной лаборатории, медицинский факультет, Университет Индонезии (Джакарта, Индонезия). ORCID: 0000-0001-9222-6610.

Samuel Johny Haryono, Dr. dr., Sp.B (K)Onk, отделение онкологии, Больница Национального онкологического центра Dharmais (Джакарта, Индонезия). ORCID: 0000-0002-6655-0633.

Hj. Bethy S. Hernowo, Prof., dr., Sp.PA(K), PhD, кафедра анатомической патологии, медицинский факультет, Университет Пад-жаджаран (Бандунг, Индонезия). ORCID: 0000-0003-2426-2534.

ВКЛАД АВТОРОВ

Nunung Ainur Rahmah: концепция и дизайн исследования, написание оригинальной рукописи. Harliansyah: концепция и дизайн исследования, написание оригинальной рукописи. Fransiscus D. Suyatna: концепция и дизайн исследования, написание оригинальной рукописи. Mpu Kanoko: исследование, анализ данных, написание оригинальной рукописи Primariadewi Rustamadji: исследование, анализ данных, критический пересмотр рукописи. Joedo Prihartono: исследование, анализ данных, критический пересмотр рукописи. Arleni Bustami: исследование, анализ данных, критический пересмотр рукописи. Samuel Johny Haryono: исследование, анализ данных, критический пересмотр рукописи. Bethy Suryawati Hernowo: концепция и дизайн исследования, критический пересмотр рукописи.

Финансирование

Это исследование не потребовало дополнительного финансирования. Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов. Благодарность

Авторы благодарят за гранты от Технологии и высшего образования Республики Индонезия (RISTEKDIKTI) и Universitas YARSI, Джакарта, Индонезия.

i Надоели баннеры? Вы всегда можете отключить рекламу.